

Rubin H. Landau
Manuel J. Páez
Cristian C. Bordeianu

Computational Physics

Related Titles

Paar, H.H.

An Introduction to Advanced Quantum Physics
2010
Print ISBN: 978-0-470-68675-1; also available in electronic formats

Har, J.J., Tamma, K.K.

Advances in Computational Dynamics of Particles, Materials and
Structures
2012
Print ISBN: 978-0-470-74980-7; also available in electronic formats ISBN: 978-1-119-96589-3

Cohen-Tannoudji, C., Diu, B., Laloe, F.

QuantumMechanics
2 Volume Set

1977
Print ISBN: 978-0-471-56952-7; also available in electronic formats

Schattke, W., Díez Muiño, R.

QuantumMonte-Carlo Programming
for Atoms, Molecules, Clusters, and Solids

2013
Print ISBN: 978-3-527-40851-1; also available in electronic formats

Zelevinsky, V.

Quantum Physics 1&2
2 Volume Set

2011
Print ISBN: 978-3-527-41057-6; also available in electronic formats

Rubin H. Landau
Manuel J. Páez
Cristian C. Bordeianu

Computational Physics

Problem Solving with Python

3rd completely revised edition

Authors

Rubin H. Landau
Oregon State University
97331 Corvallis OR
United States

Manuel J. Páez
Universad de Antioquia
Departamento Fisica
Medellin
Colombia

CristianC. Bordeianu
National Military College “Ştefan cal Mare”
Campulung Moldovenesc
Romania

All books published by Wiley-VCH are carefully
produced. Nevertheless, authors, editors, and
publisher do not warrant the information
contained in these books, including this book,
to be free of errors. Readers are advised to keep
in mind that statements, data, illustrations,
procedural details or other items may
inadvertently be inaccurate.

Library of Congress Card No.:
applied for

British Library Cataloguing-in-Publication Data:
A catalogue record for this book is available
from the British Library.

Bibliographic information published by the
DeutscheNationalbibliothek
The Deutsche Nationalbibliothek lists this
publication in theDeutsche Nationalbibliografie;
detailed bibliographic data are available on the
Internet at http://dnb.d-nb.de.

© 2015WILEY-VCHVerlagGmbH&Co. KGaA,
Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of trans-
lation into other languages). No part of this
book may be reproduced in any form – by
photoprinting, microfilm, or any other means
– nor transmitted or translated into a machine
language without written permission from the
publishers. Registered names, trademarks, etc.
used in this book, even when not specifically
marked as such, are not to be considered un-
protected by law.

Typesetting le-tex publishing services GmbH,
Leipzig, Deutschland
CoverDesign Formgeber,Mannheim, Deutsch-
land
Print and Binding Markono Print Media
Pte Ltd, Singapore

Print ISBN 978-3-527-41315-7
ePDF ISBN 978-3-527-68466-3
ePub ISBN 978-3-527-68469-4
Mobi ISBN 978-3-527-68467-0

Printed on acid-free paper.

V

To the memory of Jon Maestri

VII

Contents

Dedication V

Preface XIX

1 Introduction 1
1.1 Computational Physics and Computational Science 1
1.2 This Book’s Subjects 3
1.3 This Book’s Problems 4
1.4 This Book’s Language: The Python Ecosystem 8
1.4.1 Python Packages (Libraries) 9
1.4.2 This Book’s Packages 10
1.4.3 The Easy Way: Python Distributions (Package Collections) 12
1.5 Python’s Visualization Tools 13
1.5.1 Visual (VPython)’s 2D Plots 14
1.5.2 VPython’s Animations 17
1.5.3 Matplotlib’s 2D Plots 17
1.5.4 Matplotlib’s 3D Surface Plots 22
1.5.5 Matplotlib’s Animations 24
1.5.6 Mayavi’s Visualizations Beyond Plotting 26
1.6 Plotting Exercises 30
1.7 Python’s Algebraic Tools 31

2 Computing Software Basics 33
2.1 Making Computers Obey 33
2.2 Programming Warmup 35
2.2.1 Structured and Reproducible Program Design 36
2.2.2 Shells, Editors, and Execution 37
2.3 Python I/O 39
2.4 Computer Number Representations (Theory) 40
2.4.1 IEEE Floating-Point Numbers 41
2.4.2 Python and the IEEE 754 Standard 47
2.4.3 Over and Underflow Exercises 48
2.4.4 Machine Precision (Model) 49

VIII Contents

2.4.5 Experiment: Your Machine’s Precision 50
2.5 Problem: Summing Series 51
2.5.1 Numerical Summation (Method) 51
2.5.2 Implementation and Assessment 52

3 Errors and Uncertainties in Computations 53
3.1 Types of Errors (Theory) 53
3.1.1 Model for Disaster: Subtractive Cancelation 55
3.1.2 Subtractive Cancelation Exercises 56
3.1.3 Round-off Errors 57
3.1.4 Round-off Error Accumulation 58
3.2 Error in Bessel Functions (Problem) 58
3.2.1 Numerical Recursion (Method) 59
3.2.2 Implementation and Assessment: Recursion Relations 61
3.3 Experimental Error Investigation 62
3.3.1 Error Assessment 65

4 Monte Carlo: Randomness, Walks, and Decays 69
4.1 Deterministic Randomness 69
4.2 Random Sequences (Theory) 69
4.2.1 Random-Number Generation (Algorithm) 70
4.2.2 Implementation: Random Sequences 72
4.2.3 Assessing Randomness and Uniformity 73
4.3 RandomWalks (Problem) 75
4.3.1 Random-Walk Simulation 76
4.3.2 Implementation: RandomWalk 77
4.4 Extension: Protein Folding and Self-Avoiding RandomWalks 79
4.5 Spontaneous Decay (Problem) 80
4.5.1 Discrete Decay (Model) 81
4.5.2 Continuous Decay (Model) 82
4.5.3 Decay Simulation with Geiger Counter Sound 82
4.6 Decay Implementation and Visualization 84

5 Differentiation and Integration 85
5.1 Differentiation 85
5.2 Forward Difference (Algorithm) 86
5.3 Central Difference (Algorithm) 87
5.4 Extrapolated Difference (Algorithm) 87
5.5 Error Assessment 88
5.6 Second Derivatives (Problem) 90
5.6.1 Second-Derivative Assessment 90
5.7 Integration 91
5.8 Quadrature as Box Counting (Math) 91
5.9 Algorithm: Trapezoid Rule 93
5.10 Algorithm: Simpson’s Rule 94

IXContents

5.11 Integration Error (Assessment) 96
5.12 Algorithm: Gaussian Quadrature 97
5.12.1 Mapping Integration Points 98
5.12.2 Gaussian Points Derivation 99
5.12.3 Integration Error Assessment 100
5.13 Higher Order Rules (Algorithm) 103
5.14 Monte Carlo Integration by Stone Throwing (Problem) 104
5.14.1 Stone Throwing Implementation 104
5.15 Mean Value Integration (Theory and Math) 105
5.16 Integration Exercises 106
5.17 Multidimensional Monte Carlo Integration (Problem) 108
5.17.1 Multi Dimension Integration Error Assessment 109
5.17.2 Implementation: 10DMonte Carlo Integration 110
5.18 Integrating Rapidly Varying Functions (Problem) 110
5.19 Variance Reduction (Method) 110
5.20 Importance Sampling (Method) 111
5.21 von Neumann Rejection (Method) 111
5.21.1 Simple Random Gaussian Distribution 113
5.22 Nonuniform Assessment⊙ 113
5.22.1 Implementation ⊙ 114

6 Matrix Computing 117
6.1 Problem 3: N–D Newton–Raphson; Two Masses on a String 117
6.1.1 Theory: Statics 118
6.1.2 Algorithm: Multidimensional Searching 119
6.2 Why Matrix Computing? 122
6.3 Classes of Matrix Problems (Math) 122
6.3.1 Practical Matrix Computing 124
6.4 Python Lists as Arrays 126
6.5 Numerical Python (NumPy) Arrays 127
6.5.1 NumPy’s linalg Package 132
6.6 Exercise: Testing Matrix Programs 134
6.6.1 Matrix Solution of the String Problem 137
6.6.2 Explorations 139

7 Trial-and-Error Searching and Data Fitting 141
7.1 Problem 1: A Search for Quantum States in a Box 141
7.2 Algorithm: Trial-and-Error Roots via Bisection 142
7.2.1 Implementation: Bisection Algorithm 144
7.3 Improved Algorithm: Newton–Raphson Searching 145
7.3.1 Newton–Raphson with Backtracking 147
7.3.2 Implementation: Newton–Raphson Algorithm 148
7.4 Problem 2: Temperature Dependence of Magnetization 148
7.4.1 Searching Exercise 150
7.5 Problem 3: Fitting An Experimental Spectrum 150

X Contents

7.5.1 Lagrange Implementation, Assessment 152
7.5.2 Cubic Spline Interpolation (Method) 153
7.6 Problem 4: Fitting Exponential Decay 156
7.7 Least-Squares Fitting (Theory) 158
7.7.1 Least-Squares Fitting: Theory and Implementation 160
7.8 Exercises: Fitting Exponential Decay, Heat Flow andHubble’s Law 162
7.8.1 Linear Quadratic Fit 164
7.8.2 Problem 5: Nonlinear Fit to a Breit–Wigner 167

8 Solving Differential Equations: Nonlinear Oscillations 171
8.1 Free Nonlinear Oscillations 171
8.2 Nonlinear Oscillators (Models) 171
8.3 Types of Differential Equations (Math) 173
8.4 Dynamic Form for ODEs (Theory) 175
8.5 ODE Algorithms 177
8.5.1 Euler’s Rule 177
8.6 Runge–Kutta Rule 178
8.7 Adams–Bashforth–Moulton Predictor–Corrector Rule 183
8.7.1 Assessment: rk2 vs. rk4 vs. rk45 185
8.8 Solution for Nonlinear Oscillations (Assessment) 187
8.8.1 Precision Assessment: Energy Conservation 188
8.9 Extensions: Nonlinear Resonances, Beats, Friction 189
8.9.1 Friction (Model) 189
8.9.2 Resonances and Beats: Model, Implementation 190
8.10 Extension: Time-Dependent Forces 190

9 ODE Applications: Eigenvalues, Scattering, and Projectiles 193
9.1 Problem: Quantum Eigenvalues in Arbitrary Potential 193
9.1.1 Model: Nucleon in a Box 194
9.2 Algorithms: Eigenvalues via ODE Solver + Search 195
9.2.1 Numerov Algorithm for Schrödinger ODE ⊙ 197
9.2.2 Implementation: Eigenvalues viaODESolver+BisectionAlgorithm 200
9.3 Explorations 203
9.4 Problem: Classical Chaotic Scattering 203
9.4.1 Model and Theory 204
9.4.2 Implementation 206
9.4.3 Assessment 207
9.5 Problem: Balls Falling Out of the Sky 208
9.6 Theory: Projectile Motion with Drag 208
9.6.1 Simultaneous Second-Order ODEs 209
9.6.2 Assessment 210
9.7 Exercises: 2- and 3-Body Planet Orbits and Chaotic Weather 211

10 High-Performance Hardware and Parallel Computers 215
10.1 High-Performance Computers 215

XIContents

10.2 Memory Hierarchy 216
10.3 The Central Processing Unit 219
10.4 CPU Design: Reduced Instruction Set Processors 220
10.5 CPU Design: Multiple-Core Processors 221
10.6 CPU Design: Vector Processors 222
10.7 Introduction to Parallel Computing 223
10.8 Parallel Semantics (Theory) 224
10.9 Distributed Memory Programming 226
10.10 Parallel Performance 227
10.10.1 Communication Overhead 229
10.11 Parallelization Strategies 230
10.12 Practical Aspects of MIMDMessage Passing 231
10.12.1 High-Level View of Message Passing 233
10.12.2 Message Passing Example and Exercise 234
10.13 Scalability 236
10.13.1 Scalability Exercises 238
10.14 Data Parallelism and Domain Decomposition 239
10.14.1 Domain Decomposition Exercises 242
10.15 Example: The IBM Blue Gene Supercomputers 243
10.16 Exascale Computing via Multinode-Multicore GPUs 245

11 Applied HPC: Optimization, Tuning, and GPU Programming 247
11.1 General Program Optimization 247
11.1.1 Programming for Virtual Memory (Method) 248
11.1.2 Optimization Exercises 249
11.2 Optimized Matrix Programming with NumPy 251
11.2.1 NumPy Optimization Exercises 254
11.3 Empirical Performance of Hardware 254
11.3.1 Racing Python vs. Fortran/C 255
11.4 Programming for the Data Cache (Method) 262
11.4.1 Exercise 1: Cache Misses 264
11.4.2 Exercise 2: Cache Flow 264
11.4.3 Exercise 3: Large-Matrix Multiplication 265
11.5 Graphical Processing Units for High Performance Computing 266
11.5.1 The GPU Card 267
11.6 Practical Tips for Multicore and GPU Programming ⊙ 267
11.6.1 CUDA Memory Usage 270
11.6.2 CUDA Programming ⊙ 271

12 Fourier Analysis: Signals and Filters 275
12.1 Fourier Analysis of Nonlinear Oscillations 275
12.2 Fourier Series (Math) 276
12.2.1 Examples: Sawtooth and Half-Wave Functions 278
12.3 Exercise: Summation of Fourier Series 279
12.4 Fourier Transforms (Theory) 279

XII Contents

12.5 The Discrete Fourier Transform 281
12.5.1 Aliasing (Assessment) 285
12.5.2 Fourier Series DFT (Example) 287
12.5.3 Assessments 288
12.5.4 Nonperiodic Function DFT (Exploration) 290
12.6 Filtering Noisy Signals 290
12.7 Noise Reduction via Autocorrelation (Theory) 290
12.7.1 Autocorrelation Function Exercises 293
12.8 Filtering with Transforms (Theory) 294
12.8.1 Digital Filters: Windowed Sinc Filters (Exploration)⊙ 296
12.9 The Fast Fourier Transform Algorithm⊙ 299
12.9.1 Bit Reversal 301
12.10 FFT Implementation 303
12.11 FFT Assessment 304

13 Wavelet and Principal Components Analyses: Nonstationary Signals and
Data Compression 307

13.1 Problem: Spectral Analysis of Nonstationary Signals 307
13.2 Wavelet Basics 307
13.3 Wave Packets and Uncertainty Principle (Theory) 309
13.3.1 Wave Packet Assessment 311
13.4 Short-Time Fourier Transforms (Math) 311
13.5 TheWavelet Transform 313
13.5.1 Generating Wavelet Basis Functions 313
13.5.2 Continuous Wavelet Transform Implementation 316
13.6 Discrete Wavelet Transforms, Multiresolution Analysis ⊙ 317
13.6.1 Pyramid Scheme Implementation ⊙ 323
13.6.2 Daubechies Wavelets via Filtering 327
13.6.3 DWT Implementation and Exercise 330
13.7 Principal Components Analysis 332
13.7.1 Demonstration of Principal Component Analysis 334
13.7.2 PCA Exercises 337

14 Nonlinear Population Dynamics 339
14.1 Bug Population Dynamics 339
14.2 The Logistic Map (Model) 339
14.3 Properties of Nonlinear Maps (Theory and Exercise) 341
14.3.1 Fixed Points 342
14.3.2 Period Doubling, Attractors 343
14.4 Mapping Implementation 344
14.5 Bifurcation Diagram (Assessment) 345
14.5.1 Bifurcation Diagram Implementation 346
14.5.2 Visualization Algorithm: Binning 347
14.5.3 Feigenbaum Constants (Exploration) 348
14.6 Logistic Map Random Numbers (Exploration)⊙ 348

XIIIContents

14.7 Other Maps (Exploration) 348
14.8 Signals of Chaos: Lyapunov Coefficient and Shannon Entropy ⊙ 349
14.9 Coupled Predator–Prey Models 353
14.10 Lotka–Volterra Model 354
14.10.1 Lotka–Volterra Assessment 356
14.11 Predator–Prey Chaos 356
14.11.1 Exercises 359
14.11.2 LVM with Prey Limit 359
14.11.3 LVM with Predation Efficiency 360
14.11.4 LVM Implementation and Assessment 361
14.11.5 Two Predators, One Prey (Exploration) 362

15 Continuous Nonlinear Dynamics 363
15.1 Chaotic Pendulum 363
15.1.1 Free Pendulum Oscillations 364
15.1.2 Solution as Elliptic Integrals 365
15.1.3 Implementation and Test: Free Pendulum 366
15.2 Visualization: Phase-Space Orbits 367
15.2.1 Chaos in Phase Space 368
15.2.2 Assessment in Phase Space 372
15.3 Exploration: Bifurcations of Chaotic Pendulums 374
15.4 Alternate Problem: The Double Pendulum 375
15.5 Assessment: Fourier/Wavelet Analysis of Chaos 377
15.6 Exploration: Alternate Phase-Space Plots 378
15.7 Further Explorations 379

16 Fractals and Statistical Growth Models 383
16.1 Fractional Dimension (Math) 383
16.2 The Sierpiński Gasket (Problem 1) 384
16.2.1 Sierpiński Implementation 384
16.2.2 Assessing Fractal Dimension 385
16.3 Growing Plants (Problem 2) 386
16.3.1 Self-Affine Connection (Theory) 386
16.3.2 Barnsley’s Fern Implementation 387
16.3.3 Self-Affinity in Trees Implementation 389
16.4 Ballistic Deposition (Problem 3) 390
16.4.1 Random Deposition Algorithm 390
16.5 Length of British Coastline (Problem 4) 391
16.5.1 Coastlines as Fractals (Model) 392
16.5.2 Box Counting Algorithm 392
16.5.3 Coastline Implementation and Exercise 393
16.6 Correlated Growth, Forests, Films (Problem 5) 395
16.6.1 Correlated Ballistic Deposition Algorithm 395
16.7 Globular Cluster (Problem 6) 396
16.7.1 Diffusion-Limited Aggregation Algorithm 396

XIV Contents

16.7.2 Fractal Analysis of DLA or a Pollock 399
16.8 Fractals in Bifurcation Plot (Problem 7) 400
16.9 Fractals from Cellular Automata 400
16.10 Perlin Noise Adds Realism ⊙ 402
16.10.1 Ray Tracing Algorithms 404
16.11 Exercises 407

17 Thermodynamic Simulations and Feynman Path Integrals 409
17.1 Magnets via Metropolis Algorithm 409
17.2 An Ising Chain (Model) 410
17.3 Statistical Mechanics (Theory) 412
17.3.1 Analytic Solution 413
17.4 Metropolis Algorithm 413
17.4.1 Metropolis Algorithm Implementation 416
17.4.2 Equilibration, Thermodynamic Properties (Assessment) 417
17.4.3 Beyond Nearest Neighbors, 1D (Exploration) 419
17.5 Magnets via Wang–Landau Sampling ⊙ 420
17.6 Wang–Landau Algorithm 423
17.6.1 WLS Ising Model Implementation 425
17.6.2 WLS Ising Model Assessment 428
17.7 Feynman Path Integral Quantum Mechanics⊙ 429
17.8 Feynman’s Space–Time Propagation (Theory) 429
17.8.1 Bound-State Wave Function (Theory) 431
17.8.2 Lattice Path Integration (Algorithm) 432
17.8.3 Lattice Implementation 437
17.8.4 Assessment and Exploration 440
17.9 Exploration: Quantum Bouncer’s Paths⊙ 440

18 Molecular Dynamics Simulations 445
18.1 Molecular Dynamics (Theory) 445
18.1.1 Connection to Thermodynamic Variables 449
18.1.2 Setting Initial Velocities 449
18.1.3 Periodic Boundary Conditions and Potential Cutoff 450
18.2 Verlet and Velocity–Verlet Algorithms 451
18.3 1D Implementation and Exercise 453
18.4 Analysis 456

19 PDE Review and Electrostatics via Finite Differences and Electrostatics via
Finite Differences 461

19.1 PDE Generalities 461
19.2 Electrostatic Potentials 463
19.2.1 Laplace’s Elliptic PDE (Theory) 463
19.3 Fourier Series Solution of a PDE 464
19.3.1 Polynomial Expansion as an Algorithm 466
19.4 Finite-Difference Algorithm 467

XVContents

19.4.1 Relaxation and Over-relaxation 469
19.4.2 Lattice PDE Implementation 470
19.5 Assessment via Surface Plot 471
19.6 Alternate Capacitor Problems 471
19.7 Implementation and Assessment 474
19.8 Electric Field Visualization (Exploration) 475
19.9 Review Exercise 476

20 Heat Flow via Time Stepping 477
20.1 Heat Flow via Time-Stepping (Leapfrog) 477
20.2 The Parabolic Heat Equation (Theory) 478
20.2.1 Solution: Analytic Expansion 478
20.2.2 Solution: Time Stepping 479
20.2.3 von Neumann Stability Assessment 481
20.2.4 Heat Equation Implementation 483
20.3 Assessment and Visualization 483
20.4 Improved Heat Flow: Crank–Nicolson Method 484
20.4.1 Solution of Tridiagonal Matrix Equations ⊙ 487
20.4.2 Crank–Nicolson Implementation, Assessment 490

21 Wave Equations I: Strings andMembranes 491
21.1 A Vibrating String 491
21.2 The Hyperbolic Wave Equation (Theory) 491
21.2.1 Solution via Normal-Mode Expansion 493
21.2.2 Algorithm: Time Stepping 494
21.2.3 Wave Equation Implementation 496
21.2.4 Assessment, Exploration 497
21.3 Strings with Friction (Extension) 499
21.4 Strings with Variable Tension and Density 500
21.4.1 Waves on Catenary 501
21.4.2 Derivation of Catenary Shape 501
21.4.3 Catenary and Frictional Wave Exercises 503
21.5 Vibrating Membrane (2DWaves) 504
21.6 Analytical Solution 505
21.7 Numerical Solution for 2DWaves 508

22 Wave Equations II: Quantum Packets and Electromagnetic 511
22.1 Quantum Wave Packets 511
22.2 Time-Dependent Schrödinger Equation (Theory) 511
22.2.1 Finite-Difference Algorithm 513
22.2.2 Wave Packet Implementation, Animation 514
22.2.3 Wave Packets in Other Wells (Exploration) 516
22.3 Algorithm for the 2D Schrödinger Equation 517
22.3.1 Exploration: Bound and Diffracted 2D Packet 518
22.4 Wave Packet–Wave Packet Scattering 518

XVI Contents

22.4.1 Algorithm 520
22.4.2 Implementation 520
22.4.3 Results and Visualization 522
22.5 E&MWaves via Finite-Difference Time Domain 525
22.6 Maxwell’s Equations 525
22.7 FDTD Algorithm 526
22.7.1 Implementation 530
22.7.2 Assessment 530
22.7.3 Extension: Circularly Polarized Waves 531
22.8 Application: Wave Plates 533
22.9 Algorithm 534
22.10 FDTD Exercise and Assessment 535

23 Electrostatics via Finite Elements 537
23.1 Finite-Element Method⊙ 537
23.2 Electric Field from Charge Density (Problem) 538
23.3 Analytic Solution 538
23.4 Finite-Element (Not Difference) Methods, 1D 539
23.4.1 Weak Form of PDE 539
23.4.2 Galerkin Spectral Decomposition 540
23.5 1D FEM Implementation and Exercises 544
23.5.1 1D Exploration 547
23.6 Extension to 2D Finite Elements 547
23.6.1 Weak Form of PDE 548
23.6.2 Galerkin’s Spectral Decomposition 548
23.6.3 Triangular Elements 549
23.6.4 Solution as Linear Equations 551
23.6.5 Imposing Boundary Conditions 552
23.6.6 FEM 2D Implementation and Exercise 554
23.6.7 FEM 2D Exercises 554

24 Shocks Waves and Solitons 555
24.1 Shocks and Solitons in ShallowWater 555
24.2 Theory: Continuity and Advection Equations 556
24.2.1 Advection Implementation 558
24.3 Theory: ShockWaves via Burgers’ Equation 559
24.3.1 Lax–Wendroff Algorithm for Burgers’ Equation 560
24.3.2 Implementation and Assessment of Burgers’ Shock Equation 561
24.4 Including Dispersion 562
24.5 Shallow-Water Solitons: The KdeV Equation 563
24.5.1 Analytic Soliton Solution 563
24.5.2 Algorithm for KdeV Solitons 564
24.5.3 Implementation: KdeV Solitons 565
24.5.4 Exploration: Solitons in Phase Space, Crossing 567
24.6 Solitons on Pendulum Chain 567

XVIIContents

24.6.1 Including Dispersion 568
24.6.2 Continuum Limit, the Sine-Gordon Equation 570
24.6.3 Analytic SGE Solution 571
24.6.4 Numeric Solution: 2D SGE Solitons 571
24.6.5 2D Soliton Implementation 573
24.6.6 SGE Soliton Visualization 574

25 Fluid Dynamics 575
25.1 River Hydrodynamics 575
25.2 Navier–Stokes Equation (Theory) 576
25.2.1 Boundary Conditions for Parallel Plates 578
25.2.2 Finite-Difference Algorithm and Overrelaxation 580
25.2.3 Successive Overrelaxation Implementation 581
25.3 2D Flow over a Beam 581
25.4 Theory: Vorticity Form of Navier–Stokes Equation 582
25.4.1 Finite Differences and the SOR Algorithm 584
25.4.2 Boundary Conditions for a Beam 585
25.4.3 SOR on a Grid 587
25.4.4 Flow Assessment 589
25.4.5 Exploration 590

26 Integral Equations of QuantumMechanics 591
26.1 Bound States of Nonlocal Potentials 591
26.2 Momentum–Space Schrödinger Equation (Theory) 592
26.2.1 Integral to Matrix Equations 593
26.2.2 Delta-Shell Potential (Model) 595
26.2.3 Binding Energies Solution 595
26.2.4 Wave Function (Exploration) 597
26.3 Scattering States of Nonlocal Potentials ⊙ 597
26.4 Lippmann–Schwinger Equation (Theory) 598
26.4.1 Singular Integrals (Math) 599
26.4.2 Numerical Principal Values 600
26.4.3 Reducing Integral Equations to Matrix Equations (Method) 600
26.4.4 Solution via Inversion, Elimination 602
26.4.5 Scattering Implementation 603
26.4.6 Scattering Wave Function (Exploration) 604

Appendix A Codes, Applets, and Animations 607

Bibliography 609

Index 615

XIX

Preface

Seventeen years have past since Wiley first published Landau and Páez’s Compu-
tational Physics and twelve years since Cristian Bordeianu joined the collabora-
tion for the second edition. This third edition adheres to the original philosophy
that the best way to learn computational physics (CP) is by working on a wide
range of projects using the text and the computer as partners. Most projects are
still constructed using a computational, scientific problem-solving paradigm:

Problem → Theory/Model → Algorithm ↔ Visualization
←

(0.1)

Our guiding hypothesis remains that CP is a computational science, whichmeans
that to understand CP you need to understand some physics, some appliedmath-
ematics, and some computer science.What is different in this edition is the choice
of Python for sample codes and an increase in the number of topics covered. We
now have a survey of CP which is more than enough for a full-year’s course.
The use of Python is more than just a change of language, it is taking advan-

tage of the Python ecosystem of base language plus multiple, specialized libraries
to provide all computational needs. In addition, we find Python to be the easi-
est and most accessible language for beginners, while still being excellent for the
type of interactive and exploratory computations now popular in scientific re-
search. Furthermore, Python supplemented by the Visual package (VPython) has
gained traction in lower division physics teaching, and this may serve as an ex-
cellent segue to a Python-based CP course. Nevertheless, the important aspects
of computational modeling and thinking transcends any particular computer lan-
guage, and so having a Python alternative to our previous use of Fortran, C and
Java may help promote this view (codes in all languages are available).
As before, we advocate for the use of a compiled or interpreted programming

language when learning CP, in contrast to a higher level problem-solving environ-
ment like Mathematica or Maple, which we use in daily work. This follows from
our experiences that if youwant to understand how to compute scientifically, then
you must look inside a program’s black box and get your hands dirty. Otherwise,
the algorithms, logic, and the validity of solutions cannot be ascertained, and that
is not a good physics. Not surprisingly, we believe all physicists should know how
to read programs how to write them as well.

XX Preface

Notwithstanding our beliefs about programming, we appreciate how time-
consuming and frustrating debugging programs often is, and especially for be-
ginners. Accordingly, rather than make the learner write all codes from scratch,
we have placed a large number of codes within the text and often ask the learner
only to run, modify, and extend them. This not only leaves time for exploration
and analysis, but also provides experience in the modern work environment in
which one must incorporate new developments into the preexisting codes of
others. Be that as it may, for this edition we have added problems in which the
relevant codes are not in the text (but are available to instructors). This should
permit an instructor to decide on the balance of new and second-hand codes with
which their students should work.
In addition to the paper version of the text, there is also an eBook of it that

incorporates many of the multimodal enhancements possible with modern tech-
nologies: video lecture modules, active simulations, editable codes, animations,
and sounds. The eBook is available as a Web (HTML5) document appropriate
for both PCs or mobile devices. The lecture modules, which can be viewed sepa-
rately from the eBook, cover most of the topics in the text, are listed in Appendix
B, and are available online. Theymay provide avenues for alternative understand-
ing the text (either as a preview or a review), for an online course, or for a blended
course that replaces some lecture time with lab time. This latter approach, which
we recommend, provides time for the instructor to assist students more person-
ally with their projects and their learning issues. The studio-produced lectures
are truly “modules,” with active slides, a dynamic table of context, excellent sound
(except maybe for a Bronx accent), and with occasional demonstrations replacing
the talking head.
The introductory chapter includes tables listing all of the problems and exer-

cises in the text, their locations in the text, as well as the physics courses in which
these problems may be used as computational examples. Although we think it
better to have entire courses in CP rather than just examples in the traditional
courses, the inclusion of examplesmay serve as a valuable first step towardsmod-
ernization.
The entire book has been reedited to improve clarity and useability. New ma-

terials have also been added, and this has led to additional and reorganized chap-
ters. Specific additions not found in the second edition include: descriptions of the
Python language and its packages, demonstrations of several visualization pack-
ages, discussions of algebraic tools, an example on protein folding, a derivation
of the Gaussian quadrature rule, searching to obtain the temperature dependence
of magnetization, chaotic weather patterns, planetary motion, matrix comput-
ing with Numerical Python, expanded and updated discussion of parallel com-
puting including scalability and domain composition, optimized matrix comput-
ing with NumPy, GPU computing, CUDA programming, principal components
analysis, digital filtering, the fast Fourier transform (FFT), an entire chapter on
wavelet analysis and data compression, a variety of predator–prey models, sig-
nals of chaos, nonlinear behavior of double pendulum, cellular automata, Perlin
noise, ray tracing, Wang–Landau sampling for thermodynamic simulations, fi-

XXIPreface

nite element (in addition to difference) solutions of 1D and 2D PDEs, waves on a
catenary, finite-difference-time-domain solutions for E&M waves, advection and
shock waves in fluids, and a new chapter on fluid dynamics.We hope you enjoy it
all!

Redmond, Oregon, June 2014 RHL, rubin@science.oregonstate.edu

XXII Preface

Acknowledgments

Immature poets imitate;
mature poets steal.
T.S. Elliot

This book and the courses it is based upon could not have been created without
continued financial support from the National Science Foundation’s CCLI, EPIC,
andNPACI programs, as well as support from theOregon State University. Thank
you all and we hope we have done you proud.
Our CP developments have followed the pioneering path paved by the books

of Thompson, Gould and Tobochnik, Koonin and Press et al.; indubitably, we
have borrowedmaterial from them andmade it our ownwith no further thought.
We wish to acknowledge valuable contributions by Hans Kowallik, Sally Haerer
(video-lecture modules), Paul Fink, Michel Vallières, Joel Wetzel, Oscar A. Re-
strepo, Jaime Zuluaga, Pavel Snopok, and Henri Jansen. It is our pleasure to
acknowledge the invaluable friendship, encouragement, helpful discussions, and
experiences we have had with many colleagues and students over the years.
We are particularly indebted to Guillermo Avendaño-Franco, Saturo S. Kano,
Melanie Johnson, Jon Maestri (deceased), David McIntyre, Shashikant Phatak,
Viktor Podolskiy, C.E. Yaguna, Zlatco Dimcovic, and Al Stetz. The new work on
principal component analysis resulted from a wonderful collaboration with Jon
Wright and Roy Schult in 1997. Our gratitude also goes to the reviewers for their
thoughtful and valuable suggestions, and to Bruce Sherwood, who has assisted
us in making the Python codes run faster and look better. And finally, Martin
Preuss, Nina Stadthaus, Ann Seidel, and Vera Palmer at Wiley-VCH have been a
pleasure to work with.
In spite of everyone’s best efforts, there are still errors and confusing statements

in the book and codes for which we are to blame.
Finally, we extend our gratitude to the wives, Jan and Lucia, whose reliable sup-

port and encouragement are lovingly accepted, as always.

1

1
Introduction

Beginnings are hard.

Chaim Potok

Nothing is more expensive than a start.

Friedrich Nietzsche

This book is really two books. There is a rather traditional paper one with a re-
lated Web site, as well as an eBook version containing a variety of digital fea-
tures best experienced on a computer. Yet even if you are reading from paper, you
can still avail yourself of many of digital features, including video-based lecture
modules, via the book’s Web sites: http://physics.oregonstate.edu/~rubin/Books/
CPbook/eBook/Lectures/ and www.wiley.com/WileyCDA.
We start this chapter with a description of how computational physics (CP) fits into
physics and into the broader field of computational science. We then describe the
subjects we are to cover, and present lists of all the problems in the text and in
which area of physics they can be used as computational examples. The chapter
finallygets down tobusiness bydiscussing the Python language, someof themany
packages that are available for Python, and some detailed examples of the use of
visualization and symbolic manipulation packages.

1.1
Computational Physics and Computational Science

This book presents computational physics (CP) as a subfield of computational
science. This implies that CP is a multidisciplinary subject that combines aspects
of physics, applied mathematics, and computer science (CS) (Figure 1.1a), with
the aim of solving realistic and ever-changing physics problems. Other compu-
tational sciences replace physics with their discipline, such as biology, chemistry,
engineering, and so on. Although related, computational science is not part of
computer science. CS studies computing for its own intrinsic interest and devel-
ops the hardware and software tools that computational scientists use. Likewise,
applied mathematics develops and studies the algorithms that computational sci-
entists use. As much as we also find math and CS interesting for their own sakes,

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

2 1 Introduction

Figure 1.1 (a) A representation of the multi-
disciplinary nature of computational physics
as an overlap of physics, applied mathematics
and computer science, and as a bridge among
them. (b) Simulation has been added to ex-

periment and theory as a basic approach in
the search for scientific truth. Although this
book focuses on simulation, we present it as
part of the scientific process.

our focus is on helping the reader do better physics for which you need to under-
stand the CS and math well enough to solve your problems correctly, but not to
become an expert programmer.
As CP has matured, we have come to realize that it is more than the overlap of

physics, computer science, and mathematics. It is also a bridge among them (the
central region in Figure 1.1a) containing core elements of it own, such as com-
putational tools and methods. To us, CP’s commonality of tools and its problem-
solving mindset draws it toward the other computational sciences and away from
the subspecialization found in so much of physics. In order to emphasize our
computational science focus, to the extent possible, we present the subjects in
this book in the form of a Problem to solve, with the components that consti-
tute the solution separated according to the scientific problem-solving paradigm
(Figure 1.1b). In recent times, this type of problem-solving approach, which can
be traced back to the post-World War II research techniques developed at US
national laboratories, has been applied to science education where it is called
something like computational scientific thinking. This is clearly related to what
the computer scientists more recently have come to callComputationalThinking,
but the former is less discipline specific. Our computational scientific thinking is
a hands-on, inquiry-based project approach in which there is problem analysis,
a theoretical foundation that considers computability and appropriate modeling,
algorithmic thinking and development, debugging, and an assessment that leads
back to the original problem.
Traditionally, physics utilizes both experimental and theoretical approaches to

discover scientific truth. Being able to transform a theory into an algorithm re-
quires significant theoretical insight, detailed physical and mathematical under-
standing, and amastery of the art of programming. The actual debugging, testing,
and organization of scientific programs are analogous to experimentation, with
the numerical simulations of nature being virtual experiments. The synthesis of

31.2 This Book’s Subjects

numbers into generalizations, predictions, and conclusions requires the insight
and intuition common to both experimental and theoretical science. In fact, the
use of computation and simulation has now become so prevalent and essential a
part of the scientific process that many people believe that the scientific paradigm
has been extended to include simulation as an additional pillar (Figure 1.1b). Nev-
ertheless, as a science, CPmust hold experiment supreme, regardless of the beauty
of the mathematics.

1.2
This Book’s Subjects

This book starts with a discussion of Python as a computing environment and
then discusses some basic computational topics. A simple review of computing
hardware is put off until Chapter 10, although it also fits logically at the beginning
of a course. We include some physics applications in the first third of this book,
by put off most CP until the latter two-thirds of the book.
This text have been written to be accessible to upper division undergraduates,

although many graduate students without a CP background might also benefit,
even from themore elementary topics.We cover both ordinary and partial differ-
ential equation (PDE) applications, as well as problems using linear algebra, for
which we recommend the established subroutine libraries. Some intermediate-
level analysis tools such as discrete Fourier transforms, wavelet analysis, and sin-
gular value/principal component decompositions, often poorly understood by
physics students, are also covered (and recommended). We also present various
topics in fluid dynamics including shock and soliton physics, which in our expe-
rience physics students often do not see otherwise. Some more advanced topics
include integral equations for both the bound state and (singular) scattering prob-
lem in quantum mechanics, as well as Feynman path integrations.
A traditional way to view the materials in this text is in terms of its use in

courses. In our classes (CPUG, 2009), we have used approximately the first third of
the text, with its emphasis on computing tools, for a course called Scientific Com-
puting that is taken after students have acquired familiarity with some compiled
language. Typical topics covered in this one-quarter course are given in Table 1.1,
although we have used others as well. The latter two-thirds of the text, with its
greater emphasis on physics, has typically been used for a two-quarter (20-week)
course in CP. Typical topics covered for each quarter are given in Table 1.2. What
withmany of the topics being research level, thesematerials can easily be used for
a full year’s course or for extended research projects.
The text also uses various symbols and fonts to help clarify the type of material

being dealt with. These include:

⊙ Optional material
Monospace font Words as they would appear on a computer screen
Vertical gray line Note to reader at the beginning of a chapter saying

4 1 Introduction

Table 1.1 Topics for one-quarter (10 Weeks) scientific computing course.

Week Topics Chapter Week Topics Chapter

1 OS tools, limits 1, (10) 6 Matrices, N-D search 6
2 Visualization, Errors 1, 3 7 Data fitting 7
3 Monte Carlo, 4, 4 8 ODE oscillations 8
4 Integration, visualization 5, (1) 9 ODE eigenvalues 8
5 Derivatives, searching 5, 7 10 Hardware basics 10

Table 1.2 Topics for two-quarters (20 Weeks) computational physics course.

Computational Physics I Computational Physics II
Week Topics Chapter Week Topics Chapter

1 Nonlinear ODEs 8, 9 1 Ising model, Metropolis 17
2 Chaotic scattering 9 2 Molecular dynamics 18
3 Fourier analysis, filters 12 3 Project completions —
4 Wavelet analysis 13 4 Laplace and Poisson PDEs 19
5 Nonlinear maps 14 5 Heat PDE 19
6 Chaotic/double pendulum 15 6 Waves, catenary, friction 21
7 Project completion 15 7 Shocks and solitons 24
8 Fractals, growth 16 8 Fluid dynamics 25
9 Parallel computing, MPI 10, 11 9 Quantum integral equations 26
10 More parallel computing 10, 11 10 Feynman path integration 17

1.3
This Book’s Problems

For this book to contribute to a successful learning experience, we assume that the
reader will work through what we call the Problem at the beginning of each dis-
cussion. This entails studying the text, writing, debugging, and running programs,
visualizing the results, and then expressing inwordswhat has been performed and
what can be concluded. As part of this approach, we suggest that the learner write
up a mini lab report for each problem containing sections on

Equations solved Numerical method Code listing
Visualization Discussion Critique

Although we recognize that programming is a valuable skill for scientists, we also
know that it is incredibly exacting and time-consuming. In order to lighten the
workload, we provide “bare bones” programs. We recommend that these be used

51.3 This Book’s Problems

as guides for the reader’s own programs, or tested and extended to solve the prob-
lem at hand. In any case, they should be understood as part of the text.
While we think it is best to take a course, or several courses, in CP, we recognize

that this is not always possible and some instructors may only be able to include
some CP examples in their traditional courses. To assist in this latter endeavor,
in this section we list the location of each problem distributed throughout the
text and the subject area of each problem. Of course this is not really possible
with a multidisciplinary subject like CP, and so there is an overlap. The code
used in the table for different subjects is: QM= quantum mechanics or modern
physics, CM= classical mechanics, NL= nonlinear dynamics, EM= electricity
and magnetism, SP= statistical physics, MM=mathematical methods as well as
tools, FD=fluid dynamics, CS= computing fundamentals, Th= thermal physics,
and BI= biology. As you can see from the tables, there are many problems and
exercises, which reflects our view that you learn computing best by doing it, and
that many problems cover more than one subject.

Problems and exercises in computational basics
Subject Section Subject Section Subject Section

MM, CS 1.6 CS 2.2.2 CS 2.2.2
CS 2.4.3 CS 2.4.5 CS 2.5.2
CS 3.1.2 CS 3.2 CS 3.2.2
CS 3.3 CS 3.3.1 CS 4.2.2
MM, CS 6.6 CS 10.13.1 CS 10.14.1
CS 11.3.1 CS 11.1.2 CS 11.2.1

Problems and exercises in thermal physics and statistical physics
Subject Section Subject Section Subject Section

SP, MM 4.3 SP, MM 4.5 QM, SP 4.6
Th, SP 7.4 Th, SP 7.4.1 NL, SP 16.3.3
NL, SP 16.4.1 NL, SP 16.7.1 NL, SP 16.7.1
NL, SP 16.8 NL, SP 16.11 SP, QM 17.4.1
SP, QM 17.4.2 SP, QM 17.6.2 Th, MM 20.2.4
Th, MM 20.3 TH, MM 20.4.2 TH, MM 20.1
TH, MM 17.1 SP 16.2 SP, BI 16.3
SP 16.4 SP, MM 16.5 SP 16.6
SP 16.7

6 1 Introduction

Problems and exercises in electricity and magnetism
Subject Section Subject Section Subject Section

EM, MM 19.6 EM, MM 19.7 EM, MM 19.8
EM, MM 19.9 EM, MM 23.2 EM, MM 23.5
EM, MM 23.5.1 EM, MM 23.6.6 EM, MM 22.7.2
EM, MM 22.10 EM, MM 19.2

Problems and exercises in quantummechanics
Subject Section Subject Section Subject Section

QM, SP 4.6 QM, MM 7.1 QM, MM 7.2.1
QM, MM 7.3.2 QM, MM 9.1 QM, MM 9.2
QM, MM 9.2.1 QM, MM 9.3 QM 13.6.3
QM, MM 17.7 QM, MM 26.1 QM, MM 26.3
QM, MM 22.1

Problems and exercises in classical mechanics and nonlinear dynamics
Subject Section Subject Section Subject Section

CM, NL 5.16 CM 6.1 CM, NL 8.1
CM, NL 8.7.1 CM, NL 8.8 CM, NL 8.9
CM, NL 8.10 CM, NL 9.4 CM, NL 9.4.3
CM 9.5 CM 9.7 CM 9.7
NL, FD 9.7 CM 9.7 CM, MM 6.6.2
CM, MM 6.6.1 CM, NL 12.1 BI, NL 14.3
CM, MM 6.6.1 BI, NL 14.4 BI, NL 14.5.2
BI, NL 14.5.3 BI, NL 14.10 BI, NL 14.11.1
BI, NL 14.11.4 BI, NL 14.11.5 CM, NL 15.1.3
CM, NL 15.1 NL, BI 14.1 NL, BI 14.9
CM, NL 15.2.2 CM, NL 15.3 CM, NL 15.4
CM, NL 15.5 CM, NL 15.6 CM, NL 15.7
CM, NL 15.7 NL, MM 16.2.1 NL, MM 16.3.3
NL, MM 16.4.1 NL, MM 16.5.3 NL, MM 16.7.1
NL, MM 16.7.1 NL, MM 16.8 NL, MM 16.11
CM, MM 21.2.4 CM, MM 21.3 CM, MM 21.4.3
CM, MM 24.6 CM, MM 21.1 CM, MM 21.5

71.3 This Book’s Problems

Problems and exercises in fluid dynamics
Subject Section Subject Section Subject Section

NL, FD 9.7 FD, MM 24.3.2 FD, MM 24.5.3
FD, MM 24.5.4 FD, MM 25.1 FD, MM 25.2.3
FD, MM 25.4.4 FD, MM 25.4.5

Problems and exercises in mathematical methods and computational tools
Subject Section Subject Section Subject Section

MM, CS 1.6 MM, SP 4.3 SP, MM 4.3.2
BI, MM 4.4 MM, SP 4.5 MM 5.12.3
MM 5.16 MM 5.17.2 MM 5.5
MM 5.5 QM, MM 7.1 QM, MM 7.2.1
QM, MM 7.3.2 MM, QM 9.1 QM, MM 9.2
QM, MM 9.2.1 QM, MM 9.3 CM, NL 9.4
MM, CS 6.6 CM, MM 6.6.2 CM, MM 6.6.1
MM 7.5.1 MM 7.5.2.1 MM 7.8
MM 7.8.1 MM 7.8.2 MM 12.3
MM 12.5.3 MM 12.7.1 MM 12.11
MM 13.3.1 MM 13.5.2 MM 13.6.3
CM, MM 15.5 NL, MM 16.2.1 NL, MM 16.3.3
NL, MM 16.4.1 NL, MM 16.5.3 NL, MM 16.7.1
NL, MM 16.7.1 NL, MM 16.8 NL, MM 16.11
Th, MM 20.2.4 Th, MM 20.3 TH, MM 20.4.2
EM, MM 19.6 EM, MM 19.7 EM, MM 19.8
EM, MM 19.9 EM, MM 23.5 EM, MM 23.5.1
EM, MM 23.6.6 CM, MM 21.2.4 CM, MM 21.3
CM, MM 21.4.3 QM, MM 22.2.2 QM, MM 22.2.2
QM, MM 22.2.3 EM, MM 22.7.2 EM, MM 22.10
FD, MM 24.3.2 FD, MM 24.5.3 FD, MM 24.5.4
FD, MM 25.2.3 FD, MM 25.4.4 FD, MM 25.4.5
QM, MM 26.2.3 QM, MM 26.2.4 QM, MM 26.4.5
QM, MM 26.4.6 MM, NL 13.1 MM, CM 12.1
MM 12.6 MM 12.8.1 MM 7.5
MM 7.5.2.1 MM 7.6 MM 7.8.2
MM 13.7.2

8 1 Introduction

Problems and exercises in molecular dynamics and biological applications
Subject Section Subject Section Subject Section

BI, MM 4.4 BI, NL 14.3 BI, NL 14.4
BI, NL 14.5.2 BI, NL 14.5.3 BI, NL 14.10
BI, NL 14.11.1 BI, NL 14.11.4 BI, NL 14.11.5
SP, BI 16.3 BI, NL 14.1 BI, NL 14.9
MD, QM 18.3 MD, QM 18.4 MD 18.4
MM, SP 18

1.4
This Book’s Language: The Python Ecosystem

The codes in this edition of Computational Physics employ the computer lan-
guage Python. Previous editions have had their examples in Java, Fortran and C,
and used post-simulation tools for visualization. Although we have experienced
no general agreement in the computational science community as to the best lan-
guage for scientific computing, this has not stopped many of the users of each
language from declaring it to be the best. Even so, we hereby declare that we have
found Python to be the best language yet for teaching CP. Python is free, robust
(not easily broken), portable (program run without modifications on various de-
vices), universal (available for most every computer system), has a clean syntax
that lets students learn the language quickly, has dynamic typing and high-level,
built-in data types that enable getting programs to work quickly without having
to declare data types or arrays, count matching braces, or use separate visualiza-
tion programs. Because Python is interpreted, students can learn the language by
executing and analyzing individual commands within an interactive shell, or by
running the entire program in one fell swoop. Furthermore, Python brings to sci-
entific computing the availability of a myriad of free packages supporting numer-
ical algorithms, state-of the art, or simple, visualizations and specialized toolkits
that rival those in Matlab and Mathematica/Maple. And did we mention, all of
this is free?
There are literally thousands of Python packages available, but not to worry, we

use only a few for numerical and visualization purposes. Because it is essential to
be able to run and modify the example codes in this book, we suggest that you
spend the time necessary to get Python to function properly on your computer
(and then leave notes as towhat you did). For learning Python, we recommend the
online tutorials (Ptut, 2014; Pguide, 2014; Plearn, 2014), the books by Langtangen
Langtangen (2008) and Langtangen (2009), and the Python Essential Reference
(Beazley, 2009). For general numerical methods, a bookby Press et al. (1994) is the
standard, and most fun to read, while the NIST Digital Library of Mathematical
Functions (NIST, 2014) is probably the most convenient.
Python has developed rapidly since its first implementation in December 1989

(History, 2009). Python’s combination of language plus packages is now the stan-

91.4 This Book’s Language: The Python Ecosystem

dard for the explorative and interactive computing that typifies the present-day
scientific research. These rapid developments of Python have also led to a suc-
cession of new versions, and the inevitable incompatibilities. Most of the codes
in this book were written using Python 2, which was released in 2000, and specif-
ically Python 2.6 with the Visual package (also known as “VPython”). However,
there have been major changes to the Python development process as well as in
features, and this has led to the release of Python 3.0 in December 2008. Unfor-
tunately, some of the changes in Python 3 were not backward compatible with
Python 2.6 and 2.7, and so advances in both Python 2 and 3 and their associated
packages have been occurring in parallel. (For our codes, the major difference
is in the print statement using a parenthesis in 3, which is not hard to correct.)
Furthermore, there have been new versions of operating systems and processors
from 32- to 64-bit CPUs, and this also has led to the variety of Python versions
and associated packages.
To be honest, we have sometimes felt frustrated by these changes and resulting

incompatibilities; however, we are intent on not sharing that! While we will de-
scribe the packages and distribution briefly, we indicate here that we have adapted
to the real world by having both independent Python 2 and 3 implementations ex-
ist on our computers. Specifically, our Visual package programs use Python 3.2,
while the others use the Enthought Canopy Distribution Version 1.3.0, which at
present uses Python 2.7.3. (The Visual package is not available in Enthought.)

1.4.1
Python Packages (Libraries)

The Python language plus its family of packages comprise a veritable ecosystem
for computing. A package or module is a collection of related methods or classes
of methods that are assembled together into a subroutine library.1) Inclusion of
the appropriate packages extends the language to meet the specialized needs of
various science and engineering disciplines, and lets one obtain state-of-the-art
computing for free. In fact, the May/June 2007 and March/April 2011 issues of
Computing in Science and Engineering (Perez et al., 2010) focus on scientific com-
puting with Python, and we recommend them.
To use a package named PackageName, you include in your Python program ei-

ther an import PackageName or a from PackageName statement at the beginning of
your program. The import statement loads the entire package, which is efficient,
but may require you to include the package name as a prefix to the method you
want. For example,

>>> from v i s u a l . graph import * # Import from v isua l package
>>> y1 = v i s u a l . graph . gcurve (co l o r = blue , d e l t a = 3) # Use of graph

1) The Python Package Index (PYPI, 2014), a repository of free Python packages, currently
contains more than 40 000 packages!

10 1 Introduction

Here >>> represents the prompt for a Python shell. Some of the typing can be
avoided by assigning a symbol to the package name:

>>> import v i s u a l . graph as p
>>> y1 = p . gcurve (co lo r = blue , d e l t a = 3)

There is also a starred version of from that copies all of the methods of a package
(here Matplotlib called pylab) so that you can leave off prefixes:

>>> from pylab import * # Import a l l pylab methods
>>> p lo t (x , y , ’ - ’ , lw=2) # A pylab method without pref ix

1.4.2
This Book’s Packages

We are about to describe some of the packages that make Python such a rich en-
vironment. If you are anxious to get started now, or worry about getting over-
whelmed by the Python packages, you may just want to load VPython now and
move on to the next chapter. You will need some more stuff to do visualizations
and matrices, but you can always upgrade your knowledge when you feel more
comfortable with Python.

Because all too often you do not know what you do not know, or what you need to
know, we list here a few, basic Python packages andwhat each does. The packages
used in the text are underlined and described more fully later.

Boost.Python A C++ library that enables seamless interoperability between
C++ and Python, thus extending the lifetime of legacy codes and making use
of the speed of C, www.boost.org/doc/libs/1_55_0/libs/python/doc/.

Cython: C Extensions for Python A superset of the Python language that sup-
ports calling C functions and intermixing Python and C for legacy purposes
and for high performance, http://cython.org/.

f2py: Fortran to Python Interface Generator that provides connection be-
tween Python and Fortran languages; great for steering legacy codes, http:
//cens.ioc.ee/projects/f2py2e/.

IPython: Interactive Python An advanced shell (command line interpreter)
that extends Python’s basic interpreter IDLE. IPython has enhanced inter-
activity and interactive visualization capabilities that encourage exploratory
computing. IPython also has a browser-based notebook like Mathematica
that permits embedded code executions, as well as capabilities for parallel
computing, http://ipython.org/.

Matplotlib: Mathematics Plotting Library A 2D and 3D graphics library that
uses NumPy (Numerical Python), and produces publication quality figures
in a variety of hard copy formats, and permits interactive graphics. Simi-
lar to MATLAB’s plotting (except Matplotlib is free and doesn’t need its li-

111.4 This Book’s Language: The Python Ecosystem

cense renewed yearly). See Section 1.5.3 for examples and discussion, http:
//matplotlib.sf.net.

Mayavi Interactive and simplified 3D visualization. Also contains TVTK, a
wrapper for the more basic Visualization Tool Kit VTK. (“Mayavi” is San-
skrit for magician.) See Section 1.5.6 for examples and discussion, http:
//mayavi.sf.net.

Mpmath: Multiprecision Floating Point Arithmetic A pure-Python library
for multiprecision floating-point arithmetic for transcendental functions,
unlimited exponent sizes, complex numbers, interval arithmetic, numeri-
cal integration and differentiation, root-finding, linear algebra, and more,
https://code.google.com/p/mpmath/.

NumPy: Numerical Python Permits the use of fast, high-level multidimen-
sional arrays in Python, which are used as the basis formany of the numerical
procedures in Python libraries (NumPy, 2013; SciPy, 2014) – the successor to
both Numeric and Numarray. Used by Visual and Matplotlib. SciPy extends
NumPy. See Sections 6.5, 6.5.1, and 11.2 for examples of NumPy array use.

Pandas: Python Data Analysis Library A collection of high-performance,
user-friendly data structures and data analysis tools, http://pandas.pydata.
org/.

PIL: Python Imaging Library Image processing and graphics routines for var-
ious file formats, www.pythonware.com/products/pil/.

Python The Python standard library, http://python.org.
PyVISA Wrappers for the VISA library providing controls for measurement

equipment through various busses from within Python programs, http:
//pyvisa.readthedocs.org/en/latest/.

SciKits: SciPy Toolkits A collection of toolkits that extend SciPy to special dis-
ciplines such as audio processing, financial computation, geosciences, time
series analysis, computer vision, engineering, machine learning, medical
computing, and bioinformatics, https://scikits.appspot.com/.

SciPy: Scientific Python A basic library for mathematics, science, and engi-
neering. (See SciKits for further extensions.) Provides user-friendly and effi-
cient numerical routines for linear algebra, optimization, integration, special
functions, signal and image processing, statistics, genetic algorithms, ODE
solutions, and others. Uses NumPy’s N-dimensional arrays but also extends
NumPy. SciPy essentially provides wrapper for many existing libraries in
other languages, such as LAPACK (Anderson et al., 2013) and FFT. The
SciPy distribution usually includes Python, NumPy, and f2py, http://scipy.org.

Sphinx Python documentation generator for output in various formats, http://
sphinx-doc.org/.

SWIG An interface compiler that connects programs written in C and C++with
scripting languages such as Perl, Python, Ruby, and TCL. Useful for extending
the lifetime of legacy codes or formaking use of the speed of C, http://swig.org.

SyFi: Symbolic Finite Elements Built on top of the symbolic math library
GiNaC, SyFi is used in the finite element solution of PDEs. It provides polyg-

12 1 Introduction

onal domains, polynomial spaces and degrees of freedom as symbolic expres-
sions that are easily manipulated, https://pypi.python.org/pypi/SyFi/.

SymPy: Symbolic Python A system for symbolic mathematics using pure
Python (no external libraries) to provide a simple computer algebra sys-
tem that also includes calculus, differential equations, etc. Similar to Maple
orMathematica, with the Sage package being evenmore complete. Examples
in Section 1.7. See also mpmath, http://sympy.org/.

VisIt Distributed, parallel, visualization tool for visualizing data defined on 2D
and 3D structured and unstructured meshes, https://wci.llnl.gov/codes/visit/.

Visual (VPython) Python programming language plus the visual 3D graphics
module, with the VIDLE interactive shell replacing Python’s standard IDLE.
Particularly helpful, even for novices, in creating 3D demonstrations and ani-
mations for education.We often use Visual for 2D plots of numerical data and
animations. Can be installed separately from Canopy, http://vpython.org/.

1.4.3
The Easy Way: Python Distributions (Package Collections)

Although most Python packages are free, there is a true value for both users and
vendors to distribute a collection of packages that have been engineered and tuned
to work well together, and that can be installed in one fell swoop. (This is similar
to what Red Hat and Debian do with Linux.) These distributions can be thought
of as complete Python ecosystems assembled for specific purposes, and are highly
recommended. Here we mention four with which we are familiar:

Anaconda A free Python distribution includingmore than 125 packages for sci-
ence,mathematics, engineering, and data analysis, including Python,NumPy,
SciPy, Pandas, IPython, Matplotlib, Numba, Blaze, and Bokeh. Anaconda is
self-described as enterprise-ready for large-scale data processing, predic-
tive analytics, and scientific computing, and permits easy switching between
Python 2.6, 2.7, and 3.3. As also true for Canopy, Anaconda installs in its own
directory and so runs independently from other Python installations on your
computer, https://store.continuum.io/cshop/anaconda/.

Enthought Canopy A comprehensive and complete Python analysis environ-
ment with easy installation and updates. The commercial distribution in-
cludes more than 150 packages, yet is available for free to academic users. In
any case, there is an Express version containing more than 50 packages that
is free to everyone. The packages include the IPython, NumPy, SciPy, Mat-
plotlib, Mayavi, scikit, SymPy, Chaco, Envisage, and Pandas, /https://www.
enthought.com/products/canopy/.

Python XY A free scientific and engineering development collection of pack-
ages for numerical computations, data analysis, and data visualization em-
ploying the Qt graphical libraries for GUI development and the Spyder in-
teractive scientific development environment, https://code.google.com/p/
pythonxy/.

131.5 Python’s Visualization Tools

Sage An amazingly complete collection of open-source packages for mathe-
matical computations, both numerically and symbolically using the IPython
interface and notebooks. Sage’s stated mission is to create a viable, free,
open-source alternative to Magma, Maple, Mathematica, and Matlab, www.
sagemath.org/.

1.5
Python’s Visualization Tools

If I can’t picture it, I can’t understand it.

Albert Einstein

In the sections to follow we discuss tools to visualize data produced by simulations
and measurements. Whereas other books may choose to relegate this discussion
to an appendix, or not to include it at all, we believe that visualization is such an
integralpart of CP, and so useful for your work in the rest of this book, that we have
placed it here, right up front. We describe the use of Matplotlib, Visual (VPython),
and Mayavi. VPython makes easy 2D plot, solid geometric figures, and animations.
Matplotlibmakes very nice3D (surface)plots, whileMayavi can create state-of-the-
art visualizations.

Generalities One of the most rewarding aspects of computing is visualizing the
results of calculations. While in the past this was performed with 2D plots, in
modern times it is a regular practice to use 3D (surface) plots, volume rendering
(dicing and slicing), animations, and virtual reality (gaming) tools. These types of
visualizations are often breathtakingly beautiful and may provide deep insights
into problems by letting us see and “handle” the functions with which we are
working. Visualization also assists in the debugging process, the development of
physical and mathematical intuition, and the all-around enjoyment of work.
In thinking about ways to view your results, keep inmind that the point of visu-

alization is to make the science clearer and to communicate your work to others.
Then it follows that you should make all figures as clear, informative, and self-
explanatory as possible, especially if you will be using them in presentations with-
out captions. This means labels for curves and data points, a title, and labels on
the axes.2) After this, you should look at your visualization and ask whether there
are better choices of units, ranges of axes, colors, style, and so on, that might get
the message across better and provide better insight. And try to remember that
those colors which look great on your monitor may turn into uninformative grays
when printed. Considering the complexity of human perception and cognition,

2) Although this may not need saying, place the independent variable x along the abscissa
(horizontal), and the dependent variable y = f (x) along the ordinate.

14 1 Introduction

there may not be a single best way to visualize a particular data set, and so some
trial and error may be necessary to “see” what works best.

Listing 1.1 EasyVisual.py produces two different 2D plot using the Visual package.

EasyVisual . py : Simple graph object using Visual
2

from v i s u a l . graph import * # Import Visual
4

P lot1 = gcurve (co l o r = co lo r . white) # gcurve method
6

f o r x in arange (0 . , 8 . 1 , 0 . 1) : # x range
8P lot1 . p l o t (pos = (x , 5 . * cos (2 . * x) * exp (−0 .4* x))) # Plot pts

10graph1 = gd i sp l ay (width =600 , he ight =450 ,\
t i t l e = ’ Visual 2D Plot ’ , x t i t l e = ’x ’ , y t i t l e = ’ f (x) ’ , \

12foreground = co lo r . b lack , background = co lo r . white)

14P lot2 = gdots (co lo r = co lo r . b lack) # Dots

16f o r x in arange (−5. , +5 , 0 . 1) :
P lot2 . p l o t (pos = (x , cos (x)))

1.5.1
Visual (VPython)’s 2D Plots

As indicated in the description of packets, VPython (Python plus the Visual pack-
age) is a simple way to get started with Python and visualizations.3) The Visual
package is useful for creating 3D solids, 2D plots, and animations. For example,
in Figure 1.2, we present two plots produced by the program EasyVisual.py in List-
ing 1.1. Notice that the plotting technique is to create first a plot object, and then
to add the points to the object, one by one. (In contrast,Matplotlib creates a vector
of points and then plots the entire vector.)

Figure 1.2 Screen dumps of two x–y plots produced by EasyVisual.py using the Visual pack-
age. Plot (a) uses default parameters, while plot (b) uses user-supplied options.

3) Because Visual is not one of the Canopy packages, to run our Visual programs you would
need to install the Visual package and the version of Python that runs with it, even if you
have Canopy installed. There is no problem doing this because VPython and Canopy go into
different folders/directories.

151.5 Python’s Visualization Tools

EasyVisual.py is seen to create two plot objects, Plot1 and Plot2, with the plot
method used to plot each object. Plot1 uses the gcurve method with no options
specified other than the color of the curve (white). We obtain (Figure 1.2a) a con-
nected curve by default, but no labels. In contrast, Plot2 uses the gdisplay method
to set the display characteristics for the plot to follow, and then gdots to draw the
data as points (Figure 1.2b). You use a gdisplay plotting object before you create a
gcurve graph object, in order to set the size, position, and title for the graph win-
dow, to specify titles for the x and y axes, and to specify maximum values for each
axis. The gdisplay arguments are self-explanatory, with the width and height given
in pixels. Because we set Plot2= gdots(), only points are plotted.

Listing 1.2 3GraphVisual.py produces a 2D x–y plot with the Matplotlib and NumPy pack-
ages.

1# 3GraphVisual . py : 3 plots in the same figure , with bars , dots and curve

3from v i s u a l import *
from v i s u a l . graph import *

5
s t r i n g = " blue : s in ^2(x) , white : cos ^2(x) , red : s in (x) *cos (x) "

7graph1 = gd i sp l ay (t i t l e =s t r ing , x t i t l e = ’x ’ , y t i t l e = ’y ’)

9y1 = gcurve (co l o r=co lo r . yel low , d e l t a =3) # curve
y2 = gvbars (co lo r=co lo r . white) # v e r t i c a l bars

11y3 = gdots (co l o r=co lo r . red , d e l t a =3) # dots

13f o r x in arange (−5 , 5 , 0 . 1) : # arange for f l o a t s
y1 . p l o t (pos=(x , s in (x) * s in (x)))

15y2 . p l o t (pos=(x , cos (x) * cos (x) / 3 .))
y3 . p l o t (pos=(x , s in (x) * cos (x)))

Note that the Python codes are listedwithin shaded boxeswith some formatting
to improve readability. For example, see Listing 1.2. Note that we have structured
the codes so that a line is skipped before major elements like functions, and that
indentations indicate structures in Python (where Java and C may use braces).
It is often a good idea to place several plots in the same figure. The program

3GraphVisual.py in Listing 1.2 does that and produces the graph in Figure 1.3a.
There arewhite vertical bars createdwith gvbars, red dots createdwith gdots, and a
yellow curve created with gcurve (colors appear only as shades of gray in the paper
text). Also note in 3GraphVisual.py that we avoid having to include the package
name as a prefix to the commands by starting the programwith import visual.graph
as vg. This both imports Visual’s graphing package and assigns the symbol vg to
visual.graph.

1.5.1.1 VPython’s 3D Objects

Listing 1.3 3Dshapes.py produces a sample of VPython’s 3D shapes.

3Dshapes . py : Some 3D Shapes of VPython
2

from v i s u a l import *
4

graph1 = d i s p l a y (width =500 , he ight =500 , t i t l e = ’VPython 3D Shapes ’ ,
range=10)

16 1 Introduction

6sphere (pos =(0 , 0 , 0) , r ad iu s =1 , co l o r=co lo r . green)
sphere (pos= (0 ,1 , −3) , r ad iu s =1 .5 , co l o r=co lo r . red)

8arrow (pos =(3 , 2 , 2) , a x i s = (3 , 1 , 1) , co l o r=co lo r . cyan)
c y l i nd e r (pos=(−3 ,−2 ,3) , a x i s =(6 , −1 ,5) , co l o r=co lo r . ye l low)

10cone (pos=(−6 ,−6 ,0) , a x i s =(−2 ,1 ,−0.5) , r ad iu s =2 , co lo r=co lo r . magenta)
h e l i x (pos =(−5 ,5 ,−2) , a x i s = (5 , 0 , 0) , r ad iu s =2 , th i cknes s =0 .4 ,

co lo r=co lo r . orange)
12r ing (pos =(−6 ,1 ,0) , a x i s = (1 , 1 , 1) , r ad iu s =2 , th i cknes s =0 .3 ,

co l o r = (0 . 3 , 0 . 4 , 0 . 6))
box (pos =(5 , −2 ,2) , l ength =5 , width =5 , he ight =0 .4 , co l o r = (0 . 4 , 0 . 8 , 0 . 2))

14pyramid (pos =(2 , 5 , 2) , s i z e =(4 , 3 , 2) , co l o r = (0 . 7 , 0 . 7 , 0 . 2))
e l l i p s o i d (pos=(−1 ,−7 ,1) , a x i s = (2 , 1 , 3) , l ength =4 , he ight =2 , width =5 ,

co l o r = (0 . 1 , 0 . 9 , 0 . 8))

Oneway tomake simulations appearmore realistic is to use 3D solid shapes, for
example, a sphere for a bouncing ball rather than just a dot. VPython can produce
a variety of 3D shapes with one-line commands, as shown in Figure 1.4, and as
produced by the code in Listing 1.3. To make the ball bounce, you would need to
vary the position variable according to some kinematic equations.

Figure 1.3 (a) Output from the program 3GraphVisual.py that places three different types of
2D plots on one graph using Visual. (b) Three frames from a Visual animation of a quantum
mechanical wave packet produced with HarmosAnimate.py.

Figure 1.4 Some 3D shapes created with single commands in VPython.

171.5 Python’s Visualization Tools

1.5.2
VPython’s Animations

Creating animations with Visual is essentially just making the same 2D plot over
and over again, with each one at a slightly differing time, and then placing the
plots on top of each other.When performed properly, this gives the impression of
motion. Several of our sample codes produce animations, for example,HarmosAni-
mate.py and 3Danimate.py. Three frames produced byHarmosAnimate.py are shown
in Figure 1.3b. The major portions of these codes deal with the solution of PDEs,
which need not concern us yet. The part which makes the animation is simple:

PlotObj= curve (x=xs , co l o r=co lo r . yel low , r ad iu s =0 .1)
. . .
whi le True : # Runs forever

r a t e (500)
psr [1 : −1] = . . .
p s i [1 : −1] = . .
PlotObj . y = 4 * (psr * *2 + ps i * * 2)

Here PlotObj is a curve that continually gets built from within a while loop and
thus appears to bemoving.Note that being able to plot points individuallywithout
having to store them all in an array for all times keeps the memory demand of the
program quite small and leads to fast programs.

Listing 1.4 EasyMatPlot.py produces a, 2D x–y plot using the Matplotlib package (which
includes the NumPy package).

1# EasyMatPlot . py : Simple use of matplotlib ’ s plot command

3from pylab import * # Load Matplotlib

5Xmin = −5 . ; Xmax = +5 . ; Npoints= 500
DelX = (Xmax − Xmin) / Npoints

7x = arange (Xmin , Xmax , DelX)
y = s in (x) * s in (x * x) # function of x array

9
pr in t (’ arange => x [0] , x [1] , x[499]=%8.2 f %8.2 f %8.2 f ’

%(x [0] , x [1] , x [4 9 9]))
11pr in t (’ arange => y [0] , y [1] , y[499]=%8.2 f %8.2 f %8.2 f ’

%(y [0] , y [1] , y [4 9 9]))
pr in t ("\n Now doing the p lo t t ing thing , look f o r Figure 1 on desktop ")

13x l a b e l (’x ’) ; y l a b e l (’ f (x) ’) ; t i t l e (’ f (x) vs x ’)
t e x t (−1 .75 , 0 . 75 , ’ MatPlotLib \n Example ’) # Text on plot

15p lo t (x , y , ’ - ’ , lw=2)
g r id (True) # Form grid

17show ()

1.5.3
Matplotlib’s 2D Plots

Matplotlib is a powerful plotting package that lets you make 2D and 3D graphs,
histograms, power spectra, bar charts, error charts, scatter plots, and more, all
directly from within your Python program. Matplotlib is free, uses the sophisti-

18 1 Introduction

cated numerics of NumPy and LAPACK (Anderson et al., 2013), and, believe it or
not, is easy to use. Specifically, Matplotlib uses the NumPy array (vector) object
to store the data to be plotted. In Chapter 6, we talk at more length about NumPy
arrays, so you may want to go there soon to understand arrays better.
Matplotlib commands are by design similar to the plotting commands ofMAT-

LAB, a commercial problem-solving environment that is particularly popular in
engineering. As is true for MATLAB, Matplotlib assumes that you have placed
the x and y values that you wish to plot into 1D arrays (vectors), and then plots
these vectors in one fell swoop. This is in contrast to Visual, which first creates
a plot object and then adds points to the object one by one. Because Matplotlib
is not part of standard Python, you must import the entire Matplotlib package,
or the individual methods you use, into your program. For example, on line 2 of
EasyMatPlot.py in Listing 1.4 (line numbers are in the dark shading on the right),
we import Matplotlib as the pylab library:

from pylab import * # Load Matplotlib

Then, on lines 6 and 7 we calculate and input arrays of the x and y values

x = arange (Xmin , Xmax , DelX) # Form x array in range with increment
y = − s in (x) * cos (x) # Form y array as function of x array

As you can see, NumPy’s arange method constructs an array covering “a range”
between Xmax and Xmin in steps of DelX. Because the limits are floating-point
numbers, so also will be the xi ’s. And because x is an array, y = -sin(x)*cos(x) is
automatically one too! The actual plotting is performed on line 14 with a dash “–”
used to indicate a line, and lw = 2 to set its width. The result is shown in Figure 1.5a
with the desired labels and title. The show() command produces the graph on your
desktop. More commands are given in Table 1.3. We suggest you try out some of
the options and types of plots possible.

(a) (b)

Figure 1.5 Matplotlib plots. (a) Output of EasyMatPlot.py showing a simple, x–y plot. (b) Out-
put from GradesMatPlot.py that places two sets of data points, two curves, and unequal upper
and lower error bars, all on one plot.

191.5 Python’s Visualization Tools

Table 1.3 Some common Matplotlib commands.

Command Effect Command Effect

plot(x, y, ’-’, lw=2) x–y curve, line width 2 myPlot.setYRange(-8., 8.) Set y range
show() Show output graph myPlot.setSize(500, 400) Size in pixels
xlabel(’x’) x-axis label pyplot.semilogx Semilog x plot
ylabel(’f(x)’) y-axis label pyplot.semilogy Semilog y plot
title(’f vs x’) Add title grid(True) Draw grid
text(x, y, ’s’) Add text s at (x , y) myPlot.setColor(false) Black and White
myPlot.addPoint Add (x , y) to set 0 myPlot.setButtons(true) For zoom button

(0,x,y,true) connect
myPlot.addPoint Add (x , y) to 1, myPlot.fillPlot() Fir ranges to data

(1,x,y, false) no connect
pyplot.errorbar Point + error bar myPlot.setImpulses(true,0) Vertical lines, set 0
pyplot.clf() Clear current figure pyplot.contour Contour lines
pyplot.scatter Scatter plot pyplot.bar Bar charts
pyplot.polar Polar plot pyplot.gca For current axis
myPlot.setXRange(-1., 1.) Set x range pyplot.acorr Autocorrelation

Listing 1.5 GradesMatPlot.py produces a, 2D x–y plot using the Matplotlib package.

Grade . py : Using Matplotlib ’ s plot command with multi data se t s & curves
2

import pylab as p # Matplotlib
4from numpy import *

6p . t i t l e (’Grade I n f l a t i o n ’) # Ti t l e and labe l s
p . x l a b e l (’ Years in College ’)

8p . y l a b e l (’GPA’)

10xa = ar ray ([−1 , 5]) # For horizonta l l ine
ya = ar ray ([0 , 0]) # " "

12p . p l o t (xa , ya) # Draw horizonta l l ine

14x0 = ar ray ([0 , 1 , 2 , 3 , 4]) # Data set 0 points
y0 = ar ray ([−1 .4 , +1 .1 , 2 . 2 , 3 . 3 , 4 . 0])

16p . p l o t (x0 , y0 , ’bo ’) # Data set 0 = blue c i r c l e s
p . p l o t (x0 , y0 , ’ g ’) # Data set 0 = l ine

18
x1 = arange (0 , 5 , 1) # Data set 1 points

20y1 = ar ray ([4 . 0 , 2 . 7 , −1.8 , −0.9 , 2 . 6])
p . p l o t (x1 , y1 , ’ r ’)

22
errTop = ar ray ([1 . 0 , 0 . 3 , 1 . 2 , 0 . 4 , 0 . 1]) # Asymmetric error bars

24errBot = ar ray ([2 . 0 , 0 . 6 , 2 . 3 , 1 . 8 , 0 . 4])
p . e r ro rb a r (x1 , y1 , [errBot , errTop] , fmt = ’ o ’) # Plot error bars

26
p . g r id (True) # Grid l ine

28p . show () # Create plot on screen

In Listing 1.5, we give the code GradesMatplot.py, and in Figure 1.5b we show its
output. This is not a simple plot. Here we repeat the plot command several times
in order to plot several data sets on the same graph, and to plot both the data

20 1 Introduction

points and the lines connecting them. On line 3, we import Matplotlib (pylab),
and on line 4 we import NumPy, which we need for the array command. Because
we have imported two packages, we add the pylab prefix to the plot commands so
that Python knows which package to use.
In order to place a horizontal line along y = 0, on lines 10 and 11 we create a

data set as an array of x values,−1 ≤ x ≤ 5, and a corresponding array of y values,
yi ≡ 0. We then plot the horizontal on line 12. Next we place four more curves in
the figure. First on lines 14–15, we create data set 0, and then plot the points as
blue circles (’bo’), and connect the points with green (’g’) lines (the color will be
visible on a computer screen, but will appear only as shades of gray in print). On
lines 19–21, we create and plot another data set as a red (’r’) line. Finally, on lines
23–25, we define unequal lower and upper error bars and place them on the plot.
We finish by adding grid lines (line 27) and showing the plot on the screen.

Listing 1.6 MatPlot2figs.py produces the two figures shown in Figure 1.6. Each figure con-
tains two plots with one Matplotlib figure.

MatPlot2figs . py : plot of 2 subplots on 1 f i g & 2 separate f i g s
2

from pylab import * # Load matplotlib
4

Xmin = −5 .0 ; Xmax = 5 . 0 ; Npoints= 500
6DelX= (Xmax−Xmin) / Npoints # Delta x

x1 = arange (Xmin , Xmax , DelX) # x1 range
8x2 = arange (Xmin , Xmax , DelX /20) # Different x2 range

y1 = − s in (x1) * cos (x1 * x1) # Function 1
10y2 = exp(−x2 / 4 .) * s in (x2) # Function 2

pr in t ("\n Now plott ing , look f o r Figures 1 & 2 on desktop ")
12# Figure 1

f i g u r e (1)
14subplot (2 , 1 , 1) # 1 s t subplot in f i r s t f igure

p lo t (x1 , y1 , ’ r ’ , lw=2)
16x l a b e l (’x ’) ; y l a b e l (’ f (x) ’) ; t i t l e (’ - s in (x) * cos (x^2) ’)

g r id (True) # Form grid
18subplot (2 , 1 , 2) # 2nd subplot in f i r s t f igure

p lo t (x2 , y2 , ’ - ’ , lw=2)
20x l a b e l (’x ’) # Axes labe l s

y l a b e l (’ f (x) ’)
22t i t l e (’ exp (-x/4)* s in (x) ’)

24# Figure 2
f i g u r e (2)

26subplot (2 , 1 , 1) # 1 s t subplot in 2nd figure
p lo t (x1 , y1 * y1 , ’ r ’ , lw=2)

28x l a b e l (’x ’) ; y l a b e l (’ f (x) ’) ; t i t l e (’ s in ^2(x) * cos ^2(x^2) ’)

form grid
subplot (2 , 1 , 2) # 2nd subplot in 2nd figure

30p lo t (x2 , y2 * y2 , ’ - ’ , lw=2)
x l a b e l (’x ’) ; y l a b e l (’ f (x) ’) ; t i t l e (’ exp (-x/2)* s in ^2(x) ’)

32g r id (True)

34show () # Show graphs

Often the science is clearer if there are several curves in one plot, and, sev-
eral plots in one figures. Matplotlib lets you do this with the plot and the subplot
commands. For example, in MatPlot2figs.py in Listing 1.6 and Figure 1.6, we have

211.5 Python’s Visualization Tools

Figure 1.6 (a,b) Columns show two separate outputs, each of two figures, produced by Mat-
Plot2figs.py. (We used the slider button to add some space between the plots.)

placed two curves in one plot, and then output two different figures, each con-
taining two plots. The key here is the repetition of the subplot command:

f i g u r e (1) # The 1s t f igure
subplot (2 , 1 , 1) # 2 rows , 1 column , 1 s t subplot
subplot (2 , 1 , 2) # 2 rows , 1 column , 2nd subplot

The listing is self-explanatory, with sections that set the plotting limits, that cre-
ates each figure, and then creates the grid.

Listing 1.7 PondMatPlot.py produces the scatter plot and the curve shown in Figure 5.5 in
Chapter 5.

1# PondMatPlot . py : Monte−Carlo integrat ion v ia vonNeumann re j ec t ion

3import numpy as np
import matp lo t l i b . pyp lot as p l t

5
N = 100

7x1 = np . arange (0 , 2*np . p i +2*np . p i /N, 2 * np . p i /N)
f i g , ax = p l t . subp lo t s ()

9y1 = x1 * np . s in (x1) * *2 # Integrand
ax . p l o t (x1 , y1 , ’ c ’ , l i new id th =4)

11ax . s e t _x l im ((0 , 2*np . p i))
ax . s e t _y l im ((0 , 5))

13ax . s e t _ x t i c k s ([0 , np . pi , 2*np . p i])
ax . s e t _ x t i c k l a b e l s ([’ 0 ’ , ’ \uppi ’ , ’ 2\uppi ’])

15ax . s e t _ y l a b e l (’ $ f (x) = x\ ,\ s in ^2 x$ ’ , f o n t s i z e =20)
ax . s e t _ x l a b e l (’x ’ , f o n t s i z e =20)

17f i g . patch . s e t _ v i s i b l e (F a l s e)
x i = [] ; y i = [] ; xo = [] ; yo =[]

19
de f f x (x) : # Integrand

21re turn x *np . s in (x) * *2

23j = 0 # Inside curve counter
Npts = 3000

25ana l y t = np . p i * *2
xx = 2 . * np . p i * np . random . rand (Npts) # 0 =< x <= 2pi

27yy = 5*np . random . rand (Npts) # 0 =< y <= 5
f o r i in range (1 , Npts) :

22 1 Introduction

29i f (yy [i] <= fx (xx [i])) : # Below curve
i f (i <=100) : x i . append (xx [i])

31i f (i <=100) : y i . append (yy [i])
j +=1

33e l s e :
i f (i <=100) : yo . append (yy [i])

35i f (i <=100) : xo . append (xx [i])

37boxarea = 2 . * np . p i * 5 . # Box area
area = boxarea * j / (Npts−1) # Area under curve

39ax . p l o t (xo , yo , ’ bo ’ , markers ize =3)
ax . p l o t (xi , y i , ’ ro ’ , markers ize =3)

41ax . s e t _ t i t l e (’ Answers : Analytic = %5.3 f , MC = %5.3 f ’%(analyt , area))
p l t . show ()

Scatter Plots Sometimes we need a scatter plot of data points, and maybe even a
curve thrown in as well. In Figure 5.5 in Chapter 5, we show such a plot created
with the code PondMapPlot.py in Listing 1.7. The key statements here are of the
form ax.plot(xo, yo, ’bo’, markersize=3), which in this case adds a blue point (on
screen) of size 3.

1.5.4
Matplotlib’s 3D Surface Plots

A 2D plot of the potential V (r) = 1∕r vs. r is fine for visualizing the radial depen-
dence of the potential field surrounding a single charge, but if youwant to visualize
a dipole potential such as V (x , y) = (B + C(x2 + y2)−3∕2)x, you need a 3D visu-
alization. We get that by creating a world in which the z dimension (mountain
height) is the value of the potential, and the x and y axes define the plane below
the mountain. Because the surface we are creating is a 3D object, it is not truly
possible to draw it on a flat screen, and so different techniques are used to give
the impression of three dimensions to our brains.Wedo that by rotating the object
(by grabbing it with your mouse), shading it, employing parallax, and other tricks.

Listing 1.8 Simple3Dplot.py produces the Matplotlib 3D surface plots in Figure 1.7.

Simple3Dplot . py : matplotlib 3D plot you can rota te and sca le v ia mouse
2

import matp lo t l i b . py lab as p
4from mpl_ too l k i t s . mplot3d import Axes3D

6pr in t " Please be patient , I have packages to import & points to plot "
d e l t a = 0 .1

8x = p . arange (−3. , 3 . , d e l t a)
y = p . arange (−3. , 3 . , d e l t a)

10X, Y = p . meshgrid (x , y)
Z = p . s in (X) * p . cos (Y) # Surface height

12
f i g = p . f i g u r e () # Create f igure

14ax = Axes3D (f i g) # Plots axes
ax . p l o t _ s u r f a c e (X, Y , Z) # Surface

16ax . p lot_wire frame (X, Y , Z , co l o r = ’ r ’) # Add wireframe
ax . s e t _ x l a b e l (’X ’)

18ax . s e t _ y l a b e l (’Y ’)
ax . s e t _ z l a b e l (’Z ’)

20
p . show () # Output f igure

231.5 Python’s Visualization Tools

(a) (b)

Figure 1.7 (a) A 3D wire frame. (b) A surface plot with wire frame. Both are produced by the
program Simple3dplot.py using Matplotlib.

In Figure 1.7a, we show a wire-frame plot and in Figure 1.7b, a surface-plus-
wire-frame plot. These are obtained from the program Simple3Dplot.py in List-
ing 1.8. Note that there is an extra import of Axes3D from the Matplotlib tool kit
needed for 3D plotting. Lines 8 and 9 are the usual creation of x and y arrays of
floats using arange. Line 11 uses the meshgrid method to set up the entire coordi-
nate matrix grid from the x and y coordinate vectors with a vector call, and line
12 constructs the entire Z surface with another vector operation. The remaining
of the program is self-explanatory, with fig being the plot object, ax the 3D axes
object, and plot_wireframe and plot_surface creating wire frame and surface plots,
respectively.
Another type of 3D plot is particularly useful when examining data of the form

(xi , y j , zk), is a scatter plot into the 3D (x, y, z) volume. In Listing 1.9, we give the
program Scatter3dPlot.py that created the plot in Figure 1.8. This program, which
is taken from the Matplotlib documentation, uses the NumPy random number
generator, with the 111 notation being a hand-me-down fromMATLAB indicat-
ing a 1 × 1 × 1 grid.

Listing 1.9 Scatter3dPlot.py produces a 3D scatter plot using Matplotlib 3D tools.

1" Scatter3dPlot . py from matplot l ib examples "

3import numpy as np
from mpl_ too l k i t s . mplot3d import Axes3D

5import matp lo t l i b . pyp lot as p l t

7de f randrange (n , vmin , vmax) :
re turn (vmax−vmin) *np . random . rand (n) + vmin

9
f i g = p l t . f i g u r e ()

11ax = f i g . add_subplot (111 , p ro j e c t ion = ’ 3d ’)
n = 100

13f o r c , m, z l , zh in [(’ r ’ , ’ o ’ , −50 , −25) , (’b ’ , ’ ^ ’ , −30 , −5)] :
xs = randrange (n , 23 , 32)

15ys = randrange (n , 0 , 100)
zs = randrange (n , z l , zh)

17ax . s c a t t e r (xs , ys , zs , c=c , marker=m)

24 1 Introduction

Figure 1.8 A 3D scatter plot produced by the program Scatter3dPlot.py using Matplotlib.

19ax . s e t _ x l a b e l (’X Label ’)
ax . s e t _ y l a b e l (’Y Label ’)

21ax . s e t _ z l a b e l (’Z Label ’)

23p l t . show ()

Finally, the program FourierMatplot.py, written by Oscar Restrepo, performs a
Fourier reconstruction of a saw tooth wave, with the number of waves included
controlled by the viewer via a slider bar, as shown in Figure 1.9. (We discuss the
mathematics of Fourier transforms in Chapter 12.) The slider method is included
via the extra lines:

from matp lo t l i b . w idgets import S l i d e r
. . .
snumwaves = S l i d e r (axnumwaves , ’# Waves ’ , 1 , 20 , v a l i n i t =T)
. . .
snumwaves . on_changed (update)

1.5.5
Matplotlib’s Animations

Matplotlib also can do animations, although not as simply as VPython. The Mat-
plotlib example page shows a number of them. We include some Matplotlib an-
imation codes in the PythonCodes/Visualizations directory, and show a sample
code for the heat equation in Listing 1.10. Here too most of the code deals with
solving a PDE, which need not interest us yet. The animation is carried out at the
bottom of the code.

251.5 Python’s Visualization Tools

Figure 1.9 A comparison of a saw tooth function to the sum of its Fourier components, with
the number of included waves varied interactively by a Matplotlib slider. FourierMatplot.py,
which produced this output, was written by Oscar Restrepo.

Listing 1.10 EqHeatAnimateMatPlot.pyproduces an animation of a cooling bar using Mat-
plotlib.

1# EqHeat . py Animated heat equation soltn v ia f ine d i f f e rences

3from numpy import *
import numpy as np

5import matp lo t l i b . pyp lot as p l t
import matp lo t l i b . animation as animation

7
Nx = 101

9Dx = 0.01414
Dt = 0 .6

11KAPPA = 210 . # Thermal
conduct iv ity

SPH = 900 . # Spec i f i c heat
13RHO = 2700 . # Density

cons = KAPPA/ (SPH*RHO) *Dt / (Dx*Dx) ;
15T = np . zeros ((Nx , 2) , f l o a t) # Temp @ f i r s t 2 times

de f i n i t () :
17f o r i x in range (1 , Nx − 1) : # I n i t i a l temperature

T[ix , 0] = 100 . 0 ;
19

T[0 , 0] = 0 .0 # Bar ends T = 0
21T[0 , 1] = 0 .

T[Nx − 1 , 0] = 0 .
23T[Nx − 1 , 1] = 0 .0

i n i t ()
25k=range (0 ,Nx)

f i g=p l t . f i g u r e () # Figure to plot
27# s e l e c t axis ; 111: only one plot , x , y , s c a l e s given

ax = f i g . add_subplot (111 , au tosca le_on =False , xl im=(−5 , 105) , yl im =(−5 ,
110 . 0))

29ax . g r id () # Plot
grid

p l t . y l a b e l (" Temperature ")
31p l t . t i t l e (" Cooling o f a bar ")

26 1 Introduction

l i ne , = ax . p l o t (k , T[k , 0] , " r " , lw=2)
33p l t . p l o t ([1 , 9 9] , [0 , 0] , " r " , lw=10)

p l t . t e x t (45 , 5 , ’ bar ’ , f o n t s i z e =20)
35

de f animate (dum) :
37f o r i x in range (1 , Nx − 1) :

T[ix , 1] = T[ix , 0] + cons * (T[i x + 1 , 0] + T[ix − 1 , 0] −
2 . 0 *T[ix , 0])

39l i n e . s e t _da t a (k ,T[k , 1])
f o r i x in range (1 , Nx − 1) :

41T[ix , 0] = T[ix , 1] # Row of 100 pos it ions at
t = m

re turn l i ne ,
43

ani = animation . FuncAnimation (f i g , animate , 1) # Animation
45p l t . show ()

1.5.6
Mayavi’s Visualizations Beyond Plotting*

This section onMayavi is indicated as optional becausewe do not use it in our sam-
ple programs.However, we recommend that, at least, the reader browse through it
in order to obtain some ideas about the next level of Python visualization.

Although Matplotlib is excellent for plotting functions vs. one or two of its vari-
ables, it is not designed to do the sculpture-like 3D visualizations of functions of
three ormore variables that are often displayed by supercomputer centers.Mayavi
(Sanskrit for “magician”) is designed for this next level of visualization. Mayavi is
open source, tightly integrated with Python and included in the Canopy distribu-
tion.
Mayavi consists of two different packages and two different interfaces to those

packages. The packagewe illustrate here is the set ofMatlab- orMathematica-like
commands that operate at a fairly high level of abstraction and works naturally
with NumPy arrays. The other package is a set of VTK (Visual Tool Kit) prim-
itives that may be more appropriate for developing your own, research-specific,
visualization modules. Even with the high-level package, you have the choice of
interacting withMayavi via scripting fromwithin your Python program (what we
demonstrate) or via a stand-alone application that runs separately from your pro-
grams.
Wewill now show a fewexamples derived from the Enthought tutorial.We start

by having Mayavi produce a standard surface plot of z(x , y) = x4 + y4:

import numpy ; import Matp lo t l i b ; import matp lo t l i b . pyp lot
import mayavi ; import mayavi . mlab

X, Y = numpy . mgrid [−2 : 2 : 0 . 1 , −2 :2 : 0 . 1] ; Z = X**4 + Y**4

mayavi . mlab . su r f (Z) ; mayavi . mlab . axes ()
mayavi . mlab . ou t l i n e () ; mlab . show ()

You see here that we use NumPy’s numpy.mgrid method to set up the X and Y ar-
rays, and then set up the Z array with a vectorized evaluation of X4 + Y 4. Then
we use Mayavi to create the Z surface, to draw the axes and to outline the surface

271.5 Python’s Visualization Tools

Figure 1.10 (a) A Mayavi surface plot of the function z = x4 + y4 as seen in the screen viewer.
(b) A rotatable visualization of a spherical harmonic Ym

l (θ,𝜙) in which the radial distance rep-
resents the value of the function.

with a box. Finally, there is an important call to mlab.show() to show the visualiza-
tion in a display box such as that in Figure 1.10a. This display box is seen (well,
if enlarged) to contain a number of (too small) buttons that lets you produce dif-
ferent views and sizes, insert directional arrows, save the file in various formats
to disk, edit properties of the visualization, and open the pipeline window. The
pipeline window shows, and lets the user control, the various stages of a visu-
alization: loading the data into a data source object, transforming the data with
filters, and visualizing it with modules.
Now we go beyond the direct plotting of a function’s values to the creation of

a visualization of a spherical harmonic function Ym
l (θ, φ) that is defined over the

surface of a sphere (Figure 1.10b):

from numpy import pi , sin , cos , mgrid
from mayavi import mlab
dphi , dtheta = pi / 250 . 0 , p i / 250 . 0
[phi , t he t a] = mgrid [0 : p i+dphi * 1 . 5 : dphi , 0 : 2 * p i+dtheta * 1 . 5 : dtheta]
m0 = 4 ; m1 = 3 ; m2 = 2 ; m3 = 3 ; m4 = 6 ; m5 = 2 ; m6 = 6 ; m7 = 4 ;
r = s in (m0* phi) * *m1 + cos (m2* phi) * *m3 + s in (m4* the t a) * *m5 +

cos (m6* the t a) * *m7
x = r * s in (phi) * cos (the t a) ; y = r * cos (phi) # Function
z = r * s in (phi) * s in (the t a) # Project ions
View data

s = mlab . mesh (x , y , z)
mlab . show ()

Because we do not have four dimensions to use, we take the values of Ym
l (θ, φ) at

various grid points and plot those values as the radial distances from the origin
for each value of θ and φ. The new element here is the statement s = mlab.mesh(x,
y, z) that produces a mesh throughout 3D space, and then the projection of the
radius into its (x , y, z) components.
In the next example, we start with a data set in the form of (xi , y j , zk) values

and connect the points with tubes of various colors:

28 1 Introduction

Figure 1.11 (a) A Mayavi visualization in which tubes are used to connect a set of data points.
(b) A Mayavi visualization using arrows (glyphs) to represent a vector field.

import numpy ; import mayavi
from mayavi . mlab import *

n_mer , n_long = 6 , 11 ; p i =numpy . p i
dphi = pi / 1000 .0
phi = numpy . arange (0 . 0 , 2 * p i + 0 .5 * dphi , dphi)
mu = phi * n_mer
x = numpy . cos (mu) * (1 + numpy . cos (n_long * mu / n_mer) * 0 . 5)
y = numpy . s in (mu) * (1 + numpy . cos (n_long * mu / n_mer) * 0 . 5)
z = numpy . s in (n_long * mu / n_mer) * 0 . 5

p lot3d (x , y , z , numpy . s in (mu) , t ub e_ rad iu s =0 .025 , colormap= ’ Spectra l ’)
mayavi . mlab . show ()

The new command here is plot3d, which is seen in Figure 1.11b to produce rain-
bow colored (‘Spectral’) tubes connecting the data points. The arange command
sets up the array of phi values, and then the arrays of x, y, z, mu and sin(mu) values
all follow.
A popular style of visualization for vector fields is one in which arrows (glyphs)

are drawn at various points in space with the directions of the arrows indicat-
ing the directions of the field, and with the length of the arrows indicating its
strengths. Here we create such a visualization and show its output in Figure 1.11b:

import numpy
from mayavi . mlab import *

x , y , z = numpy . mgrid [−2 :3 , −2:3 , −2:3]
r = numpy . sq r t (x * * 2 + y * * 2 + z * * 4)
u = y * numpy . s in (r) / (r + 0 . 001)
v = −x * numpy . s in (r) / (r + 0 . 001)
w = 4*numpy . z e r o s _ l i k e (z)

qu iver3d (x , y , z , u , v , w, l ine_w id th =3 , s c a l e _ f a c t o r =1 .5)
show ()

As before, we useNumPy to set an (x , y, z) grid. Thenwe set up an array of r values
as an intermediate function of (x , y, z), and finally set up arrays of the (u, v, w)

291.5 Python’s Visualization Tools

Figure 1.12 (a) A Mayavi visualization of the contours of the scalar field 𝜙(x , y, z) =
sin(xyz)∕xyz. (b) A volume rendering of the same scalar field.

components of the vector field as functions of the other arrays. The new command
here is quiver3d which provides a collection of arrows (cute name).
If the fieldwewish to visualize is a scalar field, such as φ(x , y, z)= sin(x yz)∕x yz,

then the appropriate visualization would be an iso-surface (a 3D contour plot of
equal values) throughout a 3D space. We do that with the contour3d command:

import numpy as np
from mayavi import mlab
x , y , z = np . ogr id [−10 :10 :20 j , −10:10:20 j , −10:10:20 j]
s c a l a r = np . s in (x * y * z) / (x * y * z)
mlab . contour3d (s c a l a r)
mlab . show ()

Figure 1.12a shows the output, which is periodic, but not obviously trigonometric.
Wenow take our visualization of the same scalar field and showhowsome other

Mayavi methods yield different views of the field. First, a volume rendering to
produce the nebulous view in Figure 1.12b:

import numpy as np
from mayavi import mlab
x , y , z = np . ogr id [−10 :10 :20 j , −10:10:20 j , −10:10:20 j]
s = np . s in (x * y * z) / (x * y * z)
mlab . p i p e l i n e . volume (mlab . p i p e l i n e . s c a l a r _ f i e l d (s))
mlab . show ()

Next, we take the same field and replace the mlab.contour3d(s) command with the
pipeline command:

mlab . p i p e l i n e . volume (mlab . p i p e l i n e . s c a l a r _ f i e l d (s))

This produces the nebulous visualization in Figure 1.12b. Next, we produce the
visualization in Figure 1.13a by having some planes cut through the scalar field:

30 1 Introduction

Figure 1.13 (a) A Mayavi visualization of the same scalar field 𝜙(x , y, z) = sin(xyz)∕xyz using
cut planes. (b) A visualization of the same scalar field combining cut planes and contours.

import numpy as np
from mayavi import mlab
x , y , z = np . ogr id [−10 :10 :20 j , −10:10:20 j , −10:10:20 j]
s c a l a r = np . s in (x * y * z) / (x * y * z)
mlab . p i p e l i n e . image_plane_widget (mlab . p i p e l i n e . s c a l a r _ f i e l d (s c a l a r) ,

p l ane_or i en t a t i on = ’ x_axes ’ , s l i c e _ i nd e x =10 ,)
mlab . p i p e l i n e . image_plane_widget (mlab . p i p e l i n e . s c a l a r _ f i e l d (s c a l a r) ,

p l ane_or i en t a t i on = ’ y_axes ’ , s l i c e _ i nd e x =10 ,)
mlab . ou t l i n e ()
mlab . show ()

Although we cannot show it, the user can interact with the visualization by mov-
ing the cuts and rotating the figures. And to finish, we place both contours and
cut planes in the same plot to produce the interesting visualization as shown in
Figure 1.13b.

1.6
Plotting Exercises

We encourage you to make your own plots and personalize them by trying out
other commands and by including further options in the commands. The Mat-
plotlib documentation is extensive and available on the Web. As an exercise, ex-
plore:

1. how to zoom in and zoom out on sections of a plot?
2. how to save your plots to files in various formats?
3. how to print up your graphs?
4. the options available from the pull-down menus?
5. how to increase the space between subplots?
6. and how to rotate and scale the surfaces.

311.7 Python’s Algebraic Tools

1.7
Python’s Algebraic Tools

While this book’s focus is on the use of Python for numerical simulations, this is
not to discount the importance of computational symbolic manipulations (even
though that may be the way we feel). Python actually has (at least) two packages
that can be used for symbolic manipulations, and they are quite different. As in-
dicated in Section 1.4.3, the Sage package is very much in the same class as Maple
and Mathematica, with a notebook graphical interface that lets the user create
publication quality text, within which Python programs can be run, or the equa-
tions can bemanipulated symbolically. Yet Sage is a big and powerful package that
goes beyond pure Python by including multiple computer algebra systems as well
as visualization tools and more. Using the multiple features of Sage can get to be
quite complicated, and, in fact, books have been written and workshops taught on
the use of Sage. We refer the interested reader to the online Sage documentation
page at www.sagemath.org/help.html.
The SymPy package for symbolic manipulations runs very much like any other

Python package fromwithin your regular Python shell. It can be downloaded from
https://github.com/sympy/sympy/releases, or you can use the Canopy distribution
that includes SymPy. Now we give some simple examples of SymPy’s use, but you
really need to start with the SymPy Tutorial http://docs.sympy.org/latest/tutorial/
if you want to use SymPy. (Note, despite the fact that we are working within a
Python shell, SymPy has automatically found our LATEXapplication and used it to
format the output.) To start, we will take some derivatives to show that SymPy
knows calculus:

>>> from sympy import *
>>> x , y = symbols (’x y ’)
>>> y = d i f f (tan (x) , x) ; y tan2(x) + 1
>>> y = d i f f (5 * x * *4 + 7* x * *2 , x , 1) ; y # d y∕dx with optional 1

20x3 + 14x
>>> y = d i f f (5 * x **4+7* x * *2 , x , 2) ; y # d2 y∕dx2

2 (30x2 + 7)

We see here that we must first import methods from SymPy and then use the
symbols command to declare the variables x and y as algebraic. The rest is rather
obvious, with diff being the derivative operator and the x argument in diff indicat-
ing what we are taking the derivative with respect to x. Now let us try expansions:

>>> from sympy import *
>>> x , y = symbols (’x y ’)
>>> z = (x + y) * * 8 ; z

(x + y)8
>>> expand (z) x8 + 8x7 y + 28x6 y2 + 56x5 y3 + 70x4 y4 + 56x3 y5 + 28x2 y6 + 8x y7 + y8

SymPy knows about infinite series and different expansion points:

>>> s in (x) . s e r i e s (x , 0) # Usual sin x s e r ie s about 0
x − x3∕6 + x5∕120 + (x6)

>>> s in (x) . s e r i e s (x , 1 0) # sin x about x= 10
sin(10) + x cos(10) − x2 sin(10)∕2 − x3 cos(10)∕6 + x4 sin(10)∕24 + x5 cos(10)∕120 + (x6)

32 1 Introduction

>>> z = 1/ cos (x) ; z # A div is ion , not an inverse
1∕ cos(x)

>>> z . s e r i e s (x , 0) # Expand 1∕ cos x about x = 0
1 + x2∕2 + 5x4∕24 + (x6)

One of the classic difficulties with computer algebra systems is that even if the
answer is correct, if it is not simple, then it probably is not useful. And so, SymPy
has a simplify function as well as a factor function (and collect, cancel and apart
which we will not illustrate):

>>> f a c t o r (x * *2 −1)
(x − 1)(x + 1) # A nice answer

>>> f a c t o r (x * *3 − x * *2 + x − 1)
(x − 1)(x2 + 1)

>>> s imp l i f y ((x * *3 + x * *2 − x − 1) / (x * *2 + 2* x + 1))
x − 1 # Much

bet ter !
>>> s imp l i f y (x **3+3* x * * 2 * y+3*x * y **2+ y * * 3)

x3 + 3x2 y + 3x y2 + y3 # No help !
>>> f a c t o r (x **3+3* x * * 2 * y+3*x * y **2+ y * * 3)

(x + y)3 # Much better !
>>> s imp l i f y (1 + tan (x) * * 2)

cos(x)(−2)
>>> s imp l i f y (2 * tan (x) /(1+ tan (x) * * 2))

sin(2x)

33

2
Computing Software Basics

This chapter discusses some computingbasics startingwith computing languages,
number representations, and programming tools. The limits and consequences of
using floating-point numbers are explored. Related topics dealing with hardware
basics are found in Chapter 10.

2.1
Making Computers Obey

The best programs are written so that computing machines can perform them
quickly and human beings can understand them clearly. A programmer is
ideally an essayist who works with traditional aesthetic and literary forms as
well as mathematical concepts, to communicate the way that an algorithm
works and to convince a reader that the results will be correct.

Donald E. Knuth

As anthropomorphic as your view of your computer may be, keep in mind that
computers always do exactly as they are told. This means that you must tell them
exactly everything theyhave to do.Of course, the programs you runmayhave such
convoluted logic that you may not have the endurance to figure out the details of
what you have told the computer to do, but it is always possible in principle. So
your first problem is to obtain enough understanding so that you feel well enough
in control, no matter how illusionary, to figure out what the computer is doing.
Before you tell the computer to obey your orders, you need to understand that

life is not simple for computers. The instructions they understand are in a basic
machine language1) that tells the hardware to do things likemove a number stored
in one memory location to another location or to do some simple binary arith-
metic. Very few computational scientists talk to computers in a language com-
puters can understand. When writing and running programs, we usually com-

1) The Beginner’s All-Purpose Symbolic Instruction Code (BASIC) programming language of the
original PCs should not be confused with basic machine language.

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

34 2 Computing Software Basics

Figure 2.1 A schematic view of a computer’s kernel and shells. The hardware is in the center
surrounded by increasing higher level software.

municate to the computer through shells, in high-level languages (Python, Java,
Fortran, C), or through problem-solving environments (Maple, Mathematica, and
Matlab). Eventually, these commands or programs are translated into the basic
machine language that the hardware understands.
A shell is a command-line interpreter, that is, a set of small programs run by a

computer that respond to the commands (the names of the programs) that you
key in. Usually you open a special window to access the shell, and this window
is called a shell as well. It is helpful to think of these shells as the outer layers of
the computer’s operating system (OS) (Figure 2.1), within which lies a kernel of
elementary operations. (Theuser seldom interacts directly with the kernel, except
possibly when installing programs or when building an OS from scratch.) It is the
job of the shell to run programs, compilers, and utilities that do things like copying
files. There can be different types of shells on a single computer ormultiple copies
of the same shell running at the same time.
Operating systems have names such asUnix, Linux,DOS,MacOS, andMSWin-

dows. The operating system is a group of programs used by the computer to com-
municate with users and devices, to store and read data, and to execute programs.
The OS tells the computer what to do in an elementary way. The OS views you,
other devices, and programs as input data for it to process; in many ways, it is the
indispensable office manager. While all this may seem complicated, the purpose
of the OS is to let the computer do the nitty-gritty work so that you can think
higher level thoughts and communicate with the computer in something closer
to your normal everyday language.

352.2 Programming Warmup

When you submit a program to your computer in a high-level language the com-
puter uses a compiler to process it. The compiler is another program that treats
your program as a foreign language and uses a built-in dictionary and set of rules
to translate it into basic machine language. As you can probably imagine, the fi-
nal set of instructions is quite detailed and long and the compiler may make sev-
eral passes through your program to decipher your logic and translate it into a
fast code. The translated statements form an object or compiled code, and when
linked togetherwith other needed subprograms, forma loadmodule. A loadmod-
ule is a complete set of machine language instructions that can be loaded into the
computer’s memory and read, understood, and followed by the computer.
Languages such as Fortran andC use compilers to read your entire program and

then translate it into basic machine instructions. Languages such as BASIC and
Maple translate each line of your program as it is entered. Compiled languages
usually lead to more efficient programs and permit the use of vast subprogram
libraries. Interpreted languages give a more immediate response to the user and
thereby appear “friendlier.” The Python and Java languages are a mix of the two.
When you first compile your program, Python interprets it into an intermediate,
universal byte codewhich gets stored as a PYC (or PYO) file. This file can be trans-
ported to and used on other computers, although not with different versions of
Python. Then, when you run your program, Python recompiles the byte code into
a machine-specific compiled code, which is faster than interpreting your source
code line by line.

2.2
Programming Warmup

Before we go on to serious work, we want to establish that your local computer is
working right for you. Assume that calculators have not yet been invented and that
you need a program to calculate the area of a circle. Rather than use any specific
language, write that program in pseudocode that can be converted to your favorite
language later. The first program tells the computer2):

Ca l cu l a t e area of c i r c l e # Do th is computer !

This program cannot really work because it does not tell the computer which
circle to consider and what to do with the area. A better program would be

read rad iu s # Input
c a l c u l a t e area of c i r c l e # Numerics
pr in t area # Output

The instruction calculate area of circle has nomeaning inmost computer languages,
sowe need to specify an algorithm, that is, a set of rules for the computer to follow:

2) Comments placed in the field to the right are for your information and not for the computer to
act upon.

36 2 Computing Software Basics

read rad iu s # Input
PI = 3.141593 # Set constant
area = PI * r * r # Algorithm
pr in t area # Output

This is a better program, and so let us see how to implement it in Python (other
language versions are available online). In Listing 2.1, we give a Python version of
our Area program. This is a simple program that outputs to the screen, with its
input built into the program.

Listing 2.1 Area.py outputs to the screen, with its input built into the program.

Area . py : Area of a c i rc l e , simple program
from math import pi

N = 1
r = 1 .
C = 2 . * p i * r
A = pi * r * *2

pr in t (’Program number =’ , N, ’ \n r , C, A = ’ , r , C, A)

""" Expected OUTPUT
Program number = 1
r , C, A = 1.0 6.283185307179586 3.141592653589793"""

2.2.1
Structured and Reproducible Program Design

Programming is a written art that blends elements of science, mathematics, and
computer science into a set of instructions that permit a computer to accomplish
a desired task. And now, as published scientific results increasingly rely on com-
putation as an essential element, it is increasingly important that the source of
your program itself be available to others so that they can reproduce and extend
your results. Reproducibility may not be as exciting as a new discovery, but it is
an essential ingredient in science (Hinsen, 2013). In addition to the grammar of
a computer language, a scientific program should include a number of essential
elements to ensure the program’s validity and useability. As with other arts, we
suggest that until you know better, you follow some simple rules. A good program
should

∙ Give the correct answers.
∙ Be clear and easy to read, with the action of each part easy to analyze.
∙ Document itself for the sake of readers and the programmer.
∙ Be easy to use.
∙ Be built up out of small programs that can be independently verified.
∙ Be easy tomodify and robust enough to keep giving correct answers aftermod-

ification and simple debugging.
∙ Document the data formats used.
∙ Use trusted libraries.
∙ Be published or passed on to others to use and to develop further.

372.2 Programming Warmup

One attraction of object-oriented programming is that it enforces these rules au-
tomatically. An elementary way to make any program clearer is to structure it
with indentation, skipped lines, and paranetheses placed strategically. This is per-
formed to provide visual clues to the function of the different program parts (the
“structures” in structured programming). In fact, Python uses indentations as
structure elements aswell as for clarity. Although the space limitations of a printed
page keep us from inserting as many blank lines as we would prefer, we recom-
mend that you do as we say and not as we do!
In Figure 2.2, we present basic and detailed flowcharts that illustrate a possible

program for computing projectile motion. A flowchart is not meant to be a de-
tailed description of a program but instead a graphical aid to help visualize its log-
ical flow. As such, it is independent of a specific computer language and is useful
for developing and understanding the basic structure of a program. We recom-
mend that you draw a flowchart or (second best) write a pseudocode before you
write a program. Pseudocode is like a text version of a flowchart that leaves out
details and instead focuses on the logic and structures:

Store g , Vo , and the t a
Ca l cu l a t e R and T
Begin time loop

Pr in t out " not yet f i r e d " i f t < 0
Pr in t out " grounded" i f t > T
Calcu late , pr in t x (t) and y (t)
P r in t out e r ro r message i f x > R , y > H

End time loop End program

2.2.2
Shells, Editors, and Execution

1. To gain some experience with your computer system, use an editor to enter
the program Area.py that computes the area of a circle (yes, we know you can
copy and paste it, but you may need some exercise before getting to work).
Thenwrite your file to a disk by saving it in your home (personal) directory (we
advise having a separate subdirectory for each chapter).Note:Readers familiar
with Pythonmaywant to enter the programAreaFormatted.py instead that uses
commands that produce the formatted output.

2. Compile and execute the appropriate version of Area.py.
3. Experiment with your program. For example, see what happens if you leave

out decimal points in the assignment statement for r, if you assign r equal to
a blank, or if you assign a letter to r. Remember, it is unlikely that you will
“break” anything on the computer by making a mistake, and it is good to see
how the computer responds when under stress.

4. Change the program so that it computes the volume 4∕3 πr3 of a sphere and
prints it out with the proper name. Save the modified program to a file it in
your personal directory and give it the name Vol.py.

5. Open and execute Vol.py and check that your changes are correct by running
a number of trial cases. Good input data are r = 1 and r = 10.

38 2 Computing Software Basics

Initialize Constants

Basic Calculations

Loop over time

End

Store g, V0, θ

Calculate R, T

Loop over time

Calculate x(t), y(t)

Print x, y “Not Yet Fired”

End

“Grounded”

0 < t < T ?

t < 0 ?
NY

NY

(a) (b)

Figure 2.2 A flowchart illustrating a program
to compute projectile motion. Plot (a) shows
the basic components of the program, and
plot (b) shows are some of its details. When

writing a program, first map out the basic
components, then decide upon the structures,
and finally fill in the details. This is called top-
down programming.

6. Revise Area.py so that it takes input from a file name that you have made up,
then writes in a different format to another file you have created, and then
reads from the latter file.

7. See what happens when the data type used for output does not match the type
of data in the file (e.g., floating point numbers are read in as integers).

8. Revise AreaMod so that it uses a main method (which does the input and out-
put) and a separate function or method for the calculation. Check that you
obtain the same answers as before.

Listing 2.2 AreaFormatted.py does I/O to
and from keyboard, as well as from a file. It
works with either Python 2 or 3 by switching
between raw_input and input. Note to read

from a file using Canopy, you must right click
in the Python run window and choose Change
to Editor Directory.

AreaFormatted : Python 2 or 3 formated output , keyboard input , f i l e input

from numpy import *
from sy s import v e r s ion
i f i n t (v e r s ion [0]) >2: # Python 3 uses input , not

raw_input
raw_input=input

name = raw_input (’Key in your name : ’) # raw_input s t r ings
pr in t ("Hi " ,name)
rad iu s = eva l (raw_input (’ Enter a radius : ’)) # For numerical va lues
pr in t (’ you entered radius= %8.5 f ’%rad iu s) # formatted output
pr in t (’ Enter new name and r in f i l e Name. dat ’) # raw_input s t r ings
i n p f i l e = open (’Name. dat ’ , ’ r ’) # Read from f i l e Name. dat

392.3 Python I/O

f o r l i n e in i n p f i l e :
l i n e = l i n e . s p l i t () # Sp l i t s components of l ine
name = l i n e [0] # Fir s t entry in the l i s t
pr in t (" Hi %10s " %(name)) # print Hi + f i r s t entry
r = f l o a t (l i n e [1]) # convert s t r ing to f l o a t
pr in t (" r = %13.5 f " %(r)) # convert to f l o a t & print

i n p f i l e . c l o se ()
A = math . p i * r * *2
pr in t ("Done , look in A. dat\n")
o u t f i l e = open (’A. dat ’ , ’w ’)
o u t f i l e . w r i t e (’ r= %13.5 f \n ’%(r))
o u t f i l e . w r i t e (’A = %13.5 f \n ’%(A))
o u t f i l e . c l o se ()
pr in t (’ r = %13.5 f ’%(r) , ’ , A = %13.5 f ’%(A)) # Screen output
pr in t (’ \n Now example o f in t eg e r input ’)
age= i n t (eva l (raw_input (’Now key in your age as an in t eg er : ’)))
pr in t (" age : %4d years old , you don ’ t look i t !\ n"%(age))
pr in t (" Enter and return a character to f i n i s h ")
s = raw_input ()

2.3
Python I/O

The simplest I/O with Python is outputting to the screen with the print command
(as seen in Area.py, Listing 2.1), and inputting from the keyboard with the input
command (as seen in AreaFormatted.py, Listing 2.2). We also see in AreaFormat-
ted.py that we can input strings (literal numbers and letters) by either enclosing
the string in quotes (single or double), or by using the raw_input (Python2) or input
(Python 3) command without quotes. To print a string with print, place the string
in quotes. AreaFormatted.py also shows how to input both a string and numbers
from a file. (But be careful if you are using Canopy: you must right click in the
Python run window and chooseChange to Editor Directory in order to switch the
working directory of Canopy’s Python shell to your working directory.)
The simplest output prints the value of a float just by giving its name:

pr in t ’ eps = ’ , eps # Output f l o a t in default format

This uses Python’s default format, which tends to vary depending on the precision
of the number being printed. As an alternative, you can control the format of your
output. For floats, you need to specify two things. First, howmany digits (places)
after the decimal point are desired, and second, how many spaces overall should
be used for the number:

pr in t ("x=%6.3f , Pi=%9.6f , Age=%d \n") % (x , math . pi , age)
pr in t "x=%6.3f , %(x) , " Pi =%9.6 f , " %(math . pi) , "Age=%d "%(age) , " \n"
x = 12.345 , Pi = 3.141593 , Age=39 # Output from e i t her

Here the %6.3f formats a float (which is a double in Python) to be printed in fixed-
point notation (the f) with three places after the decimal point and with six places
overall (one place for the decimal point, one for the sign, one for the digit before

40 2 Computing Software Basics

the decimal point, and three for the decimal). The directive %9.6f produces six
digits after the decimal place and nine overall.
To print an integer, we need to specify only the total number of digits (there is

no decimal part), andwe do thatwith the%d (d for digits) format. The% symbol in
these output formats indicates a conversion from the computer’s internal format
to that used for output. Notice in Listing 2.2 how we read from the keyboard, as
well as from a file, and then output to both the screen and file. Beware that if you
do not create the file Name.dat, the program will issue (“throw”) an error message
of the sort:

IOError: [Errno 2] No such file or directory: ’Name.dat’

Note that we have also use a ∖n directive here to indicate a new line. Other direc-
tives, some of which are demonstrated in Directives.py in Listing 2.3 (and some of
which like backspace may not yet work right) are:

∖" double quote ∖0NNN octal NNN ∖∖ backslash
∖a alert (bell) ∖b backspace ∖c no more output
∖f form feed ∖n new line ∖r carriage ret
∖t horizontal tab ∖v vertical tab %% a single %

Listing 2.3 Directives.py illustrates formatting via directives and escape characters.

Direct ives . py i l l u s t r a t e s escape and formatting characters
import sy s
pr in t (" he l l o \n")
pr in t ("\t i t ’ s me") # tabula tor
b = 73
pr in t (" decimal 73 as in t eg e r b = %d "%(b)) # for integer
pr in t (" as o c t a l b = %o"%(b)) # octa l
pr in t (" as hexadecimal b = %x "%(b)) # works hexadecimal
pr in t (" learn \"Python\" ") # use of double quote symbol
pr in t (" shows a backslash \\") # use of \ \
pr in t (’ use o f s i n g l e \ ’ quotes \ ’ ’) # print s ing le quotes

2.4
Computer Number Representations (Theory)

Computers may be powerful, but they are finite. A problem in computer design
is how to represent an arbitrary number using a finite amount of memory space
and then how to deal with the limitations arising from this representation. As
a consequence of computer memories being based on the magnetic or electronic
realizations of a spin pointing up or down, themost elementary units of computer
memory are the two binary integers (bits) 0 and 1. This means that all numbers
are stored in memory in the binary form, that is, as long strings of 0s and 1s.
Accordingly, N bits can store integers in the range [0, 2N], yet because the sign
of the integer is represented by the first bit (a zero bit for positive numbers), the
actual range for N-bit integers decreases to [0, 2N−1].

412.4 Computer Number Representations (Theory)

Long strings of 0s and 1s are fine for computers but are awkward for humans.
For this reason, binary strings are converted to octal, decimal, or hexadecimal
numbers before the results are communicated to people. Octal and hexadecimal
numbers are nice because the conversionmaintains precision, but not all that nice
because our decimal rules of arithmetic do not work for octals and hexadecimals.
Converting to decimal numbersmakes thenumbers easier for us toworkwith, but
unless the original number is a power of 2, the conversion decreases precision.
A description of a particular computer’s system or language normally states the

word length, that is, the number of bits used to store a number. The length is often
expressed in bytes, (a mouthful of bits) where

1 byte ≡ 1 B
def
= 8 bits .

Memory and storage sizes aremeasured in bytes, kilobytes, megabytes, gigabytes,
terabytes, and petabytes (1015). Some care should be taken here by those who
chose to compute sizes in detail, because K does not always mean 1000:

1 K
def
= 1 kB = 210 bytes = 1024 bytes . (2.1)

This is often (and confusingly) compensated for whenmemory size is stated in K,
for example,

512K = 29 bytes = 524 288 bytes × 1K
1024 bytes

.

Conveniently, 1 byte is also the amount of memory needed to store a single letter
like “a,” which adds up to a typical printed page requiring ∼ 3 kB.
The memory chips in some older personal computers used 8-bit words, with

modern PCs using 64 bits. This means that the maximum integer was a rather
small 27 = 128 (7 because 1 bits is used for the sign). Using 64 bits permits in-
tegers in the range 1−263 ≃ 1019. While at first this may seem like a large range,
it really is not when compared to the range of sizes encountered in the physical
world. As a case in point, the size of the universe compared to the size of a pro-
ton covers a scale of 1041. Trying to store a number larger than the hardware or
software was designed for (overflow) was common on older machines, but is less
so now. An overflow is sometimes accompanied by an informative error message,
and sometimes not.

2.4.1
IEEE Floating-Point Numbers

Real numbers are represented on computers in either fixed-point orfloating-point
notation. Fixed-point notation can be used for numbers with a fixed number of
places beyond the decimal point (radix) or for integers. It has the advantages of
being able to use two’s complement arithmetic and being able to store integers ex-

42 2 Computing Software Basics

actly.3) In the fixed-point representation with N bits and with a two’s complement
format, a number is represented as

Nfix = sign ×
(
αn2n + αn−12n−1 +⋯ + α020 +⋯ + α−m2−m

)
, (2.2)

where n + m = N − 2. That is, 1 bit is used to store the sign, with the remaining
(N − 1) bits used to store the αi values (the powers of 2 are understood). The
particular values for N ,m, and n are machine dependent. Integers are typically
4 bytes (32 bits) in length and in the range

−2 147 483 648 ≤ 4-B integer ≤ 2 147 483 647 . (2.3)

An advantage of the representation (2.2) is that you can count on all fixed-point
numbers having the same absolute error of 2−m−1 (the term left off the right-hand
end of (2.2)). The corresponding disadvantage is that small numbers (those for
which the first string of α values are zeros) have large relative errors. Because
relative errors in the real world tend to be more important than absolute ones,
integers are used mainly for counting purposes and in special applications (like
banking).
Most scientific computations use double-precision floating-point numbers

with 64 bits = 8 B. The floating-point representation of numbers on computers is
a binary version of what is commonly known as scientific or engineering notation.
For example, the speed of light c = +2.997 924 58 × 108 m∕s in scientific notation
and +0.299 792 458 × 109 or 0.299 795 498E09m/s in engineering notation. In
each of these cases, the number in front is called themantissa and contains nine
significant figures. The power to which 10 is raised is called the exponent, with
the plus sign in front a reminder that these numbers may be negative.
Floating-point numbers are stored on the computer as a concatenation (juxta-

position) of a sign bit, an exponent, and a mantissa. Because only a finite number
of bits are stored, the set of floating-point numbers that the computer can store
exactly,machine numbers (the hashmarks in Figure 2.3), does not cover the entire
the set of real numbers. In particular, machine numbers have a maximum and a
minimum (the shading in Figure 2.3). If you exceed themaximum, an error condi-
tion known as overflow occurs; if you fall below the minimum, an error condition
known as underflow occurs. In the latter case, the software and hardware may be
set up so that underflows are set to zero without your even being told. In contrast,
overflows usually halt a program’s execution.
The actual relation between what is stored in memory and the value of a

floating-point number is somewhat indirect, with there being a number of special
cases and relations used over the years. In fact, in the past each computer OS and
each computer language contained its own standards for floating-point numbers.
Different standards meant that the same program running correctly on different

3) The two’s complement of a binary number is the value obtained by subtracting the number
from 2N for an N-bit representation. Because this system represents negative numbers by the
two’s complement of the absolute value of the number, additions and subtractions can be made
without the need to work with the sign of the number.

432.4 Computer Number Representations (Theory)

Underflow

T
ru

n
c
a
ti
o

n

O
v
e
rfl

o
w

0

83+83+ –45–45–10 10–10 +10

Figure 2.3 The limits of single-precision
floating-point numbers and the consequences
of exceeding these limits (not to scale). The
hash marks represent the values of numbers

that can be stored; storing a number in be-
tween these values leads to truncation error.
The shaded areas correspond to over- and
underflow.

computers could give different results. Although the results usually were only
slightly different, the user could never be sure if the lack of reproducibility of a
test case was as a result of the particular computer being used or to an error in
the program’s implementation.
In 1987, the Institute of Electrical and Electronics Engineers (IEEE) and the

American National Standards Institute (ANSI) adopted the IEEE 754 standard
for floating-point arithmetic. When the standard is followed, you can expect the
primitive data types to have the precision and ranges given in Table 2.1. In ad-
dition, when computers and software adhere to this standard, and most do now,
you are guaranteed that your program will produce identical results on different
computers. Nevertheless, because the IEEE standard may not produce the most
efficient code or the highest accuracy for a particular computer, sometimes you
may have to invoke compiler options to demand that the IEEE standard be strictly
followed for your test cases. After you know that the code is okay, you may want
to run with whatever gives the greatest speed and precision.

Table 2.1 The IEEE 754 Standard for Primitive Data Types.

Name Type Bits Bytes Range

boolean Logical 1 1
8 true or false

char String 16 2 ’∖u0000’ ↔ ’∖uFFFF’ (ISO Unicode)
byte Integer 8 1 −128 ↔ +127
short Integer 16 2 −32 768 ↔ +32 767
int Integer 32 4 −2 147 483 648 ↔ +2 147 483 647
long Integer 64 8 −9 223 372 036 854 775 808 ↔

9 223 372 036 854 775 807
float Floating 32 4 ±1.401 298 × 10−45 ↔ ±3.402 923 × 1038

double Floating 64 8 ±4.940 656 458 412 465 44 × 10−324 ↔

±1.797 693 134 862 315 7 × 10308

44 2 Computing Software Basics

There are actually a number of components in the IEEE standard, and different
computer or chip manufacturers may adhere to only some of them. Furthermore,
Python as it developsmay not follow all standards, but probably will in time. Nor-
mally, a floating-point number x is stored as

xfloat = (−1)s × 1. f × 2e-bias , (2.4)

that is, with separate entities for the sign s, the fractional part of the mantissa f ,
and the exponential field e. All parts are stored in the binary form and occupy
adjacent segments of a single 32-bit word for singles or two adjacent 32-bit words
for doubles. The sign s is stored as a single bit, with s = 0 or 1 for a positive or a
negative sign. Eight bits are used to stored the exponent e, whichmeans that e can
be in the range 0 ≤ e ≤ 255. The endpoints, e = 0 and e = 255, are special cases
(Table 2.2). Normal numbers have 0 < e < 255, and with them the convention is
to assume that the mantissa’s first bit is a 1, so only the fractional part f after the
binary point is stored. The representations for subnormal numbers and for the
special cases are given in Table 2.2.
Note that the values±INF and NaN are not numbers in the mathematical sense,

that is, objects that can be manipulated or used in calculations to take limits and
such. Rather, they are signals to the computer and to you that something has gone
awry and that the calculation should probably stop until you straighten things
out. In contrast, the value −0 can be used in a calculation with no harm. Some
languages may set unassigned variables to −0 as a hint that they have yet to be
assigned, although it is best not to count on that!
Because the uncertainty (error) is only in the mantissa and not in the exponent,

the IEEE representations ensure that all normal floating-point numbers have the
same relative precision. Because the first bit of a floating point number is assumed
to be 1, it does not have to be stored, and computer designers need only recall
that there is a phantom bit 1 there to obtain an extra bit of precision. During the
processing of numbers in a calculation, the first bit of an intermediate result may
become zero, but this is changed before the final number is stored. To repeat, for
normal cases, the actual mantissa (1. f in binary notation) contains an implied 1
preceding the binary point.

Table 2.2 Representation scheme for normal and abnormal IEEE singles.

Number name Values of s, e, and f Value of single

Normal 0 < e < 255 (−1)s × 2e−127 × 1. f
Subnormal e = 0, f ≠ 0 (−1)s × 2−126 × 0. f
Signed zero (±0) e = 0, f = 0 (−1)s × 0.0
+∞ s = 0, e = 255, f = 0 +INF
−∞ s = 1, e = 255, f = 0 −INF
Not a number s = u, e = 255, f ≠ 0 NaN

452.4 Computer Number Representations (Theory)

Finally, in order to guarantee that the stored biased exponent e is always posi-
tive, a fixed number called the bias is added to the actual exponent p before it is
stored as the biased exponent e. The actual exponent, which may be negative, is

p = e − bias . (2.5)

2.4.1.1 Examples of IEEE Representations
There are two basic IEEE floating-point formats: singles and doubles. Singles
or floats is shorthand for single-precision floating-point numbers, and doubles is
shorthand for double-precision floating-point numbers. (In Python, however, all
floats are double precision.) Singles occupy 32 bits overall, with 1 bit for the sign,
8 bits for the exponent, and 23 bits for the fractional mantissa (which gives 24-bit
precision when the phantom bit is included). Doubles occupy 64 bits overall, with
1 bit for the sign, 10 bits for the exponent, and 53 bits for the fractional mantissa
(for 54-bit precision). This means that the exponents and mantissas for doubles
are not simply double those of floats, as we see in Table 2.1. (In addition, the IEEE
standard also permits extended precision that goes beyond doubles, but this is all
complicated enough without going into that right now.)
To see the scheme in practice, consider the 32-bit representation (2.4):

s e f
Bit position 31 30 23 22 0

The sign bit s is in bit position 31, the biased exponent e is in bits 30–23, and the
fractional part of the mantissa f is in bits 22–0. Because 8 bits are used to store
the exponent e and because 28 = 256, e has the range

0 ≤ e ≤ 255 . (2.6)

The values e = 0 and 255 are special cases. With bias = 12710, the full exponent

p = e10 − 127 , (2.7)

and, as indicated in Table 2.1, singles have the range

−126 ≤ p ≤ 127 . (2.8)

The mantissa f for singles is stored as the 23 bits in positions 22–0. For normal
numbers, that is, numberswith 0 < e< 255, f is the fractional part of themantissa,
and therefore the actual number represented by the 32 bits is

Normal floating-point number = (−1)s × 1. f × 2e−127 . (2.9)

Subnormal numbers have e = 0, f ≠ 0. For these, f is the entire mantissa, so the
actual number represented by these 32 bits is

Subnormal numbers = (−1)s × 0. f × 2e−126 . (2.10)

46 2 Computing Software Basics

The 23bits m22 − m0, which are used to store the mantissa of normal singles,
correspond to the representation

Mantissa = 1. f = 1 + m22 × 2−1 + m21 × 2−2 +⋯ + m0 × 2−23 , (2.11)

with 0. f used for subnormal numbers. The special e = 0 representations used to
store ±0 and ±∞ are given in Table 2.2.
To see how this works in practice (Figure 2.3), the largest positive normal

floating-point number possible for a 32-bit machine has the maximum value e =
254 (the value 255 being reserved) and the maximum value for f :

Xmax = 01111 1110 1111 1111 1111 1111 1111 111
= (0)(1111 1110)(1111 1111 1111 1111 1111 111) , (2.12)

where we have grouped the bits for clarity. After putting all the pieces together,
we obtain the value shown in Table 2.1:

s = 0 , e = 1111 1110 = 254 , p = e − 127 = 127 ,
f = 1.1111 1111 1111 1111 1111 111 = 1 + 0.5 + 0.25 +⋯ ≃ 2 ,

⇒ (−1)s × 1. f × 2p=e−127 ≃ 2 × 2127 ≃ 3.4 × 1038 . (2.13)

Likewise, the smallest positive floating-point number possible is subnormal (e =
0) with a single significant bit in the mantissa:

0 0000 0000 0000 0000 0000 0000 0000 001 . (2.14)

This corresponds to

s = 0 , e = 0 , = e − 126 = −126
f = 0.0000 0000 0000 0000 0000 001 = 2−23

⇒ (−1)s × 0. f × 2p=e−126 = 2−149 ≃ 1.4 × 10−45 . (2.15)

In summary, single-precision (32-bit or 4-byte) numbers have six or seven decimal
places of significance and magnitudes in the range

1.4 × 10−45 ≤ single precision ≤ 3.4 × 1038 . (2.16)

Doubles are stored as two 32-bit words, for a total of 64 bits (8 B). The sign oc-
cupies 1 bit, the exponent e, 11 bits, and the fractional mantissa, 52 bits:

s e f f (cont.)
Bit position 63 62 52 51 32 31 0

As we see here, the fields are stored contiguously, with part of the mantissa f
stored in separate 32-bit words. The order of these words, and whether the sec-
ond word with f is the most or least significant part of the mantissa, is machine-
dependent. For doubles, the bias is quite a bit larger than for singles,

Bias = 11111111112 = 102310 , (2.17)

472.4 Computer Number Representations (Theory)

Table 2.3 Representation scheme for IEEE doubles.

Number name Values of s, e, and f Value of double

Normal 0 < e < 2047 (−1)s × 2e−1023 × 1. f
Subnormal e = 0, f ≠ 0 (−1)s × 2−1022 × 0. f
Signed zero e = 0, f = 0 (−1)s × 0.0
+∞ s = 0, e = 2047, f = 0 +INF
−∞ s = 1, e = 2047, f = 0 −INF
Not a number s = u, e = 2047, f ≠ 0 NaN

so the actual exponent p = e − 1023.
The bit patterns for doubles are given in Table 2.3, with the range and precision

given in Table 2.1. To repeat, if you write a program with doubles, then 64 bits
(8 bytes) will be used to store your floating-point numbers. Doubles have approx-
imately 16 decimal places of precision (1 part in 252) and magnitudes in the range

4.9 × 10−324 ≤ double precision ≤ 1.8 × 10308 . (2.18)

If a single-precision number x is larger than 2128, a fault condition known as an
overflow occurs (Figure 2.3). If x is smaller than 2−128, an underflow occurs. For
overflows, the resulting number xc may end up being a machine-dependent pat-
tern, not a number (NAN), or unpredictable. For underflows, the resulting num-
ber xc is usually set to zero, although this can usually be changed via a compiler
option. (Having the computer automatically convert underflows to zero is usually
a good path to follow; converting overflows to zero may be the path to disaster.)
Because the only difference between the representations of positive and negative
numbers on the computer is the sign bit of 1 for negative numbers, the same con-
siderations hold for negative numbers.
In our experience, serious scientific calculations almost always require at least

64-bit (double-precision) floats. And if you need double precision in one part of
your calculation, you probably need it all over, which means double-precision li-
brary routines for methods and functions.

2.4.2
Python and the IEEE 754 Standard

Python is a relatively recent language with changes and extensions occurring as its
use spreads and as its features mature. It should be no surprise then that Python
does not at present adhere to all aspects, and especially the special cases, of the
IEEE 754 standard. Probably themost relevant difference for us is thatPython does
not support single (32 bits) precision floating-point numbers. So whenwe deal with
a data type called afloat in Python, it is the equivalent of a double in the IEEE stan-
dard. Because singles are inadequate for most scientific computing, this is not a
loss. However be wary, if you switch over to Java or C you should declare your

48 2 Computing Software Basics

variables as doubles and not as floats. While Python eliminates single-precision
floats, it adds a new data type complex for dealing with complex numbers. Com-
plex numbers are stored as pairs of doubles and are quite useful in science.
The details of how closely Python adheres to the IEEE 754 standard depend

upon the details of Python’s use of the C or Java language to power the Python
interpreter. In particular, with the recent 64 bits architectures for CPUs, the range
may even be greater than the IEEE standard, and the abnormal numbers (±INF,
NaN) may differ. Likewise, the exact conditions for overflows and underflows may
also differ. That being the case, the exploratory exercises to follow become all that
more interesting because we cannot say that we know what results you should
obtain!

2.4.3
Over and Underflow Exercises

1. Consider the 32-bit single-precision floating-point number A:

s e f
Bit position 31 30 23 22 0
Value 0 0000 1110 1010 0000 0000 0000 0000 000

a) What are the (binary) values for the sign s, the exponent e, and the frac-
tional mantissa f ? (Hint: e10 = 14.)

b) Determine decimal values for the biased exponent e and the true expo-
nent p.

c) Show that the mantissa of A equals 1.625 000.
d) Determine the full value of A.

2. Write a program that determines the underflow and overflow limits (within a
factor of 2) for Python on your computer. Here is a sample pseudocode

under = 1 .
over = 1 .
begin do N times

under = under / 2 .
over = over * 2 .
w r i t e out : loop number , under , over

end do

You may need to increase N if your initial choice does not lead to underflow
and overflow. (Notice that if you want to be more precise regarding the limits
of your computer, you may want to multiply and divide by a number smaller
than 2.)
a) Check where under- and overflow occur for double-precision floating-

point numbers (floats). Give your answer in decimal.
b) Check where under- and overflow occur for double-precision floating-

point numbers.
c) Check where under- and overflow occur for integers.Note:There is no ex-

ponent stored for integers, so the smallest integer corresponds to themost

492.4 Computer Number Representations (Theory)

negative one. To determine the largest and smallest integers, youmust ob-
serve your program’s output as you explicitly pass through the limits. You
accomplish this by continually adding and subtracting 1. (Because inte-
ger arithmetic uses two’s complement arithmetic, you should expect some
surprises.)

2.4.4
Machine Precision (Model)

A major concern of computational scientists is that the floating-point represen-
tation used to store numbers is of limited precision. As we have shown for a 32-
bit-wordmachine, single-precision numbers are good to 6–7 decimal places, while
doubles are good to 15–16 places. To see how limited precision affects calcula-
tions, consider the simple computer addition of two single-precision numbers:

7 + 1.0 × 10−7 =? (2.19)

The computer fetches these numbers frommemory and stores the bit patterns

7 = 0 1000 0010 1110 0000 0000 0000 0000 000 , (2.20)

10−7 = 0 0110 0000 1101 0110 1011 1111 1001 010 , (2.21)

in working registers (pieces of fast-responding memory). Because the exponents
are different, it would be incorrect to add the mantissas, and so the exponent of
the smaller number is made larger while progressively decreasing the mantissa
by shifting bits to the right (inserting zeros) until both numbers have the same
exponent:

10−7 = 0 01100001 0110 1011 0101 1111 1100 101 (0)
= 0 0110 0010 0011 0101 1010 1111 1110 010 (10)
… (2.22)
= 0 1000 0010 0000 0000 0000 0000 0000 000 (0001 101… 0)
⇒ 7 + 1.0 × 10−7 = 7 . (2.23)

Because there is no room left to store the last digits, they are lost, and after all this
hard work the addition just gives 7 as the answer (truncation error in Figure 2.3).
In other words, because a 32-bit computer stores only 6 or 7 decimal places, it
effectively ignores any changes beyond the sixth decimal place.
The preceding loss of precision is categorized by defining the machine preci-

sion 𝜖m as the maximum positive number that, on the computer, can be added to
the number stored as 1 without changing that stored 1:

1c + 𝜖m
def
= 1c , (2.24)

50 2 Computing Software Basics

where the subscript c is a reminder that this is a computer representation of 1.
Consequently, an arbitrary number x can be thought of as related to its floating-
point representation xc by

xc = x(1 ± 𝜖) , |𝜖| ≤ 𝜖m , (2.25)

where the actual value for 𝜖 is not known. In other words, except for powers of 2
that are represented exactly, we should assume that all single-precision numbers
contain an error in the sixth decimal place and that all doubles have an error in
the 15th place. And as is always the case with errors, we must assume that we
really do not know what the error is, for if we knew, then we would eliminate it!
Consequently, the arguments we are about to put forth regarding errors should
be considered approximate, but that is to be expected for unknown errors.

2.4.5
Experiment: Your Machine’s Precision

Write a program to determine themachine precision 𝜖m of your computer system
within a factor of 2. A sample pseudocode is

eps = 1 .
begin do N times

eps = eps / 2 . # Make smaller
one = 1 . + eps # Write loop number , one , eps

end do

A Python implementation is given in Listing 2.4, while a more precise one is Byte-
Limit.py on the instructor’s guide.

Listing 2.4 Limits.py determines machine precision within a factorof 2.

Limits . py : determines approximate machine prec is ion

N = 10
eps = 1 .0

f o r i in range (N) :
eps = eps /2
one_Plus_eps = 1 .0 + eps
pr in t (’ eps = ’ , eps , ’ , one + eps = ’ , one_Plus_eps)

1. Determine experimentally the precision of double-precision floats.
2. Determine experimentally the precision of complex numbers.

To print out a number in the decimal format, the computer must convert from its
internal binary representation. This not only takes time, but unless the number
is an exact power of 2, leads to a loss of precision. So if you want a truly precise
indication of the stored numbers, you should avoid conversion to decimals and
instead print them out in octal or hexadecimal format (∖0NNN).

512.5 Problem: Summing Series

2.5
Problem: Summing Series

A classic numerical problem is the summation of a series to evaluate a function.
As an example, consider the infinite series for sin x:

sin x = x − x3
3!

+ x5
5!

− x7
7!

+⋯ (exact) . (2.26)

Your problem is to use just this series to calculate sin x for x < 2π and x > 2π, with
an absolute error in each case of less than 1 part in 108. While an infinite series
is exact in a mathematical sense, it is not a good algorithm because errors tend
to accumulate and because we must stop summing at some point. An algorithm
would be the finite sum

sin x ≃
N∑
n=1

(−1)n−1x2n−1

(2n − 1)!
(algorithm) . (2.27)

But how do we decide when to stop summing? (Do not even think of saying,
“When the answer agrees with a table or with the built-in library function.”) One
approach would be to stop summing when the next term is smaller than the pre-
cision desired. Clearly then, if x is large, this would require large N as well. In fact,
for really large x, one would have to go far out in the series before the terms start
decreasing.

2.5.1
Numerical Summation (Method)

Never mind that the algorithm (2.27) indicates that we should calculate
(−1)n−1x2n−1 and then divide it by (2n − 1)! This is not a good way to compute.
On the one hand, both (2n − 1)! and x2n−1 can get very large and cause overflows,
despite the fact that their quotient may not be large. On the other hand, powers
and factorials are very expensive (time-consuming) to evaluate on the computer.
Consequently, a better approach is to use a single multiplication to relate the next
term in the series to the previous one:

(−1)n−1x2n−1

(2n − 1)!
= −x2

(2n − 1)(2n − 2)
(−1)n−2x2n−3

(2n − 3)!

⇒ nth term = −x2
(2n − 1)(2n − 2)

× (n − 1)th term . (2.28)

While we want to establish absolute accuracy for sin x, that is not so easy to do.
What is easy to do is to assume that the error in the summation is approximately
the last term summed (this assumes no round-off error, a subject we talk about in
Chapter 3). To obtain a relative error of 1 part in 108, we then stop the calculation
when ||||nth term

sum
|||| < 10−8 , (2.29)

52 2 Computing Software Basics

where “term” is the last term kept in the series (2.27) and “sum” is the accumulated
sum of all the terms. In general, you are free to pick any tolerance level you desire,
although if it is too close to, or smaller than, machine precision, your calculation
may not be able to attain it. A pseudocode for performing the summation is

term = x , sum = x , eps = 10^(−8) # I n i t i a l i z e do
do term = −term * x * x / (2 n+1) / (2 * n−2) ; # New wrt old
sum = sum + term # Add term
whi le abs (term / sum) > eps # Break i t e ra t ion

end do

2.5.2
Implementation and Assessment

1. Write a program that implements this pseudocode for the indicated x values.
Present the results as a table with headings x imax sum |sum- sin(x)|/sin(x),
where sin(x) is the value obtained from the built-in function. The last column
here is the relative error in your computation. Modify the code that sums the
series in a “good way” (no factorials) to one that calculates the sum in a “bad
way” (explicit factorials).

2. Produce a table as above.
3. Start with a tolerance of 10−8 as in (2.29).
4. Show that for sufficiently small values of x, your algorithm converges (the

changes are smaller than your tolerance level) and that it converges to the cor-
rect answer.

5. Compare the number of decimal places of precision obtained with that ex-
pected from (2.29).

6. Without using the identity sin(x + 2nπ) = sin(x), show that there is a range
of somewhat large values of x for which the algorithm converges, but that it
converges to the wrong answer.

7. Show that as you keep increasing x, you will reach a regime where the algo-
rithm does not even converge.

8. Nowmake use of the identity sin(x+2nπ) = sin(x) to compute sin x for large x
values where the series otherwise would diverge.

9. Repeat the calculation using the “bad” version of the algorithm (the one that
calculates factorials) and compare the answers.

10. Set your tolerance level to a number smaller than machine precision and see
how this affects your conclusions.

53

3
Errors and Uncertainties in Computations

To err is human, to forgive divine.

Alexander Pope

Whether you are careful or not, errors and uncertainties are part of computation.
Some errors are the ones that humans inevitably make, but some are introduced
by the computer.Computer errors arise because of the limitedprecisionwithwhich
computers store numbers or because algorithms ormodels can fail. Although it sti-
fles creativity to keep thinking “error”whenapproachinga computation, it certainly
is a waste of time, and possibly harmful, to work with results that are meaningless
“garbage” because of errors. In this chapter, we examine some of the errors and
uncertainties that may occur in computations. Althoughwe do not keep repeating
a mantra about watching for errors, the lessons of this chapter apply to all other
chapters as well.

3.1
Types of Errors (Theory)

Let us say that you have a programof high complexity. To gauge why errors should
be of concern, imagine that the program that has the logical flow

start → U1 → U2 → ⋯ → Un → end , (3.1)

where each unit U might be a statement or a step. If each unit has probability p
of being correct, then the joint probability P of the whole program being correct
is P = pn . Let us say, we have a medium-sized program with n = 1000 steps and
that the probability of each step being correct is almost 1, p ≃ 0.9993. This means
that you end up with P ≃ 1∕2, that is, a final answer that is as likely wrong as right
(not a good way to build a bridge). The problem is that, as a scientist, you want a

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

54 3 Errors and Uncertainties in Computations

result that is correct – or at least in which the uncertainty is small and of known
size, even if the code executes millions of steps.
Four general types of errors exist to plague your computations:

1. Blunders or bad theory: Typographical errors entered with your program or
data, running the wrong program or having a fault in your reasoning (theory),
using the wrong data file, and so on. (If your blunder count starts increasing,
it may be time to go home or take a break.)

2. Random errors: Imprecision caused by events such as fluctuations in electron-
ics, cosmic rays, or someone pulling a plug. These may be rare, but you have
no control over them and their likelihood increases with running time; while
you may have confidence in a 20 s calculation, a week-long calculation may
have to be run multiple times to check reproducibility.

3. Approximation errors: Imprecision arising from simplifying the mathematics
so that a problem can be solved on the computer. They include the replace-
ment of infinite series by finite sums, infinitesimal intervals by finite ones, and
variable functions by constants. For example,

sin(x) =
∞∑
n=1

(−1)n−1x2n−1

(2n − 1)!
(exact)

≃
N∑
n=1

(−1)n−1x2n−1

(2n − 1)!
+ (x ,N) (algorithm) , (3.2)

where (x ,N) is the approximation error and is the series from N + 1 to∞.
Because the approximation error arises from the algorithmwe use to approxi-
mate themathematics, it is also called the algorithmic error. For every reason-
able approximation, the approximation error should decrease as N increases
and should vanish in the limit N → ∞. Specifically for (3.2), because the scale
for N is set by the value of x, a small approximation error requires N ≫ x. So
if x and N are close in value, the approximation error will be large.

4. Round-off errors: Imprecision arising from the finite number of digits used
to store floating-point numbers. These “errors” are analogous to the uncer-
tainty in the measurement of a physical quantity encountered in an elemen-
tary physics laboratory. The overall round-off error accumulates as the com-
puter handles more numbers, that is, as the number of steps in a computation
increases. This may cause some algorithms to become unstable with a rapid
increase in error. In some cases, round-off error may become the major com-
ponent in your answer, leading to what computer experts call garbage.
For example, if your computer kept four decimal places, then it will store 1∕3
as 0.3333 and 2∕3 as 0.6667, where the computer has “rounded off” the last
digit in 2∕3. Accordingly, if we ask the computer to do as simple a calculation
as 2(1∕3) − 2∕3, it produces

2
(1
3

)
− 2

3
= 0.6666 − 0.6667 = −0.0001 ≠ 0 . (3.3)

553.1 Types of Errors (Theory)

So although the result is small, it is not 0, and if we repeat this type of calcula-
tion millions of times, the final answer might not even be small (small garbage
begets large garbage).

When considering the precision of calculations, it is good to recall our discus-
sion in Chapter 2 of significant figures and scientific notation given in your early
physics or engineering classes. For computational purposes, let us consider how
the computer may store the floating-point number

a = 11 223 344 556 677 889 900 = 1.122 334 455 667 788 99 × 1019 . (3.4)

Because the exponent is stored separately and is a small number, we may assume
that it will be stored in full precision. In contrast, some of the digits of the man-
tissa may be truncated. In double precision, themantissa of a will be stored in two
words, the most significant part representing the decimal 1.122 33, and the least
significant part 44 556 677. The digits beyond 7 are lost. As we shall see soon,
when we perform calculations with words of fixed length, it is inevitable that er-
rors will be introduced (at least) into the least significant parts of the words.

3.1.1
Model for Disaster: Subtractive Cancelation

Calculations employing numbers that are stored only approximately on the com-
puter can only be expected to yield approximate answers. To demonstrate the
effect of this type of uncertainty, we model the computer representation xc of the
exact number x as

xc ≃ x(1 + 𝜖x) . (3.5)

Here 𝜖x is the relative error in xc, which we expect to be of a similar magnitude to
the machine precision 𝜖m. If we apply this notation to the simple subtraction a =
b − c, we obtain

a = b − c ⇒ ac ≃ bc − cc ≃ b(1 + 𝜖b) − c(1 + 𝜖c)

⇒
ac

a
≃ 1 + 𝜖b

b
a
− c

a
𝜖c . (3.6)

We see from (3.6) that the resulting error in a is essentially a weighted average
of the errors in b and c, with no assurance that the last two terms will cancel.
Of special importance here is the observation that the error in the answer ac in-
creases when we subtract two nearly equal numbers (b ≃ c) because then we are
subtracting off the most significant parts of both numbers and leaving the error-
prone least-significant parts:

ac

a
def
= 1 + 𝜖a ≃ 1 + b

a
(𝜖b − 𝜖c) ≃ 1 + b

a
max(|𝜖b|, |𝜖c|) . (3.7)

This shows that even if the relative errors in b and c cancel somewhat, they are
multiplied by the large number b∕a, which can significantly magnify the error.
Because we cannot assume any sign for the errors, we must assume the worst (the
“max” in (3.7)).

56 3 Errors and Uncertainties in Computations

Theorem If you subtract two large numbers and end up with a small one, then
the small one is less significant than the large numbers.
We have already seen an example of subtractive cancelation in the power series

summation for sin x ≃ x − x3∕3! +⋯ for large x. A similar effect occurs for e−x ≃
1 − x + x2∕2! − x3∕3! +⋯ for large x, where the first few terms are large but of
alternating sign, leading to an almost total cancelation in order to yield the final
small result. (Subtractive cancelation can be eliminated by using the identity e−x =
1∕ex , although the round-off error will still remain.)

3.1.2
Subtractive Cancelation Exercises

1. Remember back in high school when you learned that the quadratic equation

ax2 + bx + c = 0 (3.8)

has an analytic solution that can be written as either

x1,2 =
−b ±

√
b2 − 4ac
2a

or x′1,2 =
−2c

b ±
√
b2 − 4ac

. (3.9)

Inspection of (3.9) indicates that subtractive cancelation (and consequently an
increase in error) arises when b2 ≫ 4ac because then the square root and its
preceding term nearly cancel for one of the roots.
a) Write a program that calculates all four solutions for arbitrary values

of a, b, and c.
b) Investigate how errors in your computed answers become large as the sub-

tractive cancelation increases and relate this to the knownmachine preci-
sion. (Hint: A good test case utilizes a = 1, b = 1, c = 10−n , n = 1, 2, 3,….)

c) Extend your program so that it indicates the most precise solutions.
2. As we have seen, subtractive cancelation occurs when summing a series with

alternating signs. As another example, consider the finite sum

S(1)N =
2N∑
n=1

(−1)n n
n + 1

. (3.10)

If you sum the even and odd values of n separately, you get two sums:

S(2)N = −
N∑
n=1

2n − 1
2n

+
N∑
n=1

2n
2n + 1

. (3.11)

All terms are positive in this form with just a single subtraction at the end of
the calculation. Yet even this one subtraction and its resulting cancelation can
be avoided by combining the series analytically to obtain

S(3)N =
N∑
n=1

1
2n(2n + 1)

. (3.12)

573.1 Types of Errors (Theory)

Although all three summations S(1), S(2) , and S(3) are mathematically equal,
they may give different numerical results.
a) Write a double-precision program that calculates S(1), S(2), and S(3).
b) Assume S(3) to be the exact answer.Make a log–log plot of the relative error

vs. the number of terms, that is, of log10 |(S(1)N − S(3)N)∕S(3)N | vs. log10(N).
Start with N = 1 and work up to N = 1 000 000. (Recollect that log10 x =
ln x∕ ln 10.) The negative of the ordinate in this plot gives an approximate
value for the number of significant figures.

c) See whether straight-line behavior for the error occurs in some region of
your plot. This indicates that the error is proportional to a power of N .

3. In spite of the power of your trusty computer, calculating the sum of even a
simple series may require some thought and care. Consider the two series

S(up) =
N∑
n=1

1
n
, S(down) =

1∑
n=N

1
n

. (3.13)

Both series are finite as long asN is finite, and when summed analytically both
give the same answer. Nonetheless, because of round-off error, the numerical
value of S(up) will not be precisely that of S(down).
a) Write a program to calculate S(up) and S(down) as functions of N .
b) Make a log–log plot of (S(up) − S(down))∕(|S(up)| + |S(down)|) vs. N .
c) Observe the linear regime on your graph and explain why the downward

sum is generally more precise.

3.1.3
Round-off Errors

Let us start by seeing how error arises from a single division of the computer
representations of two numbers:

a = b
c
⇒ ac =

bc
cc

=
b(1 + 𝜖b)
c(1 + 𝜖c)

,

⇒
ac

a
=

1 + 𝜖b

1 + 𝜖c
≃ (1 + 𝜖b)(1 − 𝜖c) ≃ 1 + 𝜖b − 𝜖c ,

⇒
ac

a
≃ 1 + |𝜖b| + |𝜖c| . (3.14)

Here we ignore the very small 𝜖2 terms and add errors in absolute value because
we cannot assume that we are fortunate enough to have unknown errors cancel-
ing each other. Because we add the errors in absolute value, this same rule holds
for multiplication. Equation 3.14 is just the basic rule of error propagation from
elementary laboratory work: You add the uncertainties in each quantity involved
in an analysis to arrive at the overall uncertainty.
We can even generalize this model to estimate the error in the evaluation of a

general function f (x), that is, the difference in the value of the function evaluated

58 3 Errors and Uncertainties in Computations

at x and at xc:

 =
f (x) − f (xc)

f (x)
≃

d f (x)∕dx
f (x)

(x − xc) . (3.15)

So, for example,

f (x) =
√
1 + x ,

d f
dx

= 1
2

1√
1 + x

= 1
4
f (x)(x − xc) (3.16)

⇒ ≃ 1
2
√
1 + x(x − xc) =

x − xc
2(1 + x)

. (3.17)

If we evaluate this expression for x = π∕4 and assume an error in the fourth place
of x, we obtain a similar relative error of 1.5 × 10−4 in

√
1 + x.

3.1.4
Round-off Error Accumulation

There is a useful model for approximating how round-off error accumulates in a
calculation involving a large number of steps. As illustrated in Figure 3.1, we view
the error in each step of a calculation as a literal “step” in a random walk, that is,
a walk for which each step is in a random direction. As we derive and simulate in
Chapter 4, the total distance R covered in N steps of length r, is, on average,

R ≃
√
Nr . (3.18)

By analogy, the total relative error 𝜖ro arising after N calculational steps each with
the machine precision error 𝜖m is, on average,

𝜖ro ≃
√
N𝜖m . (3.19)

If the round-off errors in a particular algorithm do not accumulate in a random
manner, then a detailed analysis is needed to predict the dependence of the error
on the number of steps N . In some cases there may be no cancelation, and the
error may increase as N𝜖m. Even worse, in some recursive algorithms, where the
error generation is coherent, such as the upward recursion for spherical Bessel
functions, there may be an N! increase in error.

3.2
Error in Bessel Functions (Problem)

Accumulating round-off errors often limits the ability of a program to calculate
accurately. Your problem is to compute the spherical Bessel and Neumann func-
tions jl(x) and nl(x). These function are, respectively, the regular/irregular (non-
singular/singular at the origin) solutions of the differential equation

x2 f (x) + 2x f ′(x) +
[
x2 − l(l + 1)

]
f (x) = 0 . (3.20)

593.2 Error in Bessel Functions (Problem)

x1

y1

R

N

y2

v

v

v

Figure 3.1 A schematic of the N steps in a random walk simulation that end up a distance R =√
N from the origin. Notice how the Δx’s for each step add vectorially.

Table 3.1 Approximate values for spherical Bessel functions (frommaple).

x j3(x) j5(x) j8(x)

0.1 +9.518 519 719 × 10−6 +9.616 310 231 × 10−10 +2.901 200 102 × 10−16

1 +9.006 581 118 × 10−3 +9.256 115 862 × 10−05 +2.826 498 802 × 10−08

10 −3.949 584 498 × 10−2 −5.553 451 162 × 10−02 +1.255 780 236 × 10−01

The spherical Bessel functions are related to the Bessel function of the first kind
by jl(x) =

√
π∕2x Jn+1∕2(x). They occur in many physical problems, such as the

expansion of a plane wave into spherical partial waves,

eik⋅r =
∞∑
l=0

il(2l + 1) jl(kr)Pl(cos θ) . (3.21)

Figure 3.2 shows what the first few jl look like, and Table 3.1 gives some explicit
values. For the first two l values, explicit forms are

j0(x) = + sin x
x

, j1(x) = + sin x
x2

− cos x
x

, (3.22)

n0(x) = −cos x
x

, n1(x) = −cos x
x2

− sin x
x

. (3.23)

3.2.1
Numerical Recursion (Method)

The classic way to calculate jl(x) would be by summing its power series for small
values of x∕l and summing its asymptotic expansion for large x∕l values. The
approach we adopt is based on the recursion relations

jl+1(x) =
2l + 1
x

jl(x) − jl−1(x) , (up) , (3.24)

60 3 Errors and Uncertainties in Computations

x

0.0

0.2

0.4

0.6

0.8

1.0

j
l
(x)

l = 0

l = 1

l = 3

0.0 2.0 4.0 6.0 8.0 10.0 12.0

–0.2

Figure 3.2 The first four spherical Bessel functions jl(x) as functions of x. Notice that for small
x, the values for increasing l become progressively smaller.

jl−1(x) =
2l + 1
x

jl(x) − jl+1(x) , (down) . (3.25)

Equations (3.24) and (3.25) are the same relation, one written for upward recur-
rence from small to large l values, and the other for downward recurrence from
large l to small l. With just a few additions and multiplications, recurrence rela-
tions permit rapid, simple computation of the entire set of jl values for fixed x and
all l.
To recur upward in l for fixed x, we start with the known forms for j0 and j1

(3.22) and use (3.24). As youwill prove for yourself, this upward recurrence usually
seems to work at first but then fails. The reason for the failure can be seen from
the plots of jl(x) and nl(x) vs. x (Figure 3.2). If we start at x ≃ 2 and l = 0, we
will see that as we recur jl up to larger l values with (3.24), we are essentially
taking the difference of two “large” functions to produce a “small” value for jl . This
process suffers from subtractive cancelation and always reduces the precision. As
we continue recurring, we take the difference of two small functions with large
errors and produce a smaller function with yet a larger error. After a while, we are
left with only the round-off error (garbage).
To bemore specific, let us call j(c)l the numerical valuewe compute as an approx-

imation for jl(x). Even if we start with pure jl , after a short while the computer’s
lack of precision effectively mixes in a bit of nl(x):

j(c)l = jl(x) + 𝜖nl(x) . (3.26)

This is inevitable because both jl and nl satisfy the same differential equation
and, on that account, the same recurrence relation. The admixture of nl becomes
a problem when the numerical value of nl(x) is much larger than that of jl(x)
because even a minuscule amount of a very large number may be large.

613.2 Error in Bessel Functions (Problem)

The simple solution to this problem (Miller’s device) is to use (3.25) for down-
ward recursion of the jl values starting at a large value l = L. This avoids sub-
tractive cancelation by taking small values of jl+1(x) and jl(x) and producing a
larger jl−1(x) by addition. While the error may still behave like a Neumann func-
tion, the actual magnitude of the error will decrease quickly as we move down-
ward to smaller l values. In fact, if we start iterating downward with arbitrary
values for j(c)L+1 and j(c)L , after a short while we will arrive at the correct l depen-
dence for this value of x. Although the precise value of j(c)0 so obtained will not
be correct because it depends upon the arbitrary values assumed for j(c)L+1 and j(c)L ,
the relative values will be accurate. The absolute values are fixed from the known
value (3.22), j0(x) = sin x∕x. Because the recurrence relation is a linear relation
between the jl values, we only need normalize all the computed values via

jNl (x) = jcl (x) ×
janal0 (x)
jc0(x)

. (3.27)

Accordingly, after you have finished the downward recurrence, you obtain the
final answer by normalizing all j(c)l values based on the known value for j0.

3.2.2
Implementation and Assessment: Recursion Relations

A program implementing recurrence relations is most easily written using sub-
scripts. If you need to polish up on your skills with subscripts, you may want to
study our program Bessel.py in Listing 3.1 before writing your own.

1. Write a program that uses both upward and downward recursion to calcu-
late jl(x) for the first 25 l values for x = 0.1, 1, and 10.

2. Tune your program so that at least one method gives “good” values (meaning
a relative error ≃ 10−10). See Table 3.1 for some sample values.

3. Show the convergence and stability of your results.
4. Compare the upward and downward recursion methods, printing out l, j(up)l ,

j(down)l , and the relative difference | j(up)l − j(down)l |∕(| j(up)l | + | j(down)l |).
5. The errors in computation depend on x, and for certain values of x, both up

and down recursions give similar answers. Explain the reason for this.

Listing 3.1 Bessel.py determines spherical Bessel functions by downward recursion (you
shouldmodify this to also work by upward recursion).

Bessel . py
from v i s u a l import *
from v i s u a l . graph import *

Xmax = 40 .
Xmin = 0.25
step = 0 .1 # Global c l a s s va r iab le s
order = 10 ; s t a r t = 50 # Plot j_order
graph1 = gd i sp l ay (width = 500 , he ight = 500 , t i t l e = ’ Spe r i ca l Bessel , \

62 3 Errors and Uncertainties in Computations

L = 1 (red) , 10 ’ , x t i t l e = ’x ’ , y t i t l e = ’ j (x) ’ , \
xmin=Xmin , xmax=Xmax , ymin=−0.2 ,ymax=0.5)

funct1 = gcurve (co lo r=co lo r . red)
funct2 = gcurve (co lo r=co lo r . green)
de f down (x , n , m) : # Method down, recurs downward

j = zeros ((s t a r t + 2) , f l o a t)
j [m + 1] = j [m] = 1 . # Start with anything
f o r k in range (m, 0 , − 1) :

j [k − 1] = ((2 . * k + 1 .) / x) * j [k] − j [k + 1]
s c a l e = (s in (x) / x) / j [0] # Scale solut ion to known j [0]
re turn j [n] * s c a l e

f o r x in arange (Xmin , Xmax , s tep) :
funct1 . p l o t (pos = (x , down (x , order , s t a r t)))

f o r x in arange (Xmin , Xmax , s tep) :
funct2 . p l o t (pos = (x , down (x , 1 , s t a r t)))

3.3
Experimental Error Investigation

Numerical algorithms play a vital role in computational physics. Your problem is
to take a general algorithm and decide

1. Does it converge?
2. How precise are the converged results?
3. How expensive (time-consuming) is it?

On first thought you may think, “What a dumb problem! All algorithms con-
verge if enough terms are used, and if you want more precision, then use more
terms.” Well, some algorithms may be asymptotic expansions that just approxi-
mate a function in certain regions of parameter space and converge only up to a
point. Yet even if a uniformly convergent power series is used as the algorithm,
including more terms will decrease the algorithmic error but will also increase
the round-off errors. And because round-off errors eventually diverge to infinity,
the best we can hope for is a “best” approximation. Good algorithms are good not
only because they are fast but also because they require fewer steps and thus incur
less round-off error.
Let us assume that an algorithm takes N steps to find a good answer. As a rule

of thumb, the approximation (algorithmic) error decreases rapidly, often as the
inverse power of the number of terms used:

𝜖app ≃
α
Nβ

. (3.28)

Here α and β are empirical constants that change for different algorithms andmay
be only approximately constant, and even then only as N → ∞. The fact that the
error must fall off for large N is just a statement that the algorithm converges.
In contrast to algorithmic error, round-off error grows slowly and somewhat

randomly with N . If the round-off errors in each step of the algorithm are not
correlated, then we know from the previous discussion that we can model the

633.3 Experimental Error Investigation

accumulation of error as a random walk with step size equal to the machine pre-
cision 𝜖m:

𝜖ro ≃
√
N𝜖m . (3.29)

This is the slow growth with N that we expect from the round-off error. The total
error in a computation is the sum of the two types of errors:

𝜖tot = 𝜖app + 𝜖ro (3.30)

𝜖tot ≃
α
Nβ

+
√
N𝜖m . (3.31)

For small N , we expect the first term to be the larger of the two, but as N grows it
will be overcome by the growing round-off error.
As an example, in Figure 3.3 we present a log–log plot of the relative error in

numerical integration using the Simpson integration rule (Chapter 5). We use
the log10 of the relative error because its negative tells us the number of deci-
mal places of precision obtained.1) Let us assume is the exact answer and A(N)
the computed answer. If

 − A(N)
 ≃ 10−9 , then log10

|||| − A(N)

|||| ≃ −9 . (3.32)

We see in Figure 3.3 that the error does show a rapid decrease for small N , consis-
tent with an inverse power law (3.28). In this region, the algorithm is converging.
As N keeps increasing, the error starts to look somewhat erratic, with a slow in-
crease on average. In accordance with (3.30), in this region the round-off error
has grown larger than the approximation error and will continue to grow for in-
creasing N . Clearly then, the smallest total error will be obtained if we can stop
the calculation at the minimum near 10−14, that is, when 𝜖approx ≃ 𝜖ro.

10
–13

10
–9

N

|R
e
la

ti
v
e
 E

rr
o

r|
 Approximation Error

Round-Off Error

10 100

Figure 3.3 A log–log plot of relative error
vs. the number of points used for a numeri-
cal integration. The ordinate value of∼ 10−14

at the minimum indicates that ∼ 14 decimal
places of precision are obtained before round-

off error begins to build up. Notice that while
the round-off error does fluctuate indicating
a statistical aspect of error accumulation, on
average it is increasing but more slowly than
did the algorithm’s error decrease.

1) Most computer languages use ln x = loge x. Yet because x = aloga x , we have log10 x = ln x∕ ln 10.

64 3 Errors and Uncertainties in Computations

In realistic calculations, you would not know the exact answer; after all, if you
did, then why would you bother with the computation? However, you may know
the exact answer for a similar calculation, and you can use that similar calculation
to perfect your numerical technique. Alternatively, now that you understand how
the total error in a computation behaves, you should be able to look at a table or,
better yet, a graph like Figure 3.3, of your answer and deduce themanner in which
your algorithm is converging. Specifically, at some point you should see that the
mantissa of the answer changes only in the less significant digits, with that place
moving further to the right of the decimal point as the calculation executes more
steps. Eventually, however, as the number of steps becomes even larger, round-
off error leads to a fluctuation in the less significant digits, with a gradual move
towards the left on average. It is best to quit the calculation before this occurs.
Based upon this understanding, an approach to obtaining the best approxima-

tion is to deduce when your answer behaves like (3.30). To do that, we call the
exact answer and A(N) the computed answer after N steps. We assume that for
large enough values of N , the approximation converges as

A(N) ≃ + α
Nβ

, (3.33)

that is, that the round-off error term in (3.30) is still small. We then run our com-
puter program with 2N steps, which should give a better answer, and use that
answer to eliminate the unknown:

A(N) − A(2N) ≃ α
Nβ . (3.34)

To see if these assumptions are correct and determine what level of precision is
possible for the best choice of N , plot log10 |[A(N) − A(2N)]∕A(2N)| vs. log10 N ,
similar to what we have performed in Figure 3.3. If you obtain a rapid straight-
line drop off, then you know you are in the region of convergence and can deduce
a value for β from the slope. As N gets larger, you should see the graph change
from a straight-line decrease to a slow increase as the round-off error begins to
dominate. A good place to quit is before this. In any case, now you understand the
error in your computation and therefore have a chance to control it.
As an example of how different kinds of errors enter into a computation, we as-

sume that we know the analytic form for the approximation and round-off errors:

𝜖app ≃
1
N2 , (3.35)

𝜖ro ≃
√
N𝜖m , (3.36)

⇒ 𝜖tot = 𝜖approx + 𝜖ro (3.37)

≃ 1
N2 +

√
N𝜖m . (3.38)

653.3 Experimental Error Investigation

The total error is then a minimum when
d𝜖tot
dN

= −2
N3 + 1

2
𝜖m√
N

= 0 , (3.39)

⇒ N5∕2 = 4
𝜖m

. (3.40)

For a double-precision calculation (𝜖m ≃ 10−15), the minimum total error occurs
when

N5∕2 ≃ 4
10−15

⇒ N ≃ 1099 ,⇒ 𝜖tot ≃ 4 × 10−6 . (3.41)

In this case, most of the error is as a result of round-off and is not the approxima-
tion error.
Seeing that the total error is mainly the round-off error ∝

√
N , an obvious way

to decrease the error is to use a smaller number of steps N . Let us assume, we do
this by finding another algorithm that converges more rapidly with N , for exam-
ple, one with approximation error behaving like

𝜖app ≃
2
N4 . (3.42)

The total error is now

𝜖tot = 𝜖ro + 𝜖app ≃
2
N4 +

√
N𝜖m . (3.43)

The number of points for minimum error is found as before:
d𝜖tot
dN

= 0 ⇒ N9∕2 ⇒ N ≃ 67 ⇒ 𝜖tot ≃ 9 × 10−7 . (3.44)

The error is now smaller by a factor of 4, with only 1/16 as many steps needed.
Subtle are the ways of the computer. In this case, the better algorithm is quicker
and, by using fewer steps, produces less round-off error.

Exercise Estimate the error now for a double-precision calculation.

3.3.1
Error Assessment

In Section 2.5, we have already discussed the Taylor expansion of sin x:

sin(x) = x − x3
3!

+ x5
5!

− x7
7!

+⋯ =
∞∑
n=1

(−1)n−1x2n−1

(2n − 1)!
. (3.45)

We now extend that discussion with errors in mind. The series (3.45) converges
in the mathematical sense for all values of x. Accordingly, a reasonable algorithm
to compute the sin(x)might be

sin(x) ≃
N∑
n=1

(−1)n−1x2n−1

(2n − 1)!
. (3.46)

66 3 Errors and Uncertainties in Computations

1. Write a program that calculates sin(x) as the finite sum (3.46). (If you already
did this in Chapter 2, then you may reuse that program and its results here.
But remember, you should not be using factorials in the algorithm.)

2. Calculate your series for x ≤ 1 and compare it to the built-in function
Math.sin(x) (you may assume that the built-in function is exact). Stop your
summation at anN value for which the next term in the series will be nomore
than 10−7 of the sum up to that point,

|(−1)N x2N+1|
(2N − 1)!

≤ 10−7
||||||
N∑
n=1

(−1)n−1x2n−1

(2n − 1)!

|||||| . (3.47)

3. Examine the terms in the series for x ≃ 3π and observe the significant subtrac-
tive cancelations that occur when large terms add together to give small an-
swers. (Do not use the identity sin(x+2π) = sin x to reduce the value of x in the
series.) In particular, print out the near-perfect cancelation around n ≃ x∕2.

4. See if better precision is obtained by using trigonometric identities to keep
0 ≤ x ≤ π.

5. By progressively increasing x from 1 to 10, and then from 10 to 100, use your
program to determine experimentally when the series starts to lose accuracy
and when it no longer converges.

6. Make a series of graphs of the error vs. N for different values of x. You should
get curves similar to those in Figure 3.4.

Figure 3.4 The error in the summation of the
series for e−x vs. N for various x values. The
values of x increase vertically for each curve.
Note that a negative initial slope corresponds

to decreasing error with N, and that the dip
corresponds to a rapid convergence followed
by a rapid increase in error. (Courtesy of J.
Wiren.)

673.3 Experimental Error Investigation

Because this series summation is such a simple, correlated process, the round-off
error does not accumulate randomly as it might for a more complicated compu-
tation, and we do not obtain the error behavior (3.33). We will see the predicted
error behavior when we examine integration rules in Chapter 5.

69

4
Monte Carlo: Randomness, Walks, and Decays

This chapter starts with a discussion of how computers generate numbers that ap-
pear random, but really are not, and how we can test that. After discussing how
computers generate pseudorandom numbers, we explore how these numbers are
used to incorporate the element of chance into simulations.We do this first by sim-
ulating a random walk and then by simulating the spontaneous decay of an atom
or nucleus. In Chapter 5, we show how to use these random numbers to evaluate
integrals, and in Chapter17, we investigate the use of randomnumbers to simulate
thermal processes and the fluctuations of quantum systems.

4.1
Deterministic Randomness

Some people are attracted to computing because of its deterministic nature; it is
nice to have a place in one’s life where nothing is left to chance. Barring machine
errors or undefined variables, you get the same output every time you feed your
program the same input. Nevertheless, many computer cycles are used forMonte
Carlo calculations that at their very core include elements of chance. These are
calculations in which random-like numbers generated by the computer are used
to simulatenaturally randomprocesses, such as thermalmotion or radioactive de-
cay, or to solve equations on the average. Indeed, much of computational physics’
recognition has come about from the ability of computers to solve previously in-
tractable problems using Monte Carlo techniques.

4.2
Random Sequences (Theory)

We define a sequence r1 , r2 ,… as random if there are no correlations among the
numbers. Yet being random does not mean that all the numbers in the sequence
are equally likely to occur. If all the numbers in a sequence are equally likely to oc-
cur, then the sequence is called uniform, which does not say anything about being

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

70 4 Monte Carlo: Randomness, Walks, and Decays

random. To illustrate, 1, 2, 3, 4,… is uniform but probably not random. Further-
more, it is possible to have a sequence of numbers that, in some sense, are random
but have very short-range correlations among themselves, for example,

r1, (1 − r1), r2 , (1 − r2), r3 , (1 − r3),… (4.1)

have short-range but not long-range correlations.
Mathematically, the likelihood of a number occurring is described by a distri-

bution function P(r), where P(r)dr is the probability of finding r in the inter-
val [r, r + dr]. A uniform distribution means that P(r) = a constant. The stan-
dard random-number generator on computers generates uniform distributions
between 0 and 1. In other words, the standard random-number generator outputs
numbers in this interval, each with an equal probability yet each independent of
the previous number. As we shall see, numbers can also be more likely to occur
in certain regions than other, yet still be random.
By their very nature, computers are deterministic devices and so cannot create

a random sequence. Computed random number sequences must contain corre-
lations and in this way cannot be truly random. Although it may be a bit of work,
if we know a computed random number rm and its preceding elements, then it
is always possible to figure out rm+1. For this reason, computers are said to gen-
erate pseudorandom numbers (yet with our incurable laziness we will not bother
saying “pseudo” all the time). While more sophisticated generators do a better job
at hiding the correlations, experience shows that if you look hard enough or use
pseudorandom numbers long enough, you will notice correlations. A primitive
alternative to generating random numbers is to read in a table of truly random
numbers determined by naturally random processes such as radioactive decay, or
to connect the computer to an experimental device that measures random events.
These alternatives are not good for production work, but have actually been used
as a check in times of doubt.

4.2.1
Random-Number Generation (Algorithm)

The linear congruent or power residuemethod is the commonway of generating a
pseudorandom sequence of numbers 0 ≤ ri ≤ M − 1 over the interval [0,M − 1].
To obtain the next random number ri+1, you multiply the present random num-
ber ri by the constant a, add another constant c, take themodulus byM, and then
keep just the fractional part (remainder)1):

ri+1
def
= (ari + c)modM (4.2)

= remainder
(
ari + c
M

)
. (4.3)

1) You may obtain the same result for the modulus operation by subtracting M until any further
subtractions would leave a negative number; what remains is the remainder.

714.2 Random Sequences (Theory)

The value for r1 (the seed) is frequently supplied by the user, andmod is a built-in
function on your computer for remaindering. In Python, the percent sign % is the
modulus operator. This is essentially a bit-shift operation that ends up with the
least significant part of the input number and thus counts on the randomness of
round-off errors to generate a random sequence.
For example, if c = 1, a = 4,M = 9, and you supply r1 = 3, then you obtain the

sequence

r1 = 3 , (4.4)

r2 = (4 × 3 + 1)mod 9 = 13 mod 9 = rem13
9

= 4 , (4.5)

r3 = (4 × 4 + 1)mod 9 = 17 mod 9 = rem17
9

= 8 , (4.6)

r4 = (4 × 8 + 1)mod 9 = 33 mod 9 = rem33
9

= 6 , (4.7)

r5−10 = 7, 2, 0, 1, 5, 3 . (4.8)

We get a sequence of lengthM = 9, after which the entire sequence repeats. If we
want numbers in the range [0, 1], we divide the r’s by M = 9 to obtain

0.333, 0.444, 0.889, 0.667, 0.778, 0.222, 0.000, 0.111, 0.555, 0.333 .
(4.9)

This is still a sequence of length 9, but is no longer a sequence of integers. If ran-
dom numbers in the range [A , B] are needed, you only need to scale:

xi = A + (B − A)ri , 0 ≤ ri ≤ 1 , ⇒ A ≤ xi ≤ B . (4.10)

As a rule of thumb: Before using a random-number generator in your programs,
you should check its range and that it produces numbers that “look” random.
Although not a mathematical proof, you should always make a graphical dis-

play of your random numbers. Your visual cortex is quite refined at recognizing
patterns and will tell you immediately if there is one in your random numbers.
For instance, Figure 4.1 shows generated sequences from “good” and “bad” gen-
erators, and it is clear which is not random. (Although if you look hard enough at
the random points, your mind may well pick out patterns there too.)
The linear congruentmethod (4.2) produces integers in the range [0,M−1] and

therefore becomes completely correlated if a particular integer comes up a second
time (the whole cycle then repeats). In order to obtain a longer sequence, a andM
should be large numbers but not so large that ari−1 overflows. On a computer us-
ing 48-bit integer arithmetic, the built-in random-number generator may use M
values as large as 248 ≃ 3 × 1014. A 32-bit generator may use M = 231 ≃ 2 × 109. If
your program uses approximately this many random numbers, you may need to
reseed (start the sequence over again with a different initial value) during inter-
mediate steps to avoid the cycle repeating.

72 4 Monte Carlo: Randomness, Walks, and Decays

x

0

50

100

150

200

250

y

x
0 50 100 150 200 2500 50 100 150 200 250

(a) (b)

Figure 4.1 (a) A plot of successive random
numbers (x , y) = (ri , ri+1) generated with a
deliberately “bad” generator. (b) A plot gener-
ated with the built in random number genera-

tor. While the plot (b) is not the proof that the
distribution is random, the plot (a) is a proof
enough that the distribution is not random.

Your computer probably has random-number generators that are better than
the one you will compute with the power residue method. In Python, we use ran-
dom.random(), the Mersenne Twister generator. We recommend that you use the
best one you can find rather thanwrite your own. To initialize a random sequence,
you need to plant a seed in it. In Python, the statement random.seed(None) seeds
the generator with the system time (see Walk.py in Listing 4.1). Our old standard,
drand48, uses:

M = 248 , c = B(base16) = 13 (base8) , (4.11)

a = 5DEECE66D(base16) = 273673163155(base8) . (4.12)

4.2.2
Implementation: Random Sequences

For scientific work, we recommend using an industrial-strength random-number
generator. To see why, here we assess how bad a careless application of the power
residue method can be.

1. Write a simple program to generate randomnumbers using the linear congru-
ent method (4.2).

2. For pedagogical purposes, try the unwise choice: (a , c,M, r1) = (57, 1, 256,
10). Determine the period, that is, how many numbers are generated before
the sequence repeats.

3. Take the pedagogical sequence of random numbers and look for correlations
by observing clustering on a plot of successive pairs (xi , yi) = (r2i−1 , r2i), i =
1, 2,… (Do not connect the points with lines.) Youmay “see” correlations (Fig-
ure 4.1), which means that you should not use this sequence for serious work.

4. Make your own version of Figure 4.2; that is, plot ri vs. i.
5. Test the built-in random-number generator on your computer for correlations

by plotting the same pairs as above. (This should be good for serious work.)

734.2 Random Sequences (Theory)

6. Test the linear congruent method again with reasonable constants like those
in (4.11) and (4.12). Compare the scatterplot you obtain with that of the built-
in random-number generator. (This, too, should be good for serious work.)

4.2.3
Assessing Randomness and Uniformity

Because the computer’s random numbers are generated according to a definite
rule, the numbers in the sequence must be correlated with each other. This can
affect a simulation that assumes randomevents. Therefore, it is wise for you to test
a random-number generator to obtain a numerical measure of its uniformity and
randomness before you stake your scientific reputation on it. In fact, some tests
are simple enough for you tomake it a habit to run them simultaneously with your
simulation. In the examples to follow, we test for randomness and uniformity.

1. Probably the most obvious, but often neglected, test for randomness and
uniformity is just to look at the numbers generated. For example, Table 4.1
presents some output from Python’s random method. If you just look at these
numbers you will know immediately that they all lie between 0 and 1, that
they appear to differ from each other, and that there is no obvious pattern
(like 0.3333).

2. As we have seen, a quick visual test (Figure 4.2) involves taking this same list
and plotting it with ri as ordinate and i as abscissa. Observe how there appears
to be a uniform distribution between 0 and 1 and no particular correlation

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

R
a
n
d

o
m

 N
u
m

b
e
rr

Sequence Number

Figure 4.2 A plot of a uniform pseudorandom sequence ri vs. i. The points are connected to
make it easier to follow the order. While this does not prove that a distribution is random, it at
least shows the range of values and that there is fluctuation.

74 4 Monte Carlo: Randomness, Walks, and Decays

Table 4.1 A table of a uniform, pseudo-random sequence ri generated by Python’s random
method.

0.046 895 024 385 081 75 0.204 587 796 750 397 95 0.557 190 747 079 725 5 0.056 343 366 735 930 88
0.936 066 864 589 746 7 0.739 939 913 919 486 7 0.650 415 302 989 955 3 0.809 633 370 418 305 7
0.325 121 746 254 331 9 0.494 470 371 018 847 17 0.143 077 126 131 411 28 0.328 581 276 441 882 06
0.535 100 168 558 861 6 0.988 035 439 569 102 3 0.951 809 795 307 395 3 0.368 100 779 256 594 23
0.657 244 381 503 891 1 0.709 076 851 545 567 1 0.563 678 747 459 288 4 0.358 627 737 800 664 9
0.383 369 106 540 338 07 0.740 022 375 602 264 9 0.416 208 338 118 453 5 0.365 803 155 303 808 7
0.748 479 890 046 811 1 0.522 694 331 447 043 0.148 656 282 926 639 13 0.174 188 153 952 713 6
0.418 726 310 120 201 23 0.941 002 689 012 048 8 0.116 704 492 627 128 9 0.875 900 901 278 647 2
0.596 253 540 903 370 3 0.438 238 541 497 494 1 0.166 837 081 276 193 0.275 729 402 460 343 05
0.832 243 048 236 776 0.457 572 427 917 908 75 0.752 028 149 254 081 5 0.886 188 103 177 451 3
0.040 408 674 172 845 55 0.146 901 492 948 813 34 0.286 962 760 984 402 3 0.279 150 544 915 889 53
0.785 441 984 838 243 6 0.502 978 394 047 627 0.688 866 810 791 863 0.085 104 148 559 493 22
0.484 376 438 252 853 26 0.194 793 600 337 003 66 0.379 123 023 471 464 2 0.986 737 138 946 582 1

between points (although your eye and brain will try to recognize some kind
of pattern if you look long enough).

3. A simple test of uniformity evaluates the kth moment of a distribution:

⟨xk⟩ = 1
N

N∑
i=1

xki . (4.13)

If the numbers are distributed uniformly, then (4.13) is approximately themo-
ment of the distribution function P(x):

1
N

N∑
i=1

xki ≃
1

∫
0

dxxkP(x) ≃ 1
k + 1

+ O

(
1√
N

)
. (4.14)

If (4.14) holds for your generator, then you know that the distribution is uni-
form. If the deviation from (4.14) varies as 1∕

√
N , then you also know that

the distribution is random because the 1∕
√
N result derives from assuming

randomness.
4. Another simple test determines the near-neighbor correlation in your random

sequence by taking sums of products for small k:

C(k) = 1
N

N∑
i=1

xixi+k , (k = 1, 2,…) . (4.15)

If your random numbers xi and xi+k are distributed with the joint probability
distribution P(xi , xi+k) = 1 and are independent and uniform, then (4.15) can
be approximated as an integral:

1
N

N∑
i=1

xixi+k ≃
1

∫
0

dx

1

∫
0

dy x yP(x , y) =
1

∫
0

dy x y = 1
4
. (4.16)

754.3 Random Walks (Problem)

If (4.16) holds for your randomnumbers, then you know that they are uniform
and independent. If the deviation from (4.16) varies as 1∕

√
N , then you also

know that the distribution is random.
5. As we have seen, an effective test for randomness is performed by making a

scatterplot of (xi = r2i , yi = r2i+1) for many i values. If your points have no-
ticeable regularity, the sequence is not random. If the points are random, they
should uniformly fill a square with no discernible pattern (a cloud) (as in Fig-
ure 4.1b).

6. Test your random-number generator with (4.14) for k = 1, 3, 7 and N =
100, 10 000, 100 000. In each case print out

√
N

|||||| 1N
N∑
i=1

xki −
1

k + 1

|||||| (4.17)

to check that it is of the order 1.

4.3
Random Walks (Problem)

Consider a perfume molecule released in the front of a classroom. It collides ran-
domlywith othermolecules in the air and eventually reaches your nose despite the
fact that you are hidden in the last row. Your problem is to determine how many
collisions, on the average, a perfume molecule makes in traveling a distance R.
You are given the fact that a molecule travels an average (root-mean-square) dis-
tance rrms between collisions.

Listing 4.1 Walk.py calls the random-number generator from the random package. Note that
a different seed is needed to obtain a different sequence.

Walk . py Random walk with graph
from v i s u a l import *
from v i s u a l . graph import *
import random

random . seed (None) # Seed generator , None => system clock
jmax = 20
x = 0 . ; y = 0 . # Start at or ig in

graph1 = gd i sp l ay (width =500 , he ight =500 , t i t l e = ’Random Walk ’ , x t i t l e = ’x ’ ,
y t i t l e = ’y ’)

pts = gcurve (co l o r = co lo r . ye l low)

f o r i in range (0 , jmax + 1) :
pts . p l o t (pos = (x , y)) # Plot points
x += (random . random () − 0 . 5) * 2 . # −1 =< x =< 1
y += (random . random () − 0 . 5) * 2 . # −1 =< y =< 1
pts . p l o t (pos = (x , y))
r a t e (100)

76 4 Monte Carlo: Randomness, Walks, and Decays

4.3.1
Random-Walk Simulation

There are a number of ways to simulate a random walk with (surprise, surprise)
different assumptions yielding different physics. We will present the simplest ap-
proach for a 2D walk, with a minimum of theory, and end up with a model for
normal diffusion. The research literature is full of discussions of various versions
of this problem. For example, Brownian motion corresponds to the limit in which
the individual step lengths approach zero, and with no time delay between steps.
Additional refinements include collisions within a moving medium (abnormal
diffusion), including the velocities of the particles, or even pausing between steps.
Models such as these are discussed in Chapter 16, and demonstrated by some of
the corresponding applets given online.
In our random-walk simulation (Figure 4.3) an artificial walker takes sequential

steps with the direction of each step independent of the direction of the previous
step. For our model, we start at the origin and take N steps in the xy plane of
lengths (not coordinates)

(Δx1 , Δ y1) , (Δx2 , Δ y2) , (Δx3 , Δ y3),… , (ΔxN , Δ yN) . (4.18)

Although each stepmay be in a different direction, the distances along eachCarte-
sian axis just add algebraically. Accordingly, the radial distance R from the starting
point after N steps is

R2 = (Δx1 + Δx2 +⋯ + ΔxN)2 + (Δ y1 + Δ y2 +⋯ + Δ yN)2

= Δx21 + Δx22 +⋯ + Δx2N + 2Δx1Δx2 + 2Δx1Δx3 + 2Δx2Δx1 +⋯

+ (x → y) . (4.19)

If the walk is random, the particle is equally likely to travel in any direction at each
step. If we take the average of a large number of such random steps, all the cross
terms in (4.19) will vanish and we will be left with

R2
rms ≃ ⟨Δx21 + Δx22 +⋯ + Δx2N + Δ y21 + Δ y22 +⋯ + Δ y2N⟩

= ⟨Δx21 + Δ y21⟩ + ⟨Δx22 + Δ y22⟩ +⋯

= N⟨r2⟩ = Nr2rms ,

⇒ Rrms ≃
√
Nrrms , (4.20)

where rrms =
√⟨r2⟩ is the root-mean-square step size.

To summarize, if the walk is random, then we expect that after a large number
of steps the average vector distance from the origin will vanish:

⟨R⟩ = ⟨x⟩i + ⟨y⟩ j ≃ 0 . (4.21)

Yet Rrms =
√⟨R2

i ⟩ does not vanish. Equation 4.20 indicates that the average scalar

distance from the origin is
√
Nrrms, where each step is of average length rrms. In

774.3 Random Walks (Problem)

X

Y

Z
x1

y1

R
N

y2(a) (b)

Figure 4.3 (a) A schematic of the N steps in a randomwalk simulation that end up a distance
R from the origin. Note how the Δx’s for each step add vectorially. (b) A simulated walk in 3D
from Walk3D.py.

other words, the vector endpoint will be distributed uniformly in all quadrants,
and so the displacement vector averages to zero, but the average length of that vec-
tor does not. For large N values,

√
Nrrms ≪ Nrrms (the value if all steps were in

one direction on a straight line), but does not vanish. In our experience, practical
simulations agreewith this theory, but rarely perfectly, with the level of agreement
depending upon the details of how the averages are taken and how the random-
ness is built into each step.

4.3.2
Implementation: Random Walk

The program Walk.py in Listing 4.1 is a sample random-walk simulation. It is key
element is random values for the x and y components of each step,

x += (random . random () − 0 . 5) * 2 . # −1 =< x =< 1
y += (random . random () − 0 . 5) * 2 . # −1 =< y =< 1

Herewe omit the scaling factor that normalizes each step to length 1.When using
your computer to simulate a random walk, you should expect to obtain (4.20)
only as the average displacement averaged over many trials, not necessarily as the
answer for each trial. You may get different answers depending on just how you
take your random steps (Figure 4.4b).
Start at the origin and take a 2D random walk with your computer.

1. To increase the amount of randomness, independently choose random values
for Δx′ and Δ y′ in the range [−1, 1]. Then normalize them so that each step
is of unit length

Δx = 1
L
Δx′ , Δ y = 1

L
Δ y′ , L =

√
Δx′ 2 + Δ y′ 2 . (4.22)

2. Use a plotting program to draw maps of several independent 2D random
walks, each of 1000 steps. Using evidence from your simulations, comment
on whether these look like what you would expect of a random walk.

78 4 Monte Carlo: Randomness, Walks, and Decays

7 Random Walks

Distance vs Steps

0

100

200

300

040200–20–40
–40

–20

0

20

40

100 200 300

sqrt(N)

R

(a) (b)

Figure 4.4 (a) The steps taken in seven 2D random walk simulations. (b) The distance covered
in twowalks of N steps using different schemes for including randomness. The theoretical
prediction (4.20) is the straight line.

3. If you have your walker taking N steps in a single trial, then conduct a total
number K ≃

√
N of trials. Each trial should have N steps and start with a

different seed.
4. Calculate themean square distance R2 for each trial and then take the average

of R2 for all your K trials:

⟨R2(N)⟩ = 1
K

K∑
k=1

R2
(k)(N) . (4.23)

5. Check the validity of the assumptions made in deriving the theoretical re-
sult (4.20) by checking how well⟨

ΔxiΔx j≠i
⟩

R2 ≃
⟨
ΔxiΔ y j

⟩
R2 ≃ 0 . (4.24)

Do your checking for both a single (long) run and for the average over trials.
6. Plot the root-mean-square distance Rrms =

√⟨R2(N)⟩ as a function of
√
N .

Values of N should start with a small number, where R ≃
√
N is not expected

to be accurate, and end at a quite large value, where two or three places of
accuracy should be expected on the average.

7. Repeat the preceding and following analysis for a 3D walk as well.

794.4 Extension:Protein Folding and Self-Avoiding Random Walks

4.4
Extension: Protein Folding and Self-Avoiding Random Walks

Aprotein is a large biologicalmolecule made up of molecular chains (the residues
of amino acids). These chains are formed frommonomers, that is, molecules that
bind chemically with other molecules. More specifically, these chains consist of
nonpolar hydrophobic (H) monomers that are repelled by water, and polar (P)
monomers that are attracted by water. The actual structure of a protein results
from a folding process in which random coils of chains rearrange themselves into
a configuration of minimum energy. We want to model that process on the com-
puter.
Although molecular dynamics (Chapter 18) may be used to simulate protein

folding, it is much slower than Monte Carlo techniques, and even then, it is hard
to find the lowest energy states. Here we create a simple Monte Carlo simulation
in which you to take a randomwalk in a 2D square lattice (Yue et al., 2004). At the
end of each step, you randomly choose an H or a P monomer and drop it on the
lattice, with your choice weighted such that H monomers are more likely than P
ones. The walk is restricted such that the only positions available after each step
are the three neighboring sites, with the already-occupied sites excluded (this is
why this technique is known as a self-avoiding random walk).
The goal of the simulation is to find the lowest energy state of an HP sequence

of various lengths. These thenmay be compared to those in nature. Just how best
to find such a state is an active research topic (Yue et al., 2004). The energy of a
chain is defined as

E = −𝜖 f , (4.25)

where 𝜖 is a positive constant and f is the number of H–H neighbor not con-
nected directly (P–P and H–P bonds do not count at lowering the energy). So if
the neighbor next to an H is another H, it lowers the energy, but if it is a P it does
not lower the energy. We show a typical simulation result in Figure 4.5, where a
light dot is placed half way between two H (dark-dot) neighbors. Accordingly, for
a given length of chain, we expect the natural state(s) of an H–P sequence to be
those with the largest possible number f of H–H contacts. That is what we are
looking for.

1. Modify the random walk program we have already developed so that it sim-
ulates a self-avoiding random walk. The key here is that the walk stops at a
corner, or when there are no empty neighboring sites available.

2. Make a random choice as to whether the monomer is an H or a P, with a
weighting such that there are more H’s than P’s.

3. Produce a visualization that shows the positions occupied by the monomers,
with the H and P monomers indicated by different color dots. (Our visualiza-
tion, shown in Figure 4.5, is produced by the program ProteinFold.py, available
on the Instructor’s site.)

4. After the walk ends, record the energy and length of the chain.

80 4 Monte Carlo: Randomness, Walks, and Decays

Figure 4.5 Two self-avoiding random walks that simulate protein chains with hydrophobic
(H) monomers in light gray, and polar (P) monomers in black. The dark dots indicate regions
where two H monomers are not directly connected.

5. Runmany folding simulations and save the outputs, categorized by length and
energy.

6. Examine the state(s) of the lowest energy for various chain lengths and com-
pare the results to those frommolecular dynamic simulations and actual pro-
tein structures (available on the Web).

7. Do you think that this simple model has some merit?
8. ⊙ Extend the folding to 3D.

4.5
Spontaneous Decay (Problem)

Your problem is to simulate how a small numberN of radioactive particles decay.2)
In particular, you are to determine when radioactive decay looks like exponential
decay and when it looks stochastic (containing elements of chance). Because the
exponential decay law is a large-number approximation to a natural process that
always leads to only a small number of nuclei remaining, our simulation should
be closer to nature than is the exponential decay law (Figure 4.6). In fact, if you
“listen” to the output of the decay simulation code, what you will hear sounds
very much like a Geiger counter, an intuitively convincing demonstration of the
realism of the simulation.
Spontaneous decay is a natural process in which a particle, with no external

stimulation, decays into other particles. Although the probability of decay of any
one particle in any time interval is constant, just when it decays is a random event.

2) Spontaneous decay is also discussed in Chapter 7, where we fit an exponential function to a
decay spectrum.

814.5 Spontaneous Decay (Problem)

t

0

2

4

100 00010 000

1000

100

10

lo
g

[N
(t

)]

0 400 800 1200

Figure 4.6 Circle: A sample containing N nu-
clei, each of which has the same probability
of decaying per unit time, Graphs: Semilog
plots of the number of nuclei vs. time for five

simulations with differing initial numbers of
nuclei. Exponential decay would be a straight
line with bumps, similar to the initial behavior
for N = 100 000.

Because the exact moment when any one particle decays is always random, and
because one nucleus does not influence another nucleus, the probability of de-
cay is not influenced by how long the particle has been around or whether some
other particles have decayed. In other words, the probability of any one particle
decaying per unit time interval is a constant, yet when that particle decays it is
gone forever. Of course, as the total number N of particles decreases with time,
so will the number that decay per unit time, but the probability of any one particle
decaying in some time interval remains the same as long as that particle exists.

4.5.1
Discrete Decay (Model)

Imagine having a sample containing N(t) radioactive nuclei at time t (Figure 4.6
circle). Let ΔN be the number of particles that decay in some small time inter-
val Δt. We convert the statement “the probability of any one particle decaying
per unit time is a constant” into the equation

 =
ΔN(t)∕N(t)

Δt
= −λ , (4.26)

⇒
ΔN(t)
Δt

= −λN(t) , (4.27)

where the constant λ is called the decay rate and the minus sign indicates a de-
creasing number. Because N(t) decreases in time, the activity ΔN(t)∕Δt (some-
times called the decay rate) also decreases with time. In addition, because the total
activity is proportional to the total number of particles present, it is too stochas-
tic with an exponential-like decay in time. (Actually, because the number of de-
cays ΔN(t) is proportional to the difference in randomnumbers, its tends to show
even larger statistical fluctuations than does N(t).)

82 4 Monte Carlo: Randomness, Walks, and Decays

Equation 4.27 is a finite-difference equation relating the experimentally quan-
tities N(t), ΔN(t), and Δt. Although a difference equation cannot be integrated
the way a differential equation can, it can be simulated numerically. Because the
process is random, we cannot predict a single value for ΔN(t), although we can
predict the average number of decays when observations are made of many iden-
tical systems of N decaying particles.

4.5.2
Continuous Decay (Model)

When the number of particles N →∞ and the observation time interval Δt → 0,
our difference equation becomes a differential equation, and we obtain the famil-
iar exponential decay law (4.27):

ΔN(t)
Δt

←→
dN(t)
dt

= −λN(t) . (4.28)

This can be integrated to obtain the time dependence of the total number of par-
ticles and of the total activity:

N(t) = N(0)e−λt = N(0)e−t∕τ , (4.29)

dN(t)
dt

= −λN(0)e−λt = dN
dt

(0)e−λt . (4.30)

In this limit, we can identify the decay rate λ with the inverse lifetime:

λ = 1
τ
. (4.31)

We see from its derivation that the exponential decay is a good description of na-
ture for a large number of particles where ΔN∕N ≃ 0. However, in nature N(t)
can be a small number, and in that case we have a statistical and not a continu-
ous process. The basic law of nature (4.26) is always valid, but as we will see in
the simulation, the exponential decay (4.30) becomes less and less accurate as the
number of particles gets smaller and smaller.

4.5.3
Decay Simulation with Geiger Counter Sound

A program for simulating radioactive decay is surprisingly simple but not without
its subtleties. We increase time in discrete steps of Δt, and for each time interval
we count the number of nuclei that have decayed during that Δt. The simulation
quits when there are no nuclei left to decay. Such being the case, we have an outer
loop over the time steps Δt and an inner loop over the remaining nuclei for each
time step. The pseudocode is simple (as is the code):

834.5 Spontaneous Decay (Problem)

input N, lambda
t=0
whi le N > 0
DeltaN = 0
f o r i = 1 . .N
i f (r _ i < lambda) DeltaN = DeltaN + 1
end f o r
t = t +1
N = N − DeltaN
Output t , DeltaN , N

end whi le

When we pick a value for the decay rate λ = 1∕τ to use in our simulation, we are
setting the scale for times. If the actual decay rate is λ = 0.3 × 106 s−1 and if we
decide to measure times in units of 10−6 s, then we will choose random numbers
0 ≤ ri ≤ 1, which leads to λ values lying someplace near the middle of the range
(e.g., λ ≃ 0.3). Alternatively, we can use a value of λ = 0.3 × 106 s−1 in our sim-
ulation and then scale the random numbers to the range 0 ≤ ri ≤ 106. However,
unless you plan to compare your simulation to experimental data, you do not have
to worry about the scale for time but instead should focus on the physics behind
the slopes and relative magnitudes of the graphs.

Listing 4.2 DecaySound.py simulates spontaneous decay in which a decay occurs if a random
number is smaller than the decay parameter. Thewinsound package lets us play a beep each
time there is a decay, and this leads to the sound of a Geiger counter.

DecaySound . py spontaneous decay simulation

from v i s u a l import *
from v i s u a l . graph import *
import random
import winsound

lambda1 = 0.005 # Decay constant
max = 8 0 . ; time_max = 500 ; seed = 68111
number = nloop = max # I n i t i a l value
graph1 = gd i sp l ay (t i t l e = ’ Spontaneous Decay ’ , x t i t l e = ’Time ’ , \

y t i t l e = ’Number ’)
decayfunc = gcurve (co l o r = co lo r . green)

f o r time in arange (0 , time_max + 1) : # Time loop
f o r atom in arange (1 , number + 1) : # Decay loop

decay = random . random ()
i f (decay < lambda1) :

nloop = nloop − 1 # A decay
winsound . Beep (600 , 100) # Sound beep

number = nloop
decayfunc . p l o t (pos = (time , number))
r a t e (30)

Decay.py is our sample simulation of the spontaneous decay. An extension of
this program, DecaySound.py, in Listing 4.2, adds a beep each time an atom de-
cays (unfortunately this works only with Windows). When we listen to the simu-
lation, it sounds like a Geiger counter, with its randomness and its slowing down
with time. This provides some rather convincing evidence of the realism of the
simulation.

84 4 Monte Carlo: Randomness, Walks, and Decays

4.6
Decay Implementation and Visualization

Write a program to simulate the radioactive decay using the simple program in
Listing 4.2 as a guide. You should obtain results like those in Figure 4.6.

1. Plot the logarithm of the number left lnN(t) and the logarithm of the decay
rate ln ΔN(t)∕Δt(= 1) vs. time. Note that the simulation measures time in
steps of Δt (generation number).

2. Check that you obtain what looks like the exponential decay when you start
with large values for N(0), but that the decay displays its stochastic nature for
smallN(0). (LargeN(0) values are also stochastic; they just do not look like it.)

3. Create two plots, one showing that the slopes of N(t) vs. t are independent
ofN(0) and another showing that the slopes are proportional to the value cho-
sen for λ.

4. Create a plot showing that within the expected statistical variations, lnN(t)
and ln ΔN(t) are proportional.

5. Explain in your own words how a process that is spontaneous and random at
its very heart can lead to the exponential decay.

6. How does your simulation show that the decay is exponential-like and not a
power law such as N = βt−α?

85

5
Differentiation and Integration

We start this chapter with a short discussion of numerical differentiation, an
important but rather simple topic. We derive the forward-difference, central-
difference, and extrapolated-difference methods for differentiation. They will be
used throughout the book. The majority of this chapter deals with numerical inte-
gration, a basic tool of scientific computation. We derive Simpson’s rule, the trape-
zoid rule, and the Gaussian quadrature rule. We discuss Gaussian quadrature (our
personal workhorse) in its various forms, and indicate how to map the standard
Gauss points to a wide range of intervals. We end the chapter with a discussion of
Monte Carlo integration techniques,which are fundamentally different from all the
other rules.

5.1
Differentiation

Problem Figure 5.1 shows the trajectory of a projectile with air resistance. The
dots indicate the times t at which measurements were made and tabulated. Your
problem is to determine the velocity dy∕dt as a function of time. Note that be-
cause there is realistic air resistance present, there is no analytic function to dif-
ferentiate, only this graph or a table of numbers read from it.
You probably did rather well in your first calculus course and feel competent

at taking derivatives. However, you may never have taken derivatives of a table of
numbers using the elementary definition

dy(t)
dt

def
= lim

h→0

y(t + h) − y(t)
h

. (5.1)

In fact, even a computer runs into errors with this kind of limit because it is
wrought with subtractive cancelation; as h is made smaller, the computer’s finite
word length causes the numerator to fluctuate between 0 and the machine preci-
sion 𝜖m, and as the denominator approaches zero, overflow occurs.

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

86 5 Differentiationand Integration

0
t

2/
h

+
tt - h

/2

y(t) y(t)

0
t

t +
 h

Forward Central

(a) (b)

Figure 5.1 A trajectory of a projectile expe-
riencing air resistance. Forward-difference
approximation (slanted dashed line) and
central-difference approximation (horizon-

tal line) for the numerical first derivative at
time t. (A tangent to the curve at t yields the
correct derivative.) The central difference is
seen to be more accurate.

5.2
Forward Difference (Algorithm)

Themost direct method for numerical differentiation starts by expanding a func-
tion in a Taylor series to obtain its value at a small step h away:

y(t + h) = y(t) + h
dy(t)
dt

+ h2
2!

d2y(t)
dt2

+ h3
3!

dy3(t)
dt3

+⋯ , (5.2)

⇒
y(t + h) − y(t)

h
=

dy(t)
dt

+ h
2!

d2y(t)
dt2

+ h2
3!

dy3(t)
dt3

+⋯ . (5.3)

If we ignore the h2 terms in (5.3), we obtain the forward-difference derivative al-
gorithm for the derivative (5.2) for y′(t):

dy(t)
dt

||||fd def
=

y(t + h) − y(t)
h

. (5.4)

An estimate of the error follows from substituting the Taylor series:

dy(t)
dt

||||fd ≃
dy(t)
dt

− h
2
dy2(t)
dt2

+⋯ . (5.5)

You can think of this approximation as using two points to represent the function
by a straight line in the interval from x to x + h (Figure 5.1a). The approxima-
tion (5.4) has an error proportional to h (unless the heavens look down upon you
kindly and make y′′ vanish). We can make the approximation error smaller by
making h smaller, yet precision will be lost through the subtractive cancelation
on the left-hand side (LHS) of (5.4) for too small an h.
To see how the forward-difference algorithmworks, let y(t)= a+bt2. The exact

derivative is y′ = 2bt, while the computed derivative is

dy(t)
dt

||||fd ≃
y(t + h) − y(t)

h
= 2bt + bh . (5.6)

This clearly becomes a good approximation only for small h(h ≪ 1∕b).

875.3 Central Difference (Algorithm)

5.3
Central Difference (Algorithm)

An improved approximation to the derivative starts with the basic definition (5.1)
or geometrically as shown in Figure 5.1b. Now, rather than making a single step
of h forward, we form a central difference by stepping forward half a step and
backward half a step:

dy(t)
dt

||||cd ≡ Dcd y(t)
def
=

y(t + h∕2) − y(t − h∕2)
h

. (5.7)

We estimate the error in the central-difference algorithm by substituting the Tay-
lor series for y(t + h∕2) andy(t − h∕2) into (5.7):

y
(
t + h

2

)
− y

(
t − h

2

)
≃

[
y(t) + h

2
y′(t) + h2

8
y′′(t) + h3

48
y(t) + (h4)

]
−

[
y(t) − h

2
y′(t) + h2

8
y′′(t) − h3

48
y′′′(t) + (h4)

]
= hy′(t) + h3

24
y′′′(t) + (h5) ,

⇒
dy(t)
dt

||||cd ≃ y′(t) + 1
24

h2 y′′′(t) + (h4) . (5.8)

The important difference between this central-difference algorithm and the for-
ward difference one is that when y(t − h∕2) is subtracted from y(t + h∕2), all
terms containing an even power of h in the two Taylor series cancel. This make
the central-difference algorithm accurate to order h2 (h3 before division by h),
while the forward difference is accurate only to order h. If the y(t) is smooth, that
is, if y′′′h2∕24 ≪ y′′h∕2, then you can expect the central-difference error to be
smaller than the one with the central-difference algorithm.
If we now return to our parabola example (5.6), we will see that the central

difference gives the exact derivative independent of h:

dy(t)
dt

||||cd ≃
y(t + h∕2) − y(t − h∕2)

h
= 2bt . (5.9)

This is to be expected because the higher derivatives equal zero for a second-order
polynomial.

5.4
Extrapolated Difference (Algorithm)

Because a differentiation rule based on keeping a certain number of terms in a
Taylor series also provides an expression for the error (the terms not included),
we can reduce the theoretical error further by forming a combination of approx-
imations whose summed errors extrapolate to zero. One such algorithm is the

88 5 Differentiationand Integration

central-difference algorithm (5.7) using a half-step back and a half-step forward.
A second algorithm is another central-difference approximation, but this time us-
ing quarter-steps:

dy(t , h∕2)
dt

||||cd def
=

y(t + h∕4) − y(t − h∕4)
h∕2

≃ y′(t) + h2
96

d3y(t)
dt3

+⋯ . (5.10)

A combination of the two, called the extended difference algorithm, eliminates
both the quadratic and linear terms:

dy(t)
dt

||||ed def
=

4Dcd y(t , h∕2) − Dcd y(t , h)
3

(5.11)

≃
dy(t)
dt

−
h4 y(5)(t)

4 × 16 × 120
+⋯ . (5.12)

Here (5.11) is the extended-difference algorithmand (5.12) gives its error, withDcd
representing the central-difference algorithm. If h = 0.4 and y(5) ≃ 1, then there
will be only one place of the round-off error and the truncation error will be ap-
proximately machine precision 𝜖m; this is the best you can hope for.
When working with these and similar higher order methods, it is important

to remember that while they may work as designed for well-behaved functions,
they may fail badly for functions containing noise, as do data from computations
or measurements. If noise is evident, it may be better to first smooth the data or
fit them with some analytic function using the techniques of Chapter 7 and then
differentiate.

5.5
Error Assessment

The approximation errors in numerical differentiation decrease with decreasing
step size h. In turn, round-off errors increase with decreasing step size because
you have to take more steps and do more calculations. Remember from our dis-
cussion in Chapter 3 that the best approximation occurs for an h that makes the
total error 𝜖app + 𝜖ro a minimum, and that as a rough guide this occurs when
𝜖ro ≃ 𝜖app.
We have already estimated the approximation error in numerical differentiation

rules by making a Taylor series expansion of y(x + h). The approximation error
with the forward-difference algorithm (5.4) is (h), while that with the central-
difference algorithm (5.8) is (h2):

𝜖fdapp ≃
y′′h
2

, 𝜖cdapp ≃
y′′′h2

24
. (5.13)

895.5 Error Assessment

To obtain a rough estimate of the round-off error, we observe that differentia-
tion essentially subtracts the value of a function at argument x from that of the
same function at argument x + h and then divide by h : y′ ≃ [y(t + h) − y(t)]∕h.
As h is made continually smaller, we eventually reach the round-off error limit
where y(t + h) and y(t) differ by just machine precision 𝜖m:

𝜖ro ≃
𝜖m

h
. (5.14)

Consequently, round-off and approximation errors become equal when

𝜖ro ≃ 𝜖app , (5.15)

𝜖m

h
≃ 𝜖fdapp =

y(2)h
2

,
𝜖m

h
≃ 𝜖cdapp =

y(3)h2

24
, (5.16)

⇒ h2fd =
2𝜖m
y(2)

, ⇒ h3cd =
24𝜖m
y(3)

. (5.17)

We take y′ ≃ y(2) ≃ y(3) (which may be crude in general, although not bad for et
or cos t) and assume double precision, 𝜖m ≃ 10−15:

hfd ≃ 4 × 10−8 , hcd ≃ 3 × 10−5 , (5.18)

⇒ 𝜖fd ≃
𝜖m

hfd
≃ 3 × 10−8 , ⇒ 𝜖cd ≃

𝜖m

hcd
≃ 3 × 10−11 . (5.19)

This may seem backward because the better algorithm leads to a larger h value. It
is not. The ability to use a larger h means that the error in the central-difference
method is about 1000 times smaller than the error in the forward-difference
method.
The programming for numerical differentiation is simple:

FD = (y (t+h) − y (t)) / h ; / / forward d i f f
CD = (y (t+h / 2) − y (t−h / 2)) /h ; / / c e n t r a l d i f f
ED = (8 * (y (t+h / 4)−y (t−h / 4)) − (y (t+h / 2)−y (t−h / 2))) / 3 / h ; / / extrap

1. Use forward-, central-, and extrapolated-difference algorithms to differentiate
the functions cos t and et at t = 0.1, 1., and 100.
a) Print out the derivative and its relative error as functions of h. Reduce

the step size h until it equals machine precision h ≃ 𝜖m.
b) Plot log10 || vs. log10 h and check whether the number of decimal places

obtained agrees with the estimates in the text.
c) See if you can identify regions where algorithmic (series truncation) error

dominates at large h and the round-off error at small h in your plot. Do
the slopes agree with our model’s predictions?

90 5 Differentiationand Integration

5.6
Second Derivatives (Problem)

Let us say that you have measured the position y(t) vs. time for a particle (Fig-
ure 5.1). Your problem now is to determine the force on the particle. Newton’s
second law tells us that force and acceleration are linearly related:

F = ma = m
d2 y
dt2

, (5.20)

where F is the force, m is the particle’s mass, and a is the acceleration. So by
determining the derivative d2y∕dt2 from the y(t) values, we determine the force.
The concerns we expressed about errors in first derivatives are evenmore valid

for second derivatives where additional subtractions may lead to additional can-
celations. Let us look again at the central-difference method:

dy(t)
dt

||||cd ≃ y(t + h∕2) − y(t − h∕2)
h

. (5.21)

This algorithm gives the derivative at t by moving forward and backward from t
by h∕2. We take the second derivative d2y∕dt2 to be the central difference of the
first derivative:

d2 y(t)
dt2

|||||cd ≃
y′(t + h∕2) − y′(t − h∕2)

h

≃
[y(t + h) − y(t)] − [y(t) − y(t − h)]

h2
(5.22)

=
y(t + h) + y(t − h) − 2y(t)

h2
. (5.23)

As we did for the first derivatives, we determine the second derivative at t by eval-
uating the function in the region surrounding t. Although the form (5.23) is more
compact and requires fewer steps than (5.22), it may increase subtractive cance-
lation by first storing the “large” number y(t + h) + y(t − h) and then subtracting
another large number 2y(t) from it. We ask you to explore this difference as an
exercise.

5.6.1
Second-Derivative Assessment

Write a program to calculate the second derivative of cos t using the central-
difference algorithms (5.22) and (5.23). Test it over four cycles. Startwith h≃ π∕10
and keep reducing h until you reach machine precision. Is there any noticeable
differences between (5.22) and (5.23)?

915.7 Integration

5.7
Integration

Problem: Integrating a Spectrum An experiment has measured dN(t)∕dt, the
number of particles entering a counter per unit time. Your problem is to integrate
this spectrum to obtain the number of particles N(1) that entered the counter in
the first second:

N(1) =
1

∫
0

dN(t)
dt

dt . (5.24)

5.8
Quadrature as Box Counting (Math)

The integration of a functionmay require some cleverness to do analytically, but is
relatively straightforward on a computer. A traditional way to perform numerical
integration by hand is to take a piece of a graph paper and count the number
of boxes or quadrilaterals lying below a curve of the integrand. For this reason,
numerical integration is also called numerical quadrature even when it becomes
more sophisticated than simple box counting.
The Riemann definition of an integral is the limit of the sum over boxes as the

width h of the box approaches zero (Figure 5.2):
b

∫
a

f (x)dx = lim
h→0

[
h

(b−a)∕h∑
i=1

f (xi)

]
. (5.25)

The numerical integral of a function f (x) is approximated as the equivalent of a
finite sum over boxes of height f (x) and width wi :

b

∫
a

f (x)dx ≃
N∑
i=1

f (xi)wi , (5.26)

a xi i+1 i+2x x b
x

f(x)

Figure 5.2 The integral ∫ ba f (x)dx is the area under the graph of f (x) from a to b. Here we
break up the area into four regions of equal widths h and five integration points.

92 5 Differentiationand Integration

which is similar to the Riemann definition (5.25) except that there is no limit to
an infinitesimal box size. Equation 5.26 is the standard form for all integration al-
gorithms; the function f (x) is evaluated at N points in the interval [a , b], and the
function values f i ≡ f (xi) are summed with each term in the sumweighted bywi .
While, in general, the sum in (5.26) gives the exact integral only when N → ∞, it
may be exact for finite N if the integrand is a polynomial. The different integra-
tion algorithms amount to differentways of choosing the points xi andweights wi .
Generally, the precision increases as N gets larger, with round-off error eventu-
ally limiting the increase. Because the “best” integration rule depends on the spe-
cific behavior of f (x), there is no universally best approximation. In fact, some of
the automated integration schemes found in subroutine libraries switch from one
method to another, as well as change themethods for different intervals until they
find ones that work well for each interval.
In general, you should not attempt a numerical integration of an integrand that

contains a singularity without first removing the singularity by hand.1) Youmay be
able to do this very simply by breaking the interval down into several subintervals
so the singularity is at an endpoint where an integration point is not placed or by
a change of variable:

1

∫
−1

|x| f (x)dx =
0

∫
−1

f (−x)dx +
1

∫
0

f (x)dx , (5.27)

1

∫
0

x1∕3 dx =
1

∫
0

3y3 dy , (y
def
= x1∕3) , (5.28)

1

∫
0

f (x)dx√
1 − x2

= 2
1

∫
0

f (1 − y2)dy√
2 − y2

, (y2
def
= 1 − x) . (5.29)

Likewise, if your integrand has a very slow variation in some region, you can
speed up the integration by changing to a variable that compresses that region
and places few points there, or divides up the interval and performs several inte-
grations. Conversely, if your integrand has a very rapid variation in some region,
you may want to change to variables that expand that region to ensure that no
oscillations are missed.

Listing 5.1 TrapMethods.py integrates a function f (y)with the trapezoid rule. Note that the
step size h depends upon the size of interval here and that the weights at the ends and middle
of the intervals differ.

TrapMethods . py : trapezoid integrat ion , a<x<b , N pts , N−1 int e rva l s

from numpy import *

1) In Chapter 26, we show how to remove such a singularity even when the integrand is unknown.

935.9 Algorithm: Trapezoid Rule

de f func (x) :
re turn 5 * (s in (8 * x)) * * 2 * exp(−x * x) −13* cos (3 * x)

de f t r apezo id (A, B ,N) :
h = (B − A) / (N − 1) # step s ize
sum = (func (A)+func (B)) /2 # (1 s t + l a s t) /2
f o r i in range (1 , N−1) :

sum += func (A+ i *h)
re turn h* sum

A = 0 .5
B = 2 .3
N = 1200
pr in t (t r apezo id (A, B ,N−1))

5.9
Algorithm: Trapezoid Rule

Trapezoid and Simpson integration rules use evenly spaced values of x (Fig-
ure 5.3). They use N points xi(i = 1,N) evenly spaced at a distance h apart
throughout the integration region [a , b] and include the endpoints in the integra-
tion region. This means that there are (N − 1) intervals of length h:

h = b − a
N − 1

, xi = a + (i − 1)h , i = 1,N , (5.30)

where we start our counting at i = 1. The trapezoid rule takes each integration
interval i and constructs a trapezoid of width h in it (Figure 5.3). This approxi-
mates f (x) by a straight line in each interval i and uses the average height (f i +
f i+1)∕2 as the value for f . The area of each such trapezoid is

xi+h

∫
xi

f (x)dx ≃
h(f i + f i+1)

2
= 1

2
h fi +

1
2
h fi+1 . (5.31)

a

x

b

f(x) f(x)

tr
a
p

 1

tr
a
p

 2

tr
a
p

 3

tr
a
p

 4

a

x

b

parabola 1

parabola 2

(a) (b)

Figure 5.3 Different shapes used to approximate the areas under the curve. (a) Straight-line
sections used for the trapezoid rule. (b) Two parabolas used in Simpson’s rule.

94 5 Differentiationand Integration

Table 5.1 Elementary weights for uniform-step integration rules.

Name Degree Elementary weights

Trapezoid 1 (1, 1) h2
Simpson’s 2 (1, 4, 1) h3
3
8 3 (1, 3, 3, 1) 38 h
Milne 4 (14, 64, 24, 64, 14) h

45

In terms of our standard integration formula (5.26), the “rule” in (5.31) is forN = 2
points with weights wi ≡ 1

2
(Table 5.1).

In order to apply the trapezoid rule to the entire region [a , b], we add the con-
tributions from each subinterval:

b

∫
a

f (x)dx ≃ h
2
f1 + h f2 + h f3 +⋯ + h fN−1 +

h
2
fN . (5.32)

You will notice that because the internal points are counted twice (as the end of
one interval and as the beginning of the next), they have weights of h∕2+ h∕2 = h,
whereas the endpoints are counted just once, and on that account have weights
of only h∕2. In terms of our standard integration rule (5.57), we have

wi =
{

h
2
, h,… , h, h

2

}
(Trapezoid rule) . (5.33)

In Listing 5.1, we provide a simple implementation of the trapezoid rule.

5.10
Algorithm: Simpson’s Rule

Simpson’s rule approximates the integrand f (x) by a parabola for each interval
(Figure 5.3b):

f (x) ≃ αx2 + βx + γ . (5.34)

Again, all intervals equally spaced. The area under the parabola for each interval
is

xi+h

∫
xi

(αx2 + βx + γ)dx = αx3
3

+
βx2

2
+ γx

|||||
xi+h

xi

. (5.35)

In order to relate the parameters α, β, and γ to the function, we consider an in-
terval from −1 to +1, in which case

1

∫
−1

(αx2 + βx + γ)dx = 2α
3

+ 2γ . (5.36)

955.10 Algorithm: Simpson’s Rule

But we notice that

f (−1) = α − β + γ , f (0) = γ , f (1) = α + β + γ , (5.37)

⇒ α =
f (1) + f (−1)

2
− f (0) , β =

f (1) − f (−1)
2

, γ = f (0) . (5.38)

In this way, we can express the integral as the weighted sum over the values of the
function at three points:

1

∫
−1

(αx2 + βx + γ)dx =
f (−1)
3

+
4 f (0)
3

+
f (1)
3

. (5.39)

Because three values of the function are needed, we generalize this result to our
problem by evaluating the integral over two adjacent intervals, in which case we
evaluate the function at the two endpoints and in the middle (Table 5.1):

xi+h

∫
xi−h

f (x)dx =

xi+h

∫
xi

f (x)dx +

xi

∫
xi−h

f (x)dx

≃ h
3
f i−1 +

4h
3

f i +
h
3
f i+1 . (5.40)

Simpson’s rule requires the elementary integration to be over pairs of intervals,
which in turn requires that the total number of intervals be even or that the number
of points N be odd. In order to apply Simpson’s rule to the entire interval, we add
up the contributions from each pair of subintervals, counting all but the first and
last endpoints twice:

b

∫
a

f (x)dx ≃ h
3
f1 +

4h
3

f2 +
2h
3

f3 +
4h
3

f4 +⋯ + 4h
3

fN−1 +
h
3
fN . (5.41)

In terms of our standard integration rule (5.26), we have

wi =
{

h
3
, 4h
3
, 2h
3
, 4h
3
,… , 4h

3
, h
3

}
(Simpson’s rule) . (5.42)

The sum of these weights provides a useful check on your integration:

N∑
i=1

wi = (N − 1)h . (5.43)

Remember, the number of points N must be odd for Simpson’s rule.

96 5 Differentiationand Integration

5.11
Integration Error (Assessment)

In general, you should choose an integration rule that gives an accurate answer
using the least number of integration points. We obtain a crude estimate of the
approximation or algorithmic error for the equal-spacing rules and their relative
error 𝜖 by expanding f (x) in aTaylor series around themidpoint of the integration
interval. We thenmultiply that error by the number of intervals N to estimate the
error for the entire region [a , b]. For the trapezoid and Simpson rules this yields

t = O
(
[b − a]3

N2

)
f (2) , s = O

(
[b − a]5

N4

)
f (4) , 𝜖t,s =

t,s
f

, (5.44)

where 𝜖 is a measure of the relative error. We see that the third-derivative term in
Simpson’s rule cancels (much like the central-difference method does in differen-
tiation). Equations 5.44 are illuminating in showing how increasing the sophisti-
cation of an integration rule leads to an error that decreases with a higher inverse
power of N , yet it is also proportional to higher derivatives of f . Consequently,
for small intervals and functions f (x) with well-behaved derivatives, Simpson’s
rule should converge more rapidly than the trapezoid rule.
To model the round-off error in integration, we assume that after N steps the

relative round-off error is random and of the form

𝜖ro ≃
√
N𝜖m , (5.45)

where 𝜖m is themachine precision, 𝜖 ∼ 10−7 for single precision and 𝜖 ∼ 10−15 for
double precision (the standard for science). Becausemost scientific computations
are performed with doubles, we will assume double precision. We want to deter-
mine an N that minimizes the total error, that is, the sum of the approximation
and round-off errors:

𝜖tot ≃ 𝜖ro + 𝜖app . (5.46)

This occurs, approximately, when the two errors are of equal magnitude, which
we approximate even further by assuming that the two errors are equal:

𝜖ro = 𝜖app =
trap,simp

f
. (5.47)

To continue the search for optimum N for a general function f , we set the scale
of function size and the lengths by assuming

f (n)

f
≃ 1 , b − a = 1 ⇒ h = 1

N
. (5.48)

The estimate (5.47), when applied to the trapezoid rule, yields√
N𝜖m ≃

f (2)(b − a)3

f N2 = 1
N2 , (5.49)

975.12 Algorithm: Gaussian Quadrature

⇒ N ≃ 1
(𝜖m)2∕5

=
(1
10−15

)2∕5
= 106 , (5.50)

⇒ 𝜖ro ≃
√
N𝜖m = 10−12 . (5.51)

The estimate (5.47), when applied to Simpson’s rule, yields√
N𝜖m =

f (4)(b − a)5

f N4 = 1
N4 , (5.52)

⇒ N = 1
(𝜖m)2∕9

=
(1
10−15

)2∕9
= 2154 , (5.53)

⇒ 𝜖ro ≃
√
N𝜖m = 5 × 10−14 . (5.54)

These results are illuminating in that they show how

∙ Simpson’s rule requires fewer point and has less error than the trapezoid rule.
∙ It is possible to obtain an error close to machine precision with Simpson’s rule

(and with other higher order integration algorithms).
∙ Obtaining the best numerical approximation to an integral is not achieved by

letting N → ∞ but with a relatively small N ≤ 1000. Larger N only makes the
round-off error dominate.

5.12
Algorithm: Gaussian Quadrature

It is often useful to rewrite the basic integration formula (5.26) with a weighting
function W (x) separate from the integrand:

b

∫
a

f (x)dx ≡
b

∫
a

W (x)g(x)dx ≃
N∑
i=1

wig(xi) . (5.55)

In the Gaussian quadrature approach to integration, the N points and weights
in (5.55) are chosen to make the integration exact if g(x) were a (2N − 1)-degree
polynomial. To obtain this incredible optimization, the points xi end up having
a specific distribution over [a , b]. In general, if g(x) is smooth or can be made
smooth by factoring out some W (x) (Table 5.2), Gaussian quadrature will pro-
duce higher accuracy than the trapezoid and Simpson rules for the same number
of points. Sometimes the integrandmay not be smooth because it has different be-
haviors in different regions. In these cases, it makes sense to integrate each region
separately and then add the answers together. In fact, some “smart” integration
subroutines decide for themselves how many intervals to use and which rule to
use in each.
All the rules indicated in Table 5.2 are Gaussian with the general form (5.55).

We can see that in one case the weighting function is an exponential, in another a

98 5 Differentiationand Integration

Table 5.2 Types of Gaussian integration rules.

Integral Name Integral Name

∫ 1−1 f (y)dy Gauss ∫ 1−1 F(y)√
1 − y2

dy Gauss–Chebyshev

∫∞−∞ e−y2 F(y) dy Gauss–Hermite ∫∞0 e−y F(y)dy Gauss–Laguerre

∫∞0 e−y√
y
F(y) dy Associated Gauss–Laguerre

Table 5.3 Points and weights for 4-point Gaussian quadrature (for checking computation).

±yi wi

0.339 981 043 584 856 0.652 145 154 862 546
0.861 136 311 594 053 0.347 854 845 137 454

Gaussian, and in several an integrable singularity. In contrast to the equally spaced
rules, there is never an integration point at the extremes of the intervals, yet the
values of the points and weights change as the number of points N changes, and
the points are not spaced equally.
The derivation of the Gaussian points will be outlined below, but we point out

here that for ordinary Gaussian (Gauss–Legendre) integration, the points yi turn
out to be theN zeros of the Legendre polynomials, with the weights related to the
derivatives

PN (yi) = 0 , wi =
2

([(1 − y2i)[P
′
N (yi)]2]

. (5.56)

Programs to generate these points andweights are standard inmathematical func-
tion libraries, are found in tables such as those in (Abramowitz and Stegun, 1972),
or can be computed. The gauss program we provide also scales the points to span
specified regions. As a check that the program’s points are correct, you may want
to compare them to the four-point set given in Table 5.3.

5.12.1
Mapping Integration Points

Our standard convention (5.26) for the general interval [a , b] is

b

∫
a

f (x)dx ≃
N∑
i=1

f (xi)wi . (5.57)

With Gaussian points and weights, the y interval −1 < yi ≤ 1 must be mapped
onto the x interval a ≤ x ≤ b. Here are some mappings we have found useful in

995.12 Algorithm: Gaussian Quadrature

our work. In all cases, (yi , w′
i) are the elementary Gaussian points and weights for

the interval [−1, 1], and we want to scale to x with various ranges.

1. [−1, 1] →
[
a , b

]
uniformly, (a + b)∕2 = midpoint:

xi =
b + a
2

+ b − a
2

yi , wi =
b − a
2

w′
i , (5.58)

⇒

b

∫
a

f (x)dx = b − a
2

1

∫
−1

f [x(y)]dy . (5.59)

2. [0 → ∞], a = midpoint:

xi = a
1 + yi
1 − yi

, wi =
2a

(1 − yi)2
w′

i . (5.60)

3. [−∞ → ∞], scale set by a:

xi = a
yi

1 − y2i
, wi =

a(1 + y2i)(
1 − y2i

)2 w′
i . (5.61)

4. [a → ∞], a + 2b = midpoint:

xi =
a + 2b + ayi

1 − yi
, wi =

2(b + a)
(1 − yi)2

w′
i . (5.62)

5.
[
0 → b

]
, ab∕(b + a) = midpoint:

xi =
ab(1 + yi)

b + a − (b − a)yi
, wi =

2ab2
(b + a − (b − a)yi)2

w′
i . (5.63)

As you can see, even if your integration range extends out to infinity, there will
be points at large but not infinite x. As you keep increasing the number of grid
points N , the last xi gets larger but always remains finite.

5.12.2
Gaussian Points Derivation

We want to perform a numerical integration with N integration points:

+1

∫
−1

f (x)dx =
N∑
i=1

wi f (xi) , (5.64)

where f (x) is a polynomial of degree 2N − 1 or less. The unique property of
Gaussian quadrature is that (5.64) will be exact, as long as we ignore the effect
of round-off error. Determining the xi ’s and wi ’s requires some knowledge of spe-
cial functions and some cleverness (Hildebrand, 1956). The knowledge needed is
the two properties of Legendre polynomials PN (x) of order N :

100 5 Differentiationand Integration

1. PN (x) is orthogonal to every polynomial of order less than N .
2. PN (x) has N real roots in the interval −1 ≤ x ≤ 1.

We define now a new polynomial of degree equal to or less than N obtained by
dividing the integrand f (x) by the Legendre polynomial PN (x):

q(x)
def
=

f (x)
PN (x)

, (5.65)

⇒ f (x) = q(x)PN (x) + r(x) . (5.66)

Here the remainder r(x) is an (unknown) polynomial of degree N or less, which
we will not need to determine. If we now substitute (5.66) into (5.64), and use the
fact that PN is orthogonal to every polynomial of degree less than or equal to N ,
only the second, r(x), term remains

+1

∫
−1

f (x)dx =
+1

∫
−1

q(x)PN (x)dx +
+1

∫
−1

r(x)dx =
+1

∫
−1

r(x)dx . (5.67)

Yet because r(x) is a polynomial of degree N or less, we can use a standard N
point rule to evaluate the integral exactly (the type of quadrature we did with the
Simpson rule).
Now that we know it is possible to integrate a 2N − 1 or less degree polynomial

with just N points, we extert some cleverness to determine just what those points
will be. We substitute (5.66) into (5.64) and note that

+1

∫
−1

f (x)dx =
N∑
i=1

wiq(xi)PN (xi) +
N∑
i=1

wir(xi) =
N∑
i=1

wir(xi) . (5.68)

The cleverness is realizing that if we choose the N integration points to be the
zeros or roots of the Legendre polynomial PN (x), then the first term on the RHS
of (5.68) will vanish because PN (xi) = 0 for each xi :

+1

∫
−1

f (x)dx =
N∑
i=1

wir(xi) . (5.69)

This is our derivation that the N integration points over the interval (−1, 1) are
the N zeros of the Legendre polynomial PN (x). As indicated in (5.56), the weights
are related to the derivative of the Legendre polynomials evaluated at the roots
of the polynomial. The actual derivation of the weights we leave to Hildebrand
(1956).

5.12.3
Integration Error Assessment

1. Write a double-precision program to integrate an arbitrary function numeri-
cally using the trapezoid rule, the Simpson rule, and Gaussian quadrature. For

1015.12 Algorithm: Gaussian Quadrature

our assumed problem, there is an analytic answer with which to compare:

dN(t)
dt

= e−t ⇒ N(1) =
1

∫
0

e−t dt = 1 − e−1 . (5.70)

2. Compute the relative error 𝜖 = |(numerical-exact)∕exact| in each case. Present
your data in the tabular form

N 𝝐T 𝝐S 𝝐G

2 ⋯ ⋯ ⋯
10 ⋯ ⋯ ⋯

with spaces or tabs separating the fields. Try N values of 2, 10, 20, 40, 80, 160,
… (Hint: Even numbers may not be the assumption of every rule.)

3. Make a log–log plot of relative error vs. N (Figure 5.4). You should observe
that

𝜖 ≃ CNα ⇒ log 𝜖 = α logN + constant . (5.71)

This means that a power-law dependence appears as a straight line on a log–
log plot, and that if you use log10, then the ordinate on your log–log plotwill be
the negative of the number of decimal places of precision in your calculation.

4. Use your plot or table to estimate the power-law dependence of the error 𝜖
on the number of points N , and to determine the number of decimal places
of precision in your calculation. Do this for both the trapezoid and Simpson
rules and for both the algorithmic and round-off error regimes. (Note that it
may be hard to make N large enough to reach the round-off error regime for
the trapezoid rule because the approximation error is so large.)

10-13

10-9

10-5

N

|e
rr

o
r|

trapezoid

Simpson

Gaussian

N

10-9

10-7

10-5

10-3

10-1

|e
rr

o
r|

trapezoid

Simpson

Gaussian

10 10010 100
(a) (b)

Figure 5.4 Log–log plots of the error in the
integration of exponential decay using the
trapezoid rule, Simpson’s rule, and Gaussian
quadrature vs. the number of integration
points N. Approximately 15 decimal places of
precision are attainable with double precision

(a), and seven places with single precision (b).
The algorithms are seen to stop converging
when round-off error (the fluctuating and
increasing part near the bottom) starts to
dominate.

102 5 Differentiationand Integration

In Listing 5.2, we give a sample program that performs an integration with
Gaussian points. The method gauss generates the points and weights and may
be useful in other applications as well.

Listing 5.2 IntegGauss.py integrates the
function f (x) via Gaussian quadrature. The
points and weights are generated in the
method gauss, which will be the same for
other applications as well. Note that the level

of desired precision is set by the parame-
ter eps, which should be set by the user, as
should the value for job, which controls the
mapping of the points onto arbitrary intervals
(they are generated in (−1, 1)).

IntegGauss . py : Gaussian quadrature generator of pts & wts

from numpy import *
from sy s import v e r s ion

max_in = 11 # Numb inte rva l s
vmin = 0 . ; vmax = 1 . # Int ranges
ME = 2.7182818284590452354 E0 # Euler ’ s const
w = zeros ((2001) , f l o a t)
x = zeros ((2001) , f l o a t)

de f f (x) : # The integrand
re turn (exp (− x))

de f gauss (npts , job , a , b , x , w) :
m = i = j = t = t1 = pp = p1 = p2 = p3 = 0 .
eps = 3 . E−14 # Accuracy : * * * * * *ADJUST THIS * * * * * * * !
m = i n t ((npts + 1) /2)
f o r i in range (1 , m + 1) :

t = cos (math . p i * (f l o a t (i) − 0 . 2 5) / (f l o a t (npts) + 0 . 5))
t1 = 1
whi le ((abs (t − t1)) >= eps) :

p1 = 1 . ; p2 = 0 .
f o r j in range (1 , npts + 1) :

p3 = p2 ; p2 = p1
p1 = ((2 . * f l o a t (j) −1) * t * p2 − (f l o a t (j) −1.) * p3) / (f l o a t (j))

pp = npts * (t * p1 − p2) / (t * t − 1 .)
t1 = t ; t = t1 − p1 / pp

x [i − 1] = − t ; x [npts − i] = t
w[i − 1] = 2 . / ((1 . − t * t) * pp *pp)
w[npts − i] = w[i − 1]

i f (j ob == 0) :
f o r i in range (0 , npts) :

x [i] = x [i] * (b − a) / 2 . + (b + a) / 2 .
w[i] = w[i] * (b − a) / 2 .

i f (j ob == 1) :
f o r i in range (0 , npts) :

x i = x [i]
x [i] = a *b * (1 . + x i) / (b + a − (b − a) * x i)
w[i] = w[i] * 2 . * a *b *b / ((b + a − (b−a) * x i) * (b + a − (b−a) * x i))

i f (j ob == 2) :
f o r i in range (0 , npts) :

x i = x [i]
x [i] = (b * x i + b + a + a) / (1 . − x i)
w[i] = w[i] * 2 . * (a + b) / ((1 . − x i) * (1 . − x i))

de f gau s s in t (no , min , max) :
quadra = 0 .
gauss (no , 0 , min , max , x , w) # Returns pts & wts
f o r n in range (0 , no) :

quadra += f (x [n]) * w[n] # Calcula te in t egra l
re turn (quadra)

f o r i in range (3 , max_in + 1 , 2) :

1035.13 HigherOrder Rules (Algorithm)

r e s u l t = gau s s in t (i , vmin , vmax)
pr in t (" i " , i , " e r r " , abs (r e s u l t − 1 + 1/ME))

pr in t (" Enter and return any character to quit ")

5.13
Higher Order Rules (Algorithm)

As in numerical differentiation, we can use the known functional dependence
of the error on interval size h to reduce the integration error. For simple rules
like the trapezoid and Simpson rules, we have the analytic estimates (5.47), while
for others you may have to experiment to determine the h dependence. To illus-
trate, if A(h) and A(h∕2) are the values of the integral determined for intervals h
and h∕2, respectively, we know that the integrals have expansions with a leading
error term proportional to h2,

A(h) ≃
b

∫
a

f (x)dx + αh2 + βh4 +⋯ , (5.72)

A
(
h
2

)
≃

b

∫
a

f (x)dx + αh2
4

+
βh4

16
+⋯ . (5.73)

Consequently, we make the h2 term vanish by computing the combination

4
3
A
(
h
2

)
− 1

3
A(h) ≃

b

∫
a

f (x)dx −
βh4

4
+⋯ . (5.74)

Clearly, this particular trick (Romberg’s extrapolation) works only if the h2 term
dominates the error and then only if the derivatives of the function are well be-
haved. An analogous extrapolation can also be made for other algorithms.
In Table 5.1, we gave the weights for several equal interval rules. Whereas the

Simpson rule used two intervals, the three-eighths rule uses three intervals, and
the Milne2) rule uses four intervals. (These are single-interval rules and must be
strung together to obtain a rule extended over the entire integration range. This
means that the points that end one interval and begin the next areweighted twice.)
You can easily determine the number of elementary intervals integrated over, and
checkwhether you andwe havewritten theweights right, by summing theweights
for any rule. The sum is the integral of f (x)= 1 andmust equal h times the number
of intervals (which in turn equals b − a):

N∑
i=1

wi = h × Nintervals = b − a . (5.75)

2) There is, not coincidentally, a Milne Computer Center at Oregon State University, although
there is no longer a central computer there.

104 5 Differentiationand Integration

5.14
Monte Carlo Integration by Stone Throwing (Problem)

Imagine yourself as a farmer walking to your furthermost field to add algae-eating
fish to a pond having an algae explosion. You get there only to read the instructions
and discover that you need to know the area of the pond in order to determine
the correct number of the fish to add. Your problem is to measure the area of this
irregularly shaped pond with just the materials at hand (Gould et al., 2006).
It is hard to believe that Monte Carlo techniques can be used to evaluate inte-

grals. After all, we do not want to gamble on the values!While it is true that other
methods are preferable for single and double integrals, it turns out that Monte
Carlo techniques are best when the dimensionality of integrations gets large! For
our pond problem, we will use a sampling technique (Figure 5.5):

1. Walk off a box that completely encloses the pond and remove any pebbles lying
on the ground within the box.

2. Measure the lengths of the sides in natural units like feet. This tells you the
area of the enclosing box Abox.

3. Grab a bunch of pebbles, count their number, and then throw them up in the
air in random directions.

4. Count the number of splashes in the pond Npond and the number of pebbles
lying on the ground within your box Nbox.

5. Assuming that you threw the pebbles uniformly and randomly, the number
of pebbles falling into the pond should be proportional to the area of the
pond Apond. You determine that area from the simple ratio

Npond

Npond + Nbox
=

Apond

Abox
⇒ Apond =

Npond

Npond + Nbox
Abox . (5.76)

5.14.1
Stone Throwing Implementation

Use sampling (Figure 5.5) to perform a 2D integration and thereby determine π:

1. Imagine a circular pond enclosed in a square of side 2(r = 1).
2. We know the analytic answer that the area of a circle ∮ dA = π.
3. Generate a sequence of random numbers −1 ≤ ri ≤ +1.
4. For i = 1 to N , pick (xi , yi) = (r2i−1 , r2i).
5. If x2i + y2i < 1, let Npond = Npond + 1; otherwise let Nbox = Nbox + 1.
6. Use (5.76) to calculate the area, and in this way π.
7. Increase N until you get π to three significant figures (we don’t ask much –

that’s only slide-rule accuracy).

1055.15 Mean Value Integration (Theory andMath)

Pond

x

(a) (b)

Figure 5.5 (a) Stones into a pond as a technique for measuring its area. The ratio of “hits” to
total number of stones thrown equals the ratio of the area of the pond to that of the box. (b)
The evaluation of an integral via a Monte Carlo (stone throwing) technique of the ratio of areas.

5.15
Mean Value Integration (Theory andMath)

The standard Monte Carlo technique for integration is based on themean value
theorem (presumably familiar from elementary calculus):

I =
b

∫
a

dx f (x) = (b − a)⟨ f ⟩ . (5.77)

The theorem states the obvious if you think of integrals as areas. The value of the
integral of some function f (x) between a and b equals the length of the interval
(b − a) times the mean value of the function over that interval ⟨ f ⟩ (Figure 5.6).
TheMonte Carlo integration algorithm uses random points to evaluate the mean
in (5.77). With a sequence a ≤ xi ≤ b of N uniform random numbers, we want to
determine the sample mean by sampling the function f (x) at these points:

⟨ f ⟩ ≃ 1
N

N∑
i=1

f (xi) . (5.78)

This gives us the very simple integration rule:

b

∫
a

dx f (x) ≃ (b − a) 1
N

N∑
i=1

f (xi) = (b − a)⟨ f ⟩ . (5.79)

106 5 Differentiationand Integration

f(x)

⟨f(x)⟩

x

Figure 5.6 The area under the curve f (x) is the same as that under the horizontal line whose
height y = ⟨f⟩.
Equation 5.79 looks much like our standard algorithm for integration (5.26) with
the points xi chosen randomly andwith uniformweightswi = (b− a)∕N . Because
no attempt has beenmade to obtain an optimal answer for a given value ofN , this
does not seem like it would be an efficient means to evaluate integrals; but you
must admit that it is simple. If we let the number of samples of f (x) approach
infinity N →∞ or if we keep the number of samples finite and take the average of
infinitely many runs, the laws of statistics ensure us that (5.79) will approach the
correct answer, at least if there were no round-off errors.
For readers who are familiar with statistics, we remind you that the uncertainty

in the value obtained for the integral I after N samples of f (x) is measured by
the standard deviation σI . If σ f is the standard deviation of the integrand f in the
sampling, then for normal distributions we have

σI ≃
1√
N
σ f . (5.80)

So for large N , the error in the value obtained for the integral decreases as 1∕
√
N .

5.16
Integration Exercises

1. Here are two integrals that quadrature may find challenging:

F1 =
2π

∫
0

sin(100x)dx , F2 =
2π

∫
0

sinx(100x)dx . (5.81)

a) Evaluate these integrals using two different integration rules and compare
the answers.

b) Explain why the computer may have trouble with these integrals.
2. The next three problems are examples of how elliptic integrals enter into re-

alistic physics problems. It is straightforward to evaluate any integral numer-
ically using the techniques of this chapter, but it may be difficult for you to

1075.16 Integration Exercises

know if the answers you obtain are correct. One way to hone your integral-
evaluating skills is to compare your answers from quadrature to power series
expressions, or to a polynomial approximations of know precision. To help
you in this regard, we present here a polynomial approximation for an elliptic
integral (Abramowitz and Stegun, 1972):

K(m) =
π∕2

∫
0

(1 − m sin2 θ)−1∕2 dθ

≃ a0 + a1m1 + a2m2
1 −

[
b0 + b1m1 + b2m2

1
]
lnm1 + 𝜖(m) ,

m1 = 1 − m , 0 ≤ m ≤ 1 , |𝜖(m)| ≤ 3 × 10−5 ,

a0 = 1.386 294 4 a1 = 0.111 972 3 a2 = 0.072 529 6
b0 = 0.5 b1 = 0.121 347 8 b2 = 0.028 872 9

.

(5.82)

3. Compute K(m) by evaluating the integral in (5.82) numerically. Tune your in-
tegral evaluation until you obtain agreement at the ≤ 3 × 10−5 level with the
polynomial approximation.

4. In Section 15.1.2, we will derive an expression for the period T of a realistic
pendulum forwhich themaximum angle of displacement θm is not necessarily
small:

T =
T0

π

θm

∫
0

dθ[
sin2(θm∕2) − sin2(θ∕2)

]1∕2 (5.83)

≃ T0

[
1 +

(1
2

)2
sin2

θm
2

+
(1 ⋅ 3
2 ⋅ 4

)2
sin4

θm
2

+⋯
]
, (5.84)

where T0 is the period for small-angle oscillations. The integral in (5.83) can
be expressed in terms of an elliptic integral of the first kind. If you think of an
elliptic integral as a generalized trigonometric function, then this is a closed-
form solution; otherwise, it is an integral needing numerical evaluation.
a) Use numerical quadrature to determine the ratio T∕T0 for five values of θm

between 0 and π. Show that you have attained at least four places of ac-
curacy by progressively increasing the number of integration points until
changes occur only in the fifth place, or beyond.

b) Use the power series (5.84) to determine the ratio T∕T0. Continue sum-
ming terms until changes in the sum occur only in the fifth place, or be-
yond.

c) Plot the values you obtain for T∕T0 vs. θm for both the integral and power
series solution. Note that any departure from1 indicates breakdownof the
familiar small-angle approximation for the pendulum.

5. In the classic E&M text (Jackson, 1988), there is the problem of an infinite,
grounded, thin, plane sheet of conducting material with a hole of radius a cut

108 5 Differentiationand Integration

in it. The hole contains a conducting disk of slightly smaller radius kept at
potential V and separated from the sheet by a thin ring of insulating material.
solves for the potential a perpendicular distance z above the edge of the disk
in terms of an elliptic integral:

Φ(z) = V
2

⎛⎜⎜⎜⎝1 −
kz
πa

π∕2

∫
0

dφ√
1 − k2 sin2 φ

⎞⎟⎟⎟⎠ , (5.85)

where k = 2a∕(z2 + 4a2)1∕2. Use numerical integration to calculate and then
plot the potential for V = 1, a = 1 and values of z in the interval (0.05, 10).
Compare to a 1∕r fall off.

6. Figure 5.7 shows a current loop of radius a carrying a current I. The point P
is a distance r from the center of the loop with spherical coordinates (r, θ, φ).
Jackson (1988) solves for the φ component of the vector potential at point P
in terms of elliptic integrals:

Aφ(r, θ) =
μ0

4π
4Ia√

a2 + r2 + 2ar sin θ

[
(2 − k2)K(k) − 2E(k)

k2

]
, (5.86)

K(k) =
π∕2

∫
0

dφ√
1 − k2 sin2 φ

, E(k) =
π∕2

∫
0

√
1 − k2 sin2 φ dφ , (5.87)

k2 = 4ar sin θ
a2 + r2 + 2ar sin θ

. (5.88)

Here K(k) is a complete elliptic integral of the first kind and E(k) is a complete
elliptic integral of the second kind. For a = 1, I = 3, and μ0∕4π = 1, compute
and plot
a) Aφ(r = 1.1, θ) vs. θ.
b) Aφ(r, θ = π∕3) vs. r.

5.17
Multidimensional Monte Carlo Integration (Problem)

Let us say that we want to calculate some properties of a small atom such as mag-
nesium with 12 electrons. To do that, we need to integrate atomic wave functions
over the three coordinates of each of 12 electrons. This amounts to a 3× 12 = 36D
integral. If we use 64 points for each integration, this requires about 6436 ≃ 1065
evaluations of the integrand. If the computer were fast and could evaluate the
integrand a million times per second, this would take about 1059 s, which is sig-
nificantly longer than the age of the universe (∼ 1017 s).

1095.17 MultidimensionalMonte Carlo Integration (Problem)

P

r

a

z

y

x

θ

φ

Figure 5.7 A ring of radius a carries a current I. Find vector potential at point P.

Your problem is to find a way to performmultidimensional integrations so that
you are still alive to savor the results. Specifically, evaluate the 10D integral

I =
1

∫
0

dx1

1

∫
0

dx2 ⋯
1

∫
0

dx10
(
x1 + x2 +⋯ + x10

)2 . (5.89)

Check your numerical answer against the analytic one, 155∕6.
It is easy to generalize mean value integration to many dimensions by picking

random points in a multidimensional space. For example, in 2D:

b

∫
a

dx

d

∫
c

dy f (x , y) ≃ (b−a)(d− c) 1
N

N∑
i

f (xi) = (b−a)(d− c)⟨ f ⟩ . (5.90)

5.17.1
Multi Dimension Integration Error Assessment

Whenwe perform amultidimensional integration, the relative error in theMonte
Carlo technique, being statistical, decreases as 1∕

√
N . This is valid even if the N

points are distributed over D dimensions. In contrast, when we use these same N
points to perform a D-dimensional integration as D separate 1D integrals using
a rule such as Simpson’s, we use N∕D points for each integration. For fixed N ,
this means that the number of points used for each integration decreases as the
number of dimensions D increases, and so the error in each integration increases
with D. Furthermore, the total error will be approximately N times the error in
each integral. If you put these trends together and do the analysis for a particular
integration rule, you will find that at a value of D ≃ 3−4 the error in Monte Carlo
integration is approximately equal to that of conventional schemes. For larger val-
ues of D, the Monte Carlo method is always more accurate!

110 5 Differentiationand Integration

5.17.2
Implementation: 10D Monte Carlo Integration

Use a built-in random-number generator to perform the 10D Monte Carlo inte-
gration in (5.89).

1. Conduct 16 trials and take the average as your answer.
2. Try sample sizes of N = 2, 4, 8,… , 8192.
3. Plot the relative error vs. 1∕

√
N and see if linear behavior occurs.

4. What is your estimate for the accuracy of the integration?
5. Show that for a dimension D ≃ 3−4, the error in multidimensional Monte

Carlo integration is approximately equal to that of conventional schemes, and
that for larger values of D, the Monte Carlo method is more accurate.

5.18
Integrating Rapidly Varying Functions (Problem)

It is common inmany physical applications to integrate a functionwith an approx-
imately Gaussian dependence on x. The rapid falloff of the integrand means that
ourMonte Carlo integration technique would require an incredibly large number
of points to have sufficient points where the integrand is large. Your problem is to
make Monte Carlo integration more efficient for rapidly varying integrands.

5.19
Variance Reduction (Method)

If the function being integrated never differsmuch from its average value, then the
standard Monte Carlo mean value method (5.79) should work well with a large,
but manageable, number of points. Yet for a function with a large variance (i.e.,
one that is not “flat”), many of the evaluations of the function may occur for x
values at which the function is very small, and thus makes an insignificant con-
tribution to the integral; this is, basically, a waste of time. The method can be
improved bymapping the function f into a different function g that has a smaller
variance over the interval. We indicate two methods here and refer you to Press
et al. (1994) and Koonin (1986) for more details.
The first method is a variance reduction or subtraction technique in which we

devise a flatter function on which to apply the Monte Carlo technique. Suppose
we construct a function g(x) with the following properties on [a , b]:

| f (x) − g(x)| ≤ 𝜖 ,

b

∫
a

dx g(x) = J . (5.91)

1115.20 Importance Sampling (Method)

We now evaluate the integral of the difference f (x) − g(x) and add the result to J
to obtain the required integral

b

∫
a

dx f (x) =
b

∫
a

dx[f (x) − g(x)] + J . (5.92)

If we are clever enough to find a simple g(x) thatmakes the variance of f (x)− g(x)
less than that of f (x), and that we can integrate analytically, we can obtain even
more accurate answers in less time.

5.20
Importance Sampling (Method)

A second method for improving Monte Carlo integration is called importance
sampling because samples the integrand in themost important regions. It derives
from the identity

I =
b

∫
a

dx f (x) =
b

∫
a

dx w(x)
f (x)
w(x)

. (5.93)

If we now use a probability distribution for our random numbers that includes
x(x), the integral can be approximated as

I =
⟨

f
w

⟩
≃ 1

N

N∑
i=1

f (xi)
w(xi)

. (5.94)

The improvement arising from (5.94) is that with a judicious choice of weighting
function w(x) ∝ f (x), we can make f (x)∕w(x) more constant and thus easier to
integrate accurately.

5.21
von Neumann Rejection (Method)

A simple and ingenious method for generating random points with a probabil-
ity distribution w(x) was deduced by von Neumann and is implemented in List-
ing 5.3. This method is essentially the same as the rejection or sampling method
used to guess the area of a pond, only now the pond has been replaced by the
weighting function w(x), and the arbitrary box around the lake by the arbitrary
constant W0. Imagine a graph of w(x) vs. x (Figure 5.8). Walk off your box by
placing the line W = W0 on the graph, with the only condition being W0 ≥ w(x).
We next “throw stones” at this graph and count only those splashes that fall into
the w(x) pond. That is, we generate uniform distributions in x and y ≡ W with

112 5 Differentiationand Integration

accept

reject

Figure 5.8 The von Neumann rejection technique for generating random points with
weight W(x). A random point is accepted if it lies below the curve of W(x) and rejected if it lies
above. This generates a random distribution weighted by whatever W(x) function is plotted.

the maximum y value equal to the width of the boxW0:

(xi ,Wi) = (r2i−1 ,W0r2i) . (5.95)

We then reject all xi that do not fall into the pond:

If Wi < w(xi), accept, If Wi > w(xi), reject. (5.96)

The xi values so accepted will have the weighting w(x) (Figure 5.8). The largest
acceptance occurs where w(x) is large, in this case for midrange x. In Chapter 17,
we apply a variation of the rejection technique known as theMetropolis algorithm.
This algorithm has now become the cornerstone of computation thermodynam-
ics.

Listing 5.3 vonNeuman.py uses rejection to generate a weighted random distribution.

vonNeuman : Monte−Carlo integrat ion v ia stone throwing

import random
from v i s u a l . graph import *

N = 100 # points to plot the function
graph = d i s p l a y (width =500 , he ight =500 , t i t l e = ’vonNeumann Rejection Int ’)
xs inx = curve (x= l i s t (range (0 ,N)) , co l o r=co lo r . yel low , r ad iu s =0 .5)
pts = l a b e l (pos=(−60 , −60) , t e x t= ’ po ints=’ , box=0) # Labels
pts2 = l a b e l (pos=(−30 , −60) , box=0)
i n s i d e = l a b e l (pos=(30 ,−60) , t e x t= ’ accepted=’ , box=0)
in s ide2 = l a b e l (pos=(60 ,−60) , box=0)
a r e a l b l = l a b e l (pos =(−65 ,60) , t e x t= ’ area=’ , box=0)
a r e a l b l 2 = l a b e l (pos =(−35 ,60) , box=0)
a re ana l = l a b e l (pos =(30 ,60) , t e x t= ’ a na lyt i ca l=’ , box=0)
zero = l a b e l (pos=(−85 ,−48) , t e x t= ’ 0 ’ , box=0)
f i v e = l a b e l (pos =(−85 ,50) , t e x t= ’ 5 ’ , box=0)
twopi = l a b e l (pos=(90 ,−48) , t e x t= ’ 2 pi ’ , box=0)

de f f x (x) : re turn x * s in (x) * s in (x) # Integrand

de f p lo t func () : # Plot function

1135.22 NonuniformAssessment⊙

i nc r = 2 . 0 * p i /N
f o r i in range (0 ,N) :

xx = i * inc r
xs inx . x [i] = ((8 0 . 0 / p i) * xx−80)
xs inx . y [i] = 20* f x (xx)−50

box = curve (pos=[(−80 ,−50) , (−80 ,50) , (80 , 50)
, (80 , −50) , (−80 ,−50)] , co lo r=co lo r . white) # box

p lo t func () # Box area = h x w =5*2pi
j = 0
Npts = 3001 # Pts ins ide box
ana l y t = (p i) * *2 # Analyt ica l in t egra l
a reana l . t e x t = ’ a na lyt i ca l =%8.5f ’%ana l y t
genpts = po in t s (s i z e =2)
f o r i in range (1 , Npts) : # points ins ide box

r a t e (500) # slow process
x = 2 . 0 * p i * random . random ()
y = 5* random . random ()
xp = x *8 0 . 0 / pi −80
yp = 20 .0 * y−50
pts2 . t e x t = ’%4s ’ %i
i f y <= fx (x) : # Below curve

j += 1
genpts . append (pos=(xp , yp) , co l o r=co lo r . cyan)
in s ide2 . t e x t= ’%4s ’%j

e l s e : genpts . append (pos=(xp , yp) , co l o r=co lo r . green)
boxarea = 2 . 0 * p i * 5 . 0
area = boxarea * j / (Npts−1)
a r e a l b l 2 . t e x t = ’%8.5 f ’%area

5.21.1
Simple Random Gaussian Distribution

The central limit theorem can be used to deduce a Gaussian distribution via a
simple summation. The theorem states, under rather general conditions, that if
{ri} is a sequence of mutually independent random numbers, then the sum

xN =
N∑
i=1

ri (5.97)

is distributed normally. This means that the generated x values have the distribu-
tion

PN (x) =
exp

[
−(x−μ)2

2σ2

]
√
2πσ2

, μ = N⟨r⟩ , σ2 = N(⟨r2⟩ − ⟨r⟩2) . (5.98)

5.22
Nonuniform Assessment⊙

Use the von Neumann rejection technique to generate a normal distribution of
standard deviation 1 and compare it to the simple Gaussian method.

114 5 Differentiationand Integration

5.22.1
Implementation⊙

In order for w(x) to be the weighting function for random numbers over [a , b],
we want it to have the properties

b

∫
a

dx w(x) = 1 , [w(x) > 0] , d(x → x + dx) = w(x)dx , (5.99)

where d is the probability of obtaining an x in the range x → x + dx. For the
uniform distribution over [a , b], w(x) = 1∕(b − a).

Inverse transform/change of variable method⊙ Let us consider a change of vari-
ables that takes our original integral I (5.93) to the form

I =
b

∫
a

dx f (x) =
1

∫
0

dW
f [x(W)]
w[x(W)]

. (5.100)

Our aim is to make this transformation such that there are equal contributions
from all parts of the range in W ; that is, we want to use a uniform sequence of
random numbers for W . To determine the new variable, we start with u(r), the
uniform distribution over [0, 1],

u(r) =

{
1, for 0 ≤ r ≤ 1,
0, otherwise.

(5.101)

We want to find a mapping r ↔ x or probability function w(x) for which proba-
bility is conserved:

w(x)dx = u(r)dr, ⇒ w(x) =
|||| drdx |||| u(r) . (5.102)

This means that even though x and r are related by some (possibly) complicated
mapping, x is also random with the probability of x lying in x → x + dx equal to
that of r lying in r → r + dr.
To find the mapping between x and r (the tricky part), we change variables

to W (x) defined by the integral

W (x) =
x

∫
−∞

dx′w(x′) . (5.103)

We recognizeW (x) as the (incomplete) integral of the probability density u(r) up
to some point x. It is another type of distribution function, the integrated proba-
bility of finding a random number less than the value x. The function W (x) is on
that account called a cumulative distribution function and can also be thought of

1155.22 NonuniformAssessment⊙

as the area to the left of r = x on the plot of u(r) vs. r. It follows immediately from
the definition (5.103) that W (x) has the properties

W (−∞) = 0 ; W (∞) = 1 , (5.104)
dW (x)
dx

= w(x) , dW (x) = w(x)dx = u(r)dr . (5.105)

Consequently, Wi = {ri} is a uniform sequence of random numbers, and we just
need to invert (5.103) to obtain x values distributed with probability w(x).
The crux of this technique is being able to invert (5.103) to obtain x = W−1(r).

Let us look at some analytic examples to get a feel for these steps (numerical in-
version is possible and frequent in realistic cases).

Uniform weight function w We start with the familiar uniform distribution

w(x) =

{
1

b−a
, if a ≤ x ≤ b,

0, otherwise.
(5.106)

After following the rules, this leads to

W (x) =
x

∫
a

dx′ 1
b − a

= x − a
b − a

(5.107)

⇒ x = a + (b − a)W ⇒ W−1(r) = a + (b − a)r , (5.108)

whereW (x) is always taken as uniform. In this way, we generate uniform random
0 ≤ r ≤ 1 and uniform random a ≤ x ≤ b.

Exponential weight We want random points with an exponential distribution:

w(x) =

{
1
λ
e−x∕λ , for x > 0,

0, for x < 0,

W (x) =
x

∫
0

dx′ 1
λ
e−x′∕λ = 1 − e−x∕λ , (5.109)

⇒ x = −λ ln(1 −W) ≡ −λ ln(1 − r) . (5.110)

In this way, we generate uniform random r : [0, 1] and obtain x = −λ ln(1 − r)
distributed with an exponential probability distribution for x > 0. Notice that
our prescription (5.93) and (5.94) tells us to use w(x) = e−x∕λ∕λ to remove the
exponential-like behavior from an integrand and place it in theweights and scaled
points (0 ≤ xi ≤ ∞). Because the resulting integrand will vary less, it may be ap-
proximated better as a polynomial:

∞

∫
0

dxe−x∕λ f (x) ≃ λ
N

N∑
i=1

f (xi) , xi = −λ ln(1 − ri) . (5.111)

116 5 Differentiationand Integration

Gaussian (normal) distribution We want to generate points with a normal distri-
bution:

w(x′) = 1√
2πσ

e−(x′−x)2∕2σ2 . (5.112)

This by itself is rather hard but is made easier by generating uniform distributions
in angles and then using trigonometric relations to convert them to a Gaussian
distribution. But before doing that, we keep things simple by realizing that we can
obtain (5.112) with mean x and standard deviation σ by scaling and a translation
of a simpler w(x):

w(x) = 1√
2π

e−x2∕2 , x′ = σx + x . (5.113)

We start by generalizing the statement of probability conservation for two differ-
ent distributions (5.102) to two dimensions (Press et al., 1994):

p(x , y)dx dy = u(r1 , r2)dr1 dr2 (5.114)

⇒ p(x , y) = u(r1 , r2)
||||𝜕(r1 , r2)𝜕(x , y)

|||| . (5.115)

We recognize the term in vertical bars as the Jacobian determinant:

J =
||||𝜕(r1 , r2)𝜕(x , y)

|||| def
=

𝜕r1
𝜕x

𝜕r2
𝜕 y

−
𝜕r2
𝜕x

𝜕r1
𝜕 y

. (5.116)

To specialize to a Gaussian distribution, we consider 2πr as angles obtained from
a uniform random distribution r, and x and y as Cartesian coordinates that will
have a Gaussian distribution. The two are related by

x =
√
−2 ln r1 cos 2πr2 , y =

√
−2 ln r1 sin 2πr2 . (5.117)

The inversion of this mapping produces the Gaussian distribution

r1 = e−(x2+y2)∕2 , r2 =
1
2π

tan−1 y
x
, J = −e−(x2+y2)∕2

2π
. (5.118)

The solution to our problem is at hand.We use (5.117)with r1 and r2 uniform ran-
dom distributions, and x and y are then Gaussian random distributions centered
around x = 0.

117

6
Matrix Computing

This chapter examines various aspects of computingwith matrices, and in particu-
lar applications of the Pythonpackages. Because these packages are optimized and
robust, we strongly recommend their use even in all your small programs (small
programs often grow big). The two-mass-on-a-string problem is formulated as a
matrix problem, and extends the Newton–Raphson search technique to be dis-
cussed inChapter7.Although there is some logic in having this chapter afterChap-
ter 7, it is placed here to provide the matrix tools needed for visualizations (which
is why Problem 3 preceds 1).

6.1
Problem 3: N–D Newton–Raphson; Two Masses on a String

Problem Two weights (W1 ,W2) = (10, 20) are hung from three pieces of string
with lengths (L1, L2 , L3) = (3, 4, 4) and a horizontal bar of length L= 8 (Figure 6.1).
Find the angles assumed by the strings and the tensions exerted by the strings.
In spite of the fact that this is a simple problem requiring no more than first-

year physics to formulate, the coupled transcendental equations that result are

T1

L

L

1

T2

L2

T3

L3
W1

W2

θ1
θ3

θ

θ

2

3

Figure 6.1 Two weights connected by three pieces of string and suspended from a horizontal
bar of length L. The lengths are all known, but the angles and the tensions in the strings are to
be determined.

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

118 6 Matrix Computing

T i

Ti+1

Wi

θ i

θ i+1

i

Figure 6.2 A free body diagram for one weight in equilibrium. Balancing the forces in the x
and y directions for all weights leads to the equations of static equilibrium.

just about inhumanely painful to solve analytically.1) However, we will show you
how the computer can solve this problem, but even then only by a trial-and-error
technique with no guarantee of success. Your problem is to test this solution for
a variety of weights and lengths and then to extend it to the three-weight prob-
lem (not as easy as it may seem). In either case check the physical reasonableness
of your solution; the deduced tensions should be positive and similar in magni-
tude to the weights of the spheres, and the deduced angles should correspond to
a physically realizable geometry, as confirmed with a sketch such as Figure 6.2.
Some of the exploration you should do is to see at what point your initial guess
gets so bad that the computer is unable to find a physical solution.

6.1.1
Theory: Statics

We start with the geometric constraints that the horizontal length of the structure
is L and that the strings begin and end at the same height (Figure 6.1):

L1 cos θ1 + L2 cos θ2 + L3 cos θ3 = L , (6.1)

L1 sin θ1 + L2 sin θ2 − L3 sin θ3 = 0 , (6.2)

sin2 θ1 + cos2 θ1 = 1 , (6.3)

sin2 θ2 + cos2 θ2 = 1 , (6.4)

sin2 θ3 + cos2 θ3 = 1 . (6.5)

Observe that the last three equations include trigonometric identities as indepen-
dent equations because we are treating sin θ and cos θ as independent variables;
this makes the search procedure easier to implement. The basics physics says that
because there are no accelerations, the sum of the forces in the horizontal and

1) Almost impossible anyway, as L. Molnar has supplied me with an analytic solution.

1196.1 Problem 3: N–DNewton–Raphson; TwoMasses on a String

vertical directions must equal zero (Figure 6.2):

T1 sin θ1 − T2 sin θ2 −W1 = 0 , (6.6)

T1 cos θ1 − T2 cos θ2 = 0 , (6.7)

T2 sin θ2 + T3 sin θ3 −W2 = 0 , (6.8)

T2 cos θ2 − T3 cos θ3 = 0 . (6.9)

HereWi is the weight of mass i and Ti is the tension in string i. Note that because
we do not have a rigid structure, we cannot assume the equilibrium of torques.

6.1.2
Algorithm: Multidimensional Searching

Equations (6.1)–(6.9) are nine simultaneous nonlinear equations. While linear
equations can be solved directly, nonlinear equations cannot (Press et al., 1994).
You can use the computer to search for a solution by guessing, but there is no
guarantee of finding one.
Unfortunately, not everything in life is logical, as we need to use a search tech-

nique now that will not be covered until Chapter 7.While what we do next is self-
explanatory, you may want to look at Chapter 7 now if you are not at all familiar
with searching.
We apply to our set the same Newton–Raphson algorithm as used to solve a

single equation by renaming the nine unknown angles and tensions as the sub-
scripted variable yi and placing the variables together as a vector:

y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6
x7
x8
x9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin θ1
sin θ2
sin θ3
cos θ1
cos θ2
cos θ3
T1

T2

T3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.10)

The nine equations to be solved are written in a general form with zeros on the
right-hand sides and placed in a vector:

f i(x1 , x2 ,… , xN) = 0 , i = 1,N , (6.11)

120 6 Matrix Computing

f (y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(y)
f2(y)
f3(y)
f4(y)
f5(y)
f6(y)
f7(y)
f8(y)
f9(y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3x4 + 4x5 + 4x6 − 8
3x1 + 4x2 − 4x3
x7x1 − x8x2 − 10

x7x4 − x8x5
x8x2 + x9x3 − 20

x8x5 − x9x6
x21 + x24 − 1
x22 + x25 − 1
x23 + x26 − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 . (6.12)

The solution to these equations requires a set of nine xi values that make all
nine f i ’s vanish simultaneously. Although these equations are not very compli-
cated (the physics after all is elementary), the terms quadratic in x make them
nonlinear, and this makes it hard or impossible to find an analytic solution. The
search algorithm guesses a solution, expands the nonlinear equations into linear
form, solves the resulting linear equations, and continues to improve the guesses
based on how close the previous one was to making f = 0. (We discuss search
algorithms using this procedure in Chapter 7.)
Explicitly, let the approximate solution at any one stage be the set xi and let us

assume that there is an (unknown) set of corrections Δxi for which

f i(x1 + Δx1, x2 + Δx2,… , x9 + Δx9) = 0 , i = 1, 9 . (6.13)

We solve for the approximate Δxi ’s by assuming that our previous solution is close
enough to the actual one for two terms in the Taylor series to be accurate:

f i(x1 + Δx1,… , x9 + Δx9) ≃ f i(x1 ,… , x9) +
9∑
j=1

𝜕 f i
𝜕x j

Δx j = 0

i = 1,… , 9 .
(6.14)

We now have a solvable set of nine linear equations in the nine unknowns Δxi ,
which we express as a single matrix equation

f1 + 𝜕 f1∕𝜕x1Δx1 + 𝜕 f1∕𝜕x2Δx2 +⋯ + 𝜕 f1∕𝜕x9Δx9 = 0 ,
f2 + 𝜕 f2∕𝜕x1Δx1 + 𝜕 f2∕𝜕x2Δx2 +⋯ + 𝜕 f2∕𝜕x9Δx9 = 0 ,

⋱

f9 + 𝜕 f9∕𝜕x1Δx1 + 𝜕 f9∕𝜕x2Δx2 +⋯ + 𝜕 f9∕𝜕x9Δx9 = 0 ,⎛⎜⎜⎜⎜⎝
f1
f2
⋱

f9

⎞⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎝
𝜕 f1∕𝜕x1 𝜕 f1∕𝜕x2 ⋯ 𝜕 f1∕𝜕x9
𝜕 f2∕𝜕x1 𝜕 f2∕𝜕x2 ⋯ 𝜕 f2∕𝜕x9

⋱

𝜕 f9∕𝜕x1 𝜕 f9∕𝜕x2 ⋯ 𝜕 f9∕𝜕x9

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
Δx1
Δx2
⋱

Δx9

⎞⎟⎟⎟⎟⎠
= 0 . (6.15)

1216.1 Problem 3: N–DNewton–Raphson; TwoMasses on a String

Note now that the derivatives and the f ’s are all evaluated at known values of
the xi ’s, so that only the vector of the Δxi values is unknown.We write this equa-
tion in matrix notation as

f + F ′Δx = 0 , ⇒ F ′Δx = − f , (6.16)

Δx =

⎛⎜⎜⎜⎜⎝
Δx1
Δx2
⋱

Δx9

⎞⎟⎟⎟⎟⎠
, f =

⎛⎜⎜⎜⎜⎝
f1
f2
⋱

f9

⎞⎟⎟⎟⎟⎠
, F ′ =

⎛⎜⎜⎜⎜⎝
𝜕 f1∕𝜕x1 ⋯ 𝜕 f1∕𝜕x9
𝜕 f2∕𝜕x1 ⋯ 𝜕 f2∕𝜕x9

⋱

𝜕 f9∕𝜕x1 ⋯ 𝜕 f9∕𝜕x9

⎞⎟⎟⎟⎟⎠
.

Here we use bold italic letters to emphasize the vector nature of the columns of f i
and Δxi values, and denote the matrix of the derivatives F ′ (it is also sometimes
denoted by J because it is the Jacobianmatrix).
The equation F ′Δx = − f is in the standard form for the solution of a linear

equation (often written as Ax = b), where Δx is the vector of unknowns and
b = − f . Matrix equations are solved using the techniques of linear algebra, and
in the sections to followwe shall show how to do that. In a formal sense, the solu-
tion of (6.16) is obtained by multiplying both sides of the equation by the inverse
of the F ′ matrix:

Δx = −F ′−1 f , (6.17)

where the inverse must exist if there is to be a unique solution. Although we are
dealingwithmatrices now, this solution is identical in form to that of the 1D prob-
lem, Δx=−(1∕ f ′) f . In fact, one of the reasons,weuse formal or abstract notation
for matrices is to reveal the simplicity that lies within.
Aswe indicate for the single-equationNewton–Raphsonmethod in Section 7.3,

even in a case such as this where we can deduce analytic expressions for the
derivatives 𝜕 f i∕𝜕x j , there are 9 × 9 = 81 such derivatives for this (small) prob-
lem, and entering them all would be both time-consuming and error-prone. In
contrast, especially for more complicated problems, it is straightforward to pro-
gram a forward-difference approximation for the derivatives,

𝜕 f i
𝜕x j

≃
f i(x j + δx j) − f i(x j)

δx j
, (6.18)

where each individual x j is varied independently because these are partial deriva-
tives and δx j are some arbitrary changes you input. While a central-difference
approximation for the derivative would be more accurate, it would also require
more evaluations of the f ’s, and once we find a solution it does not matter how
accurate our algorithm for the derivative was.
As also discussed for the 1D Newton–Raphson method (Section 7.3.1), the

method can fail if the initial guess is not close enough to the zero of f (here all N
of them) for the f ’s to be approximated as linear. The backtracking techniquemay
be applied here as well, in the present case, progressively decreasing the correc-
tions Δxi until | f |2 = | f1|2 + | f2|2 +⋯ + | fN |2 decreases.

122 6 Matrix Computing

6.2
WhyMatrix Computing?

Physical systems are oftenmodeled by systems of simultaneous equations written
in matrix form. As the models are made more realistic, the matrices correspond-
ingly become larger, and it becomes more important to use a good linear algebra
library. Computers are unusually good with matrix manipulations because those
manipulations typically involve the continued repetition of a small number of sim-
ple instructions, and algorithms exist to do this quite efficiently. Further speedup
may be achieved by tuning the codes to the computer’s architecture, as discussed
in Chapter 11.
Industrial-strength subroutines formatrix computing are found inwell-established

scientific libraries. These subroutines are usually an order of magnitude or more
faster than the elementary methods found in linear algebra texts,2) are usually
designed to minimize the round-off error, and are often “robust,” that is, have a
high chance of being successful for a broad class of problems. For these reasons,
we recommend that you do not write your own matrix methods but instead get
them from a library. An additional value of library routines is that you can often
run the same program either on a desktop machine or on a parallel supercom-
puter, with matrix routines automatically adapting to the local architecture. The
thoughtful reader may be wondering when a matrix is “large” enough to require
the use of a library routine. One rule of thumb is “if you have to wait for the
answer,” and another rule is if the matrices you are using take up a good fraction
of your computer’s random-access memory (RAM).

6.3
Classes of Matrix Problems (Math)

It helps to remember that the rules of mathematics apply even to the world’s most
powerful computers. For example, you should encounter problems solving equa-
tions if you have more unknowns than equations, or if your equations are not
linearly independent. But do not fret. While you cannot obtain a unique solution
when there are not enough equations, you may still be able to map out a space of
allowable solutions. At the other extreme, if you have more equations than un-
knowns, you have an overdetermined problem, which may not have a unique so-
lution. An overdetermined problem is sometimes treated using data fitting tech-
niques in which a solution to a sufficient set of equations is found, tested on the
unused equations, and then improved if needed. Not surprisingly, this technique

2) Although we prize the book, Numerical Recipes by Press et al. (1994), and what it has
accomplished, we cannot recommend taking subroutines from it. They are neither optimized
nor documented for easy, stand-alone use, whereas the subroutine libraries recommended in
this chapter are.

1236.3 Classes of Matrix Problems (Math)

is known as the linear least-squares method (as in Chapter 7) because the tech-
nique minimizes the disagreement with the equations.
The most basic matrix problem is a system of linear equations:

Ax = b , (6.19)

whereA is a known N ×N matrix, x is an unknown vector of length N , and b is a
known vector of lengthN . The obvious way to solve this equation is to determine
the inverse of A and then form the solution by multiplying both sides of (6.19) by
A−1:

x = A−1b . (6.20)

Both the direct solution of (6.19) and the determination of a matrix’s inverse are
standards in a matrix subroutine library. A more efficient way to solve (6.19) is by
Gaussian elimination or lower–upper (LU) decomposition. This yields the vec-
tor x without explicitly calculating A−1. However, sometime you may want the
inverse for other purposes, in which case (6.20) is preferred.
If you have to solve the matrix equation

Ax = λx , (6.21)

with x an unknown vector and λ an unknown parameter, then the direct solu-
tion (6.20) will not be of much help because the matrix b = λx contains the un-
knowns λ and x. Equation 6.21 is the eigenvalue problem. It is harder to solve
than (6.19) because solutions exist for only certain, if any, values of λ. To find a
solution, we use the identity matrix to rewrite (6.21) as

[A − λI]x = 0 . (6.22)

We see that multiplication of (6.22) by [A − λI]−1 yields the trivial solution

x = 0 (trivial solution) . (6.23)

While the trivial solution is a bona fide solution, it is nonetheless trivial. A more
interesting solution requires the existence of a condition that forbids us frommul-
tiplying both sides of (6.22) by [A − λI]−1. That condition is the nonexistence of
the inverse, and if you recall that Cramer’s rule for the inverse requires division
by det[A− λI], it is clear that the inverse fails to exist (and in this way eigenvalues
do exist) when

det[A − λI] = 0 . (6.24)

The λ values that satisfy this secular equation are the eigenvalues of (6.21). If you
are interested in only the eigenvalues for (6.21), you should look for a matrix rou-
tine that solves (6.24). To do that, you need a subroutine to calculate the determi-
nant of a matrix, and then a search routine to find the zero of (6.24). Such routines
are available in libraries.

124 6 Matrix Computing

The traditional way to solve the eigenvalue problem (6.21) for both eigenvalues
and eigenvectors is by diagonalization. This is equivalent to successive changes
of basis vectors, each change leaving the eigenvalues unchangedwhile continually
decreasing the values of the off-diagonal elements ofA. The sequence of transfor-
mations is equivalent to continually operating on the original equation with the
transformation matrix U until one is found for whichUAU−1 is diagonal:

UA(U−1U)x = λUx , (6.25)

(UAU−1)(Ux) = λUx , (6.26)

UAU−1 =

⎛⎜⎜⎜⎜⎝
λ′1 ⋯ 0
0 λ′2 ⋯ 0
0 0 λ′3 ⋯

0 ⋯ λ′N

⎞⎟⎟⎟⎟⎠
. (6.27)

The diagonal values ofUAU−1 are the eigenvalues with eigenvectors

xi = U−1 êi , (6.28)

that is, the eigenvectors are the columns of the matrix U−1. A number of routines
of this type are found in subroutine libraries.

6.3.1
Practical Matrix Computing

Many scientific programming bugs arise from the improper use of arrays.3) This
may be as a result of the extensive use of matrices in scientific computing or to
the complexity of keeping track of indices and dimensions. In any case, here are
some rules of thumb to observe.

Computers are finite Unless you are careful, your matrices may so muchmemory
that your computation will slow down significantly, especially if it starts to use
virtual memory. As a case in point, let us say that you store data in a 4D array with
each index having a physical dimension of 100: A[100] [100] [100] [100]. This array
of (100)4 64-byte words occupies ≃1GB of memory.

Processing time Matrix operations such as inversion require on the order of N3

steps for a square matrix of dimension N . Therefore, doubling the dimensions of
a 2D square matrix (as happens when the number of integration steps is doubled)
leads to an eightfold increase in the processing time.

Paging Many operating systems have virtual memory in which disk space is used
when a program runs out of RAM (see Chapter 10) for a discussion of how com-
puters arrange memory). This is a slow process that requires writing a full page

3) Even a vector V (N) is called an array, albeit a 1D one.

1256.3 Classes of Matrix Problems (Math)

a

aa

ab

bb

bc

cc

c

d

dd

de

ee

ef

ff

f

g gh

hh

hi

ii

i

Row Major Column Major

g g

(a) (b)

Figure 6.3 (a) Row-major order used for matrix storage in Python, C and Java. (b) Column-
major order used for matrix storage in Fortran. The table at the bottom shows how successive
matrix elements are actually stored in a linear fashion in memory.

of words to the disk. If your program is near the memory limit at which paging
occurs, even a slight increase in amatrix’s dimensionmay lead to an order ofmag-
nitude increase in the execution time.

Matrix storage While we think of matrices as multidimensional blocks of stored
numbers, the computer stores them as linear strings. For instance, a matrix a[3,3]
in Python, is stored in row-major order (Figure 6.3a):

a0,0 a0,1 a0,2 a1,0 a1,1 a1,2 a2,0 a2,1 a2,2 … , (6.29)

while in Fortran, starting subscripts at 0, it is stored in column-major order (Fig-
ure 6.3b):

a0,1 a1,0 a2,0 a0,1 a1,1 a2,1 a0,2 a1,2 a2,2 … (6.30)

It is important to keep this linear storage scheme in mind in order to write proper
code and to permit the mixing of Python and Fortran programs.
When dealing with matrices, you have to balance the clarity of the operations

being performed against the efficiency with which the computer performs them.
For example, having one matrix withmany indices such as V[L,Nre,Nspin,k,kp,Z,A]
may be neat packaging, but it may require the computer to jump through large
blocks of memory to get to the particular values needed (large strides) as you
vary k, kp, and Nre. The solution would be to have several matrices such as
V1[Nre,Nspin,k,kp,Z,A], V2[Nre,Nspin,k,kp,Z,A], and V3[Nre,Nspin,k,kp,Z,A].

Subscript 0 It is standard in Python, C, and Java to have array indices begin with
the value 0. While this is now permitted in Fortran, the standard in Fortran and
in mostmathematical equations has been to start indices at 1. On that account, in
addition to the different locations inmemory as a result of row-major and column-
major ordering, the same matrix element may be referenced differently in the dif-
ferent languages:

126 6 Matrix Computing

Location Python/C element Fortran element

Lowest a [0,0] a (1,1)
a [0,1] a (2,1)
a [1,0] a (3,1)
a [1,1] a (1,2)
a [2,0] a (2,2)

Highest a [2,1] a (3,2)

Tests Always test a library routine on a small problem whose answer you know
(such as the exercises in Section 6.6). Then you will know if you are supplying it
with the right arguments and if you have all the links working.

6.4
Python Lists as Arrays

A list is Python’s built-in sequence of numbers or objects. Although called a “list”
it is similar to what other computer languages call an “array.” It may be easier for
you to think of a Python list as a container that holds a bunch of items in a definite
order. (Soon we will describe the higher level array data types available with the
NumPy package.) In this section we review some of Python’s native list features.
Python interprets a sequence of ordered items, L = l0, l1 ,… , lN−1, as a list and

represents it with a single symbol L:

1>>> L = [1 , 2 , 3] # Create l i s t
>>> L [0] # Print element 0 (f i r s t)

31 # Python output
>>> L # Print ent ire l i s t

5[1 , 2 , 3] # Output
>>> L[0]= 5 # Change element 0

7>>> L
[5 , 2 , 3]

9>>> l en (L) # Length of l i s t
3

11>>> f o r i tems in L : pr in t i tems # for loop over items
5

132
3

We observe that square brackets with comma separators [1, 2, 3] are used for lists,
and that a square bracket is also used to indicate the index for a list item, as in line 2
(L[0]). Lists contain sequences of arbitrary objects that aremutable or changeable.
As we see in line 7 in the L command, an entire list can be referenced as a single
object, in this case to obtain its printout.
Python also has a built-in type of list known as a tuple whose elements are not

mutable. Tuples are indicated by round parenthesis (.., .., .), with individual ele-

1276.5 Numerical Python (NumPy) Arrays

ments still referenced by square brackets:

>>> T = (1 , 2 , 3 , 4) # Create tuple
2>>> T[3] # Print element 3

4
4>>> T

(1 , 2 , 3 , 4) # Print ent ire tuple
6>>> T[0] = 5 # Attemp to change element 0

Traceback (most recent c a l l l a s t) :
8T[0] = 5

TypeError : ’ tuple ’ o b j e c t does not support item assignment

Note that the error message arises when we try to change an element of a tuple.
Most languages require you to specify the size of an array before you can start

storing objects in it. In contrast, Python lists are dynamic, whichmeans that their
sizes adjust as needed. In addition, while a list is essentially one dimensional be-
cause it is a sequence, a compound list can be created in Python by having the
individual elements themselves as lists:

1>>> L = [[1 , 2] , [3 , 4] , [5 , 6]] # A l i s t of l i s t s
>>> L

3[[1 , 2] , [3 , 4] , [5 , 6]]
>>> L [0] # The f i r s t element

5[1 , 2]

Python can perform a large number of operations on lists, for example,

Operation Effect Operation Effect

L = [1, 2, 3, 4] Form list L1 + L2 Concatenate lists
L[i] ith element len(L) Length of list L
i in L True if i in L L[i:j] Slice from i to j
for i in L Iteration index L.append(x) Append x to end of L
L.count(x) Number of x’s in L L.index(x) Location of 1st x in L
L.remove(x) Remove 1st x in L L.reverse() Reverse elements in L
L.sort() Order elements in L

6.5
Numerical Python (NumPy) Arrays

Although basic Python does have an array data type, it is rather limited and we
suggest using NumPy arrays, which will convert Python lists into arrays. Because
we often use NumPy’s array command to formcomputer representations of vectors
and matrices, you will have to import NumPy in your programs (or Visual, which
includes NumPy) to use those examples. For instance, here we show the results of
running our program Matrix.py from a shell:

1>>> from v i s u a l import * # Load Visual package
>>> vector1 = ar ray ([1 , 2 , 3 , 4 , 5]) # F i l l 1D array

3>>> pr in t (’ vector1 =’ , v ector1) # Print array (parens i f Python 3)

128 6 Matrix Computing

vector1 = [1 2 3 4 5] # Output
5>>> vector2 = vector1 + vector1 # Add 2 vectors

>>> pr in t (’ vector2=’ , v ector2) # Print vector2
7vector2= [2 4 6 8 10] # Output

>>> vector2 = 3 * vector1 # Mult array by sca la r
9>>> pr in t (’ 3 * vector1 = ’ , v ector2) # Print vector

3 * vector1 = [3 6 9 12 15] # Output
11>>> matrix1 = ar ray (([0 , 1] , [1 , 3])) # An array of arrays

>>> pr in t (matrix1) # Print matrix1
13[[0 1]

[1 3]]
15>>> pr in t (’ vector1 . shape= ’ , v ector1 . shape)

vector1 . shape = (5)
17>>> pr in t (matrix1 * matrix1) # Matrix multiply

[[0 1]
19[1 9]]

We see here that we have initialized an array object, added two 1D array objects
together, and printed out the result. Likewise we see that multiplying an array by
a constant does in fact multiply each element by that constant (line 8). We then
construct a “matrix” as a 1D array of two 1D arrays, and when we print it out,
we note that it does indeed look like a matrix. However, when we multiply this

matrix by itself, the result is not

[
1 3
3 10

]
that one normally expects frommatrix

multiplication. So if you need actual mathematical matrices, then you need to use
NumPy!
Nowwe give some examples of the use of NumPy, but do refer the reader to the

NumPy Tutorial (NumPyTut, 2012) and to the articles in Computing in Science
and Engineering (Perez et al., 2010) formore information. To start, we note that a
NumPy array can hold up to 32 dimensions (32 indices), but each elementmust be
of the same type (a uniform array). The elements are not restricted to just floating-
point numbers or integers, but can be any object, as long as all elements are of this
same type. (Compound objects may be useful, for example, for storing parts of
data sets.) There are various ways to create arrays, with square brackets [. . .] used
for indexing in all cases. First we start with a Python list (tuples work as well) and
create an array from it:

1>>> from numpy import *
>>> a = ar ray ([1 , 2 , 3 , 4]) # Array from a l i s t

3>>> a # Check with print
ar ray ([1 , 2 , 3 , 4])

Notice that it is essential to have the square brackets within the round brackets
because the square brackets produce the list object while the round brackets indi-
cate a function argument. Note also that because the data in our original list were
all integers, the created array is a 32-bit integer data types, which we can check by
affixing the dtype method:

>>> a . dtype
2dtype (’ int32 ’)

1296.5 Numerical Python (NumPy) Arrays

If we had startedwith floating-point numbers, or amix of floats and ints, wewould
have ended up with floating-point arrays:

>>> b = ar ray ([1 . 2 , 2 . 3 , 3 . 4])
2>>> b

ar ray ([1 . 2 , 2 . 3 , 3 . 4])
4>>> b . dtype

dtype (’ f l o a t 6 4 ’)

When describing NumPy arrays, the number of “dimensions,” ndim, means the
number of indices, which, as we said, can be as high as 32. What might be called
the “size” or “dimensions” of a matrix in mathematics is called the shape of a
NumPy array. Furthermore, NumPy does have a size method that returns the total
number of elements. Because Python’s lists and tuples are all one dimensional, if
we want an array of a particular shape, we can attain that by affixing the reshape
method when we create the array. Where Python has a range function to gener-
ate a sequence of numbers, NumPy has an arange function that creates an array,
rather than a list. Here we use it and then reshape the 1D array into a 3 × 4 array:

1>>> import numpy as np
>>> np . arange (12) # Lis t of 12 int s in 1D array

3a r r ay ([0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11])
>>> np . arange (12) . reshape ((3 , 4)) # Create , shape to 3x4 array

5a r r ay ([[0 , 1 , 2 , 3] ,
[4 , 5 , 6 , 7] ,

7[8 , 9 , 10 , 1 1]])
>>> a = np . arange (12) . reshape ((3 , 4)) # Give array a name

9>>> a
ar ray ([[0 , 1 , 2 , 3] ,

11[4 , 5 , 6 , 7] ,
[8 , 9 , 10 , 1 1]])

13>>> a . shape # Shape = ?
(3L , 4L)

15>>> a . ndim # Dimension ?
2

17>>> a . s i z e # Size of a (number of elements) ?
12

Note that here we imported NumPy as the object np, and then affixed the arange
and reshape methods to this object. We then checked the shape of a, and found it
to have three rows and four columns of long integers (Python 3 may just say ints).
Note too, as we see on line 9, NumPy uses parentheses () to indicate the shape of
an array, and so (3L,4L) indicates an array with three rows and four columns of
long ints.
Now that we have shapes in our minds, we should note that NumPy offers a

number of ways to change shapes. For example, we can transpose an array with
the .T method, or reshape into a vector:

>>> from numpy import *
2>>> a = arange (12) . reshape ((3 , 4)) # Give array a name

>>> a
4a r ray ([[0 , 1 , 2 , 3] ,

[4 , 5 , 6 , 7] ,
6[8 , 9 , 10 , 1 1]])

>>> a .T # Transpose
8a r r ay ([[0 , 4 , 8] ,

130 6 Matrix Computing

[1 , 5 , 9] ,
10[2 , 6 , 10] ,

[3 , 7 , 1 1]])
12>>> b = a . reshape ((1 , 1 2)) # Form vector length 12

>>> b
14a r r ay ([[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 1 1]])

And again, (1,12) indicates an array with 1 row and 12 columns. Yet another handy
way to take a matrix and extract just what you want from it is to use Python’s slice
operator start:stop:step: to take a slice out of an array:

>>> a
2a r ray ([[0 , 1 , 2 , 3] ,

[4 , 5 , 6 , 7] ,
4[8 , 9 , 10 , 1 1]])

>>> a [: 2 , :] # Fir s t 2 rows
6a r r ay ([[0 , 1 , 2 , 3] ,

[4 , 5 , 6 , 7]])
8>>> a [: , 1 : 3] # Columns 1−3

a r ray ([[1 , 2] ,
10[5 , 6] ,

[9 , 1 0]])

We note here that Python indices start counting from 0, and so 1:3 means in-
dices 0, 1, 2 (without 3). As we discuss in Chapter 11, slicing can be very useful
in speeding up programs by picking out and placing in memory just the specific
data elements from a large data set that need to be processed. This avoids the
time-consuming jumping through large segments of memory as well as excessive
reading from disk.
Finally, we remind you that while all elements in a NumPy array must be of the

same data type, that data type can be compound, for example, an array of arrays:

1>>> from numpy import *
>>> M = array ([(10 , 20) , (30 , 40) , (50 , 60)]) # Array of 3 arrays

3>>> M
array ([[1 0 , 20] ,

5[30 , 40] ,
[50 , 6 0]])

7>>> M. shape
(3L , 2L)

9>>> M. s i z e
6

11>>> M. dtype
dtype (’ int32 ’)

Furthermore, an array can be composed of complex numbers by specifying the
complex data type as an option on the array command. NumPy then uses the j
symbol for the imaginary number i:

>>> c = ar ray ([[1 , complex (2 , 2)] , [complex (3 , 2) , 4]] , dtype=complex)
2>>> c

ar ray ([[1 .+0 . j , 2 .+2 . j] ,
4[3 .+2 . j , 4 .+0 . j]])

In the next section, we discuss using true mathematical matrices with NumPy,
which is one use of an array object. Here we note that if you wanted the familiar

1316.5 Numerical Python (NumPy) Arrays

matrix product from two arrays, youwould use the dot function, whereas * is used
for an element-by-element product:

>>> matrix1= ar ray ([[0 , 1] , [1 , 3]])
2>>> matrix1

a r ray ([[0 , 1] ,
4[1 , 3]])

>>> pr in t (dot (matrix1 , matrix1)) # Matrix or dot product
6[[1 3]

[3 10]]
8>>> pr in t (matrix1 * matrix1) # Element−by−element product

[[0 1]
10[1 9]]

NumPy is actually optimized toworkwell with arrays, and in part this is because
arrays are handled and processed much as if they were simple, scalar variables.4)
For example, here is another example of slicing, a technique that is also used in
ordinary Python with lists and tuples, in which two indices separated by a colon
indicate a range:

from v i s u a l import *
s t u f f = zeros (10 , f l o a t)
t = arange (4)
s t u f f [3 : 7] = sq r t (t +1)

Here we start by creating the NumPy array stuff of floats, all of whose 10 elements
are initialized to zero. Then we create the array t containing the four elements [0,
1, 2, 3] by assigning four variables uniformly in the range 0–4 (the “a” in arange
creates floating-point variables, range creates integers). Next we use a slice to as-
sign [sqrt(0+1), sqrt(1+1), sqrt(2+1), sqrt(3+1)] = [1, 1.414, 1.732, 2] to the middle
elements of the stuff array. Note that the NumPy version of the sqrt function, one
of many universal functions (ufunctions) supported by NumPy5), has the amazing
property of automatically outputting an array whose length is that of its argument,
in this case, the array t. In general, major power in NumPy comes from its broad-
casting operation, an operation in which values are assigned to multiple elements
via a single assignment statement. Broadcasting permits Python to vectorize array
operations, which means that the same operation can be performed on different
array elements in parallel (or nearly so). Broadcasting also speeds up processing
because array operations occur in C instead of Python, and with a minimum of
array copies being made. Here is a simple sample of broadcasting:

w = zeros (100 , f l o a t)
w = 23 .7

The first line creates the NumPy array w, and the second line “broadcasts” the
value 23.7 to all elements in the array. There are many possible array operations

4) We thank Bruce Sherwood for helpful comments on these points.
5) A ufunction is a function that operates on N–D arrays in an element-by-element fashion,

supporting array broadcasting, type casting, and several other standard features. In other
words, a ufunc is a vectorized wrapper for a function that takes a fixed number of scalar inputs
and produces a fixed number of scalar outputs.

132 6 Matrix Computing

in NumPy and various rules pertaining to them; we recommend that the serious
user explore the extensive NumPy documentation for additional information.

6.5.1
NumPy’s linalg Package

The array objects of NumPy and Visual are not the same as mathematical matri-
ces, although an array can be used to represent a matrix. Fortunately, there is the
LinearAlgebra package that treats 2D arrays (a 1D array of 1D arrays) as mathe-
matical matrices, and also provides a simple interface to the powerful LAPACK
linear algebra library (Anderson et al., 2013). As we keep saying, there is much to
be gained in speed and reliability from using these libraries rather than writing
your own matrix routines.
Our first example from linear algebra is the standard matrix equation

Ax = b , (6.31)

where we have used an uppercase bold character to represent a matrix and a low-
ercase bold italic character to represent a 1Dmatrix (a vector). Equation 6.31 de-
scribes a set of linear equations with x an unknown vector andA a knownmatrix.
Now we take y yA to be 3 × 3, b to be 3 × 1, and let the program figure out that x
must be a 3 × 1 vector.6) We start by importing all the packages, by inputting a
matrix and a vector, and then by printing out A and x:

>>> from numpy import *
2>>> from numpy . l i n a l g import *

>>> A = ar ray ([[1 , 2 , 3] , [22 , 32 , 42] , [55 , 66 , 100]]) # Array of arrays
4>>> pr in t (’A =’ , A)

A = [[1 2 3]
6[22 32 42]

[55 66 100]]
8>>> b = ar ray ([1 , 2 , 3])

>>> pr in t (’b =’ , b)
10b = [1 2 3]

Because we have the matrices A and b, we can go ahead and solve Ax = b using
NumPy’s solve command, and then test how closeAx − b is to a zero vector:

>>> from numpy . l i n a l g import so l v e
2>>> x = so l v e (A, b) # Finds solut ion

>>> pr in t (’x =’ , x)
4x = [−1.4057971 −0.1884058 0 .92753623] # The solut ion

>>> pr in t (’ Residual =’ , dot (A, x) − b) # LHS−RHS
6

Re s idua l = [4 .44089210e−16 0.00000000 e+00 −3.55271368e−15]

This is really quite impressive. We have solved the entire set of linear equations
(by elimination) with just the single command solve, performed a matrix multi-
plication with the single command dot, did a matrix subtraction with the usual
operator, and are left with a residual essentially equal to machine precision.

6) Do not be bothered by the fact that although we think these vectors as 3 × 1, they sometimes
get printed out as 1 × 3; think of all the trees that get saved!

1336.5 Numerical Python (NumPy) Arrays

Although there are more efficient numerical approaches, a direct way to solve

Ax = b (6.32)

is to calculate the inverseA−1, and thenmultiply both sides of the equation by the
inverse, yielding

x = yA−1b (6.33)

1>>> from numpy . l i n a l g import inv
>>> dot (inv (A) , A) # Test inverse

3
a r r ay ([[1 .00000000 e+00 , −1.33226763e−15 , −1.77635684e−15] ,

5[8 .88178420 e−16 , 1.00000000 e+00 , 0.00000000 e +00] ,
[−4.44089210e−16 , 4.44089210 e−16 , 1.00000000 e +00]])

7>>> pr in t (’x =’ , mu l t ip l y (inv (A) , b))
x = [−1.4057971 −0.1884058 0 .92753623] # Solution

9>>> pr in t (’ Residual =’ , dot (A, x) − b)

11Re s idua l = [4.44089210 e−16 0.00000000 e+00 −3.55271368e−15]

Herewe first tested that inv(A) is in fact the inverse of A by seeing if A times inv(A)
equals the identity matrix. Then we used the inverse to solve the matrix equation
directly, and got the same answer as before (some error at the level of machine
precision is just fine).
Our second example occurs in the solution for the principal-axes system of a

cube, and requires us to find a coordinate system in which the inertia tensor is
diagonal. This entails solving the eigenvalue problem

Iω = λω , (6.34)

where I is the inertia matrix (tensor), ω is an unknown eigenvector, and λ is an
unknown eigenvalue. The program Eigen.py solves for the eigenvalues and vec-
tors, and shows how easy it is to deal with matrices. Here it is in an abbreviated
interpretive mode:

1>>> from numpy import *
>>> from numpy . l i n a l g import e ig

3>>> I = ar ray ([[2 . / 3 , − 1 . / 4] , [− 1 . / 4 , 2 . / 3]])
>>> pr in t (’ I =\n ’ , I)

5I =
[[0.66666667 −0.25]

7[−0.25 0.66666667]]
>>> Es , e v ec to r s = e ig (A) # Solves eigenvalue problem

9>>> pr in t (’ Eigenvalues =’ , Es , ’ \n Eigenvector Matrix =\n ’ , e v e c to r s)
E ig enva lu e s = [0.91666667 0.41666667]

11E igenvector Matrix =
[[0.70710678 0.70710678]

13[−0.70710678 0.70710678]]
>>> Vec = ar ray ([e v ec to r s [0 , 0] , e v ec to r s [1 , 0]])

15>>> LHS = dot (I , Vec) # Matrix x vector
>>> RHS = Es [0] * Vec # Sca lar mult

17>>> pr in t (’LHS - RHS =’ , LHS−RHS) # Test for zero
LHS − RHS = [1.11022302 e−16 −1.11022302e−16]

134 6 Matrix Computing

Table 6.1 The operators of NumPy and their effects.

Operator Effect Operator Effect

dot(a, b[,out]) Dot product arrays vdot(a, b) Dot product
inner(a, b) Inner product arrays outer(a, b) Outer product
tensordot(a, b) Tensor dot product einsum() Einstein sum
linalg.matrix_power(M, n) Matrix to power n kron(a, b) Kronecker product
linalg.cholesky(a) Cholesky decomp linalg.qr(a) QR factorization
linalg.svd(a) Singular val decomp linalg.eig(a) Eigenproblem
linalg.eigh(a) Hermitian eigen linalg.eigvals(a) General eigen
linalg.eigvalsh(a) Hermitian eigenvals linalg.norm(x) Matrix norm
linalg.cond(x) Condition number linalg.det(a) Determinant
linalg.slogdet(a) Sign and log(det) trace(a) Diagnol sum
linalg.solve(a, b) Solve equation linalg.tensorsolve(a, b) Solve ax = b
linalg.lstsq(a, b) Least-squares solve linalg.inv(a) Inverse
linalg.pinv(a) Penrose inverse linalg.tensorinv(a) Inverse N–D array

We see here how, after we set up the array I on line 3, we then solve for its eigen-
values and eigenvectors with the single statement Es, evectors = eig(I) on line 8.
We then extract the first eigenvector on line 14 and use it, along with the first
eigenvalue, to check that (6.34) is in fact satisfied to machine precision.
Well, we think by now you have some idea of the use of NumPy. In Table 6.1 we

indicate some more of what is available.

6.6
Exercise: Testing Matrix Programs

Before you direct the computer to go off crunching numbers on amillion elements
of some matrix, it is a good idea to try out your procedures on a small matrix,
especially one for which you know the right answer. In this way, it will take you
only a short time to realize howhard it is to get the calling procedure perfect. Here
are some exercises.

1. Find the numerical inverse of A =
⎛⎜⎜⎜⎝
+4 −2 +1
+3 +6 −4
+2 +1 +8

⎞⎟⎟⎟⎠.
a) As a general check, applicable even if you do not know the analytic answer,

check your inverse in both directions; that is, check thatAA−1 =A−1A= I,
and note the number of decimal places to which this is true. This also gives
you some idea of the precision of your calculation.

1356.6 Exercise: TestingMatrix Programs

b) Determine the number of decimal places of agreement there is between
your numerical inverse and the analytic result:

A−1 = 1
263

⎛⎜⎜⎜⎝
+52 +17 +2
−32 +30 +19
−9 −8 +30

⎞⎟⎟⎟⎠. Is this similar to the error in AA−1?

2. Consider the same matrix A as before, here being used to describe three si-
multaneous linear equations, Ax = b, or explicitly,

⎛⎜⎜⎜⎝
a00 a01 a02
a10 a11 a12
a20 a21 a22

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
x0
x1
x2

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
b0
b1
b2

⎞⎟⎟⎟⎠ . (6.35)

Now the vector b on the RHS is assumed known, and the problem is to solve
for the vector x. Use an appropriate subroutine to solve these equations for
the three different x vectors appropriate to these three different b values on
the RHS:

b1 =
⎛⎜⎜⎜⎝
+12
−25
+32

⎞⎟⎟⎟⎠ , b2 =
⎛⎜⎜⎜⎝
+4
−10
+22

⎞⎟⎟⎟⎠ , b3 =
⎛⎜⎜⎜⎝
+20
−30
+40

⎞⎟⎟⎟⎠ .

The solutions should be

x1 =
⎛⎜⎜⎜⎝
+1
−2
+4

⎞⎟⎟⎟⎠ , x2 =
⎛⎜⎜⎜⎝
+0.312
−0.038
+2.677

⎞⎟⎟⎟⎠ , x3 =
⎛⎜⎜⎜⎝
+2.319
−2.965
+4.790

⎞⎟⎟⎟⎠ . (6.36)

3. Consider the matrix A =

(
α β
−β α

)
, where you are free to use any values you

want for α and β. Use a numerical eigenproblem solver to show that the eigen-
values and eigenvectors are the complex conjugates:

x1,2 =

(
+1
∓i

)
, λ1,2 = α ∓ iβ . (6.37)

4. Use your eigenproblem solver to find the eigenvalues of the matrix

A =
⎛⎜⎜⎜⎝
−2 +2 −3
+2 +1 −6
−1 −2 +0

⎞⎟⎟⎟⎠ . (6.38)

a) Verify that you obtain the eigenvalues λ1 = 5, λ2 = λ3 = −3. Notice that
double roots can cause problems. In particular, there is a uniqueness issue
with their eigenvectors because any combination of these eigenvectors is
also an eigenvector.

136 6 Matrix Computing

b) Verify that the eigenvector for λ1 = 5 is proportional to

x1 =
1√
6

⎛⎜⎜⎜⎝
−1
−2
+1

⎞⎟⎟⎟⎠ . (6.39)

c) The eigenvalue −3 corresponds to a double root. This means that the cor-
responding eigenvectors are degenerate, which in turnmeans that they are
not unique. Two linearly independent ones are

x2 =
1√
5

⎛⎜⎜⎜⎝
−2
+1
+0

⎞⎟⎟⎟⎠ , x3 =
1√
10

⎛⎜⎜⎜⎝
3
0
1

⎞⎟⎟⎟⎠ . (6.40)

In this case, it is not clear what your eigenproblem solver will give for the
eigenvectors. Try to find a relationship between your computed eigenvec-
tors with the eigenvalue −3 and these two linearly independent ones.

5. Imagine that your model of some physical system results in N = 100 coupled
linear equations in N unknowns:

a00 y0 + a01 y1 +⋯ + a0(N−1) yN−1 = b0 ,
a10 y0 + a11 y1 +⋯ + a1(N−1) yN−1 = b1,

⋯

a(N−1)0 y0 + a(N−1)1 y1 +⋯ + a(N−1)(N−1) yN−1 = bN−1 .

In many cases, the a and b values are known, so your exercise is to solve for
all the x values, taking a as the Hilbert matrix and b as its first column:

[ai j] = a =
[

1
i + j − 1

]
=

⎛⎜⎜⎜⎜⎜⎝

1 1
2

1
3

1
4

⋯ 1
100

1
2

1
3

1
4

1
5

⋯ 1
101

⋱
1

100
1

101
⋯ ⋯ 1

199

⎞⎟⎟⎟⎟⎟⎠
,

[bi] = b =
[1
i

]
=

⎛⎜⎜⎜⎜⎜⎜⎝

1
1
2
1
3
⋱
1
100

⎞⎟⎟⎟⎟⎟⎟⎠
.

Compare to the analytic solution

⎛⎜⎜⎜⎜⎝
y1
y2
⋱

yN

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1
0
⋱

0

⎞⎟⎟⎟⎟⎠
. (6.41)

1376.6 Exercise: TestingMatrix Programs

6. Dirac Gamma Matrices: The Dirac equation extends quantum mechanics to
include relativity and spin 1/2. The extension of the Hamiltonian operator for
an electron requires it to contain matrices, and those matrices are expressed
in terms of 4 × 4 γ matrices that can be represented in terms of the familiar
2 × 2 Pauli matrices σ i :

γ i =

(
0 σi

−σi 0

)
, i = 1, 2, 3 , (6.42)

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (6.43)

Confirm the following properties of the γ matrices:

γ†
2 = γ−1

2 = −γ2 , (6.44)

γ1γ2 = −i

(
σ3 0
0 σ3

)
. (6.45)

6.6.1
Matrix Solution of the String Problem

In Section 6.1, we set up the solution to our problem of two masses on a string.
Now we have the matrix tools needed to solve it. Your problem is to check out
the physical reasonableness of the solution for a variety of weights and lengths.
You should check that the deduced tensions are positive and the deduced angles
correspond to a physical geometry (e.g., with a sketch). Because this is a physics-
based problem, we know the sine and cosine functions must be less than 1 in
magnitude and that the tensions should be similar in magnitude to the weights
of the spheres. Our solution is given in NewtonNDanimate.py (Listing 6.1), which
shows graphically the step-by-step search for a solution.

Listing 6.1 The code NewtonNDanimate.py that shows the step-by-step search for solution of
the two-mass-on-a-string problem via a Newton–Raphson search.

NewtonNDanimate. py : MultiDimension Newton Search

from v i s u a l import *
from numpy . l i n a l g import so l v e
from v i s u a l . graph import *

scene = d i s p l a y (x=0 , y=0 , width =500 , he ight =500 ,
t i t l e = ’ Str ing and masses conf igurat ion ’)

tempe = curve (x=range (0 , 500) , co lo r=co lo r . b lack)

n = 9
eps = 1e−3
der i v = zeros ((n , n) , f l o a t)
f = zeros ((n) , f l o a t)

138 6 Matrix Computing

x = ar ray ([0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 1 . , 1 . , 1 .])

de f p l o t c on f i g () :
f o r ob j in scene . o b j e c t s :

ob j . v i s i b l e =0 # Erase previous configurat ion
L1 = 3 .0
L2 = 4 .0
L3 = 4 .0
xa = L1* x [3] # L1* cos (th1)
ya = L1* x [0] # L1 s in (th1)
xb = xa+L2* x [4] # L1* cos (th1)+L2* cos (th2)
yb = ya+L2* x [1] # L1* s in (th1)+L2* sen (th2)
xc = xb+L3* x [5] # L1* cos (th1)+L2* cos (th2)+L3* cos (th3)
yc = yb−L3* x [2] # L1* s in (th1)+L2* sen (th2)−L3* s in (th3)
mx = 100 .0 # for l inea r coordinate transformation
bx = −500.0 # from 0=< x =<10
my = −100.0 # to −500 =<x_window=>500
by = 400 .0 # same transformation for y
xap = mx* xa+bx # to keep aspect ra t io
yap = my* ya+by
b a l l 1 = sphere (pos=(xap , yap) , co lo r=co lo r . cyan , r ad iu s =15)
xbp = mx* xb+bx
ybp = my* yb+by
b a l l 2 = sphere (pos=(xbp , ybp) , co lo r=co lo r . cyan , r ad iu s =25)
xcp = mx* xc+bx
ycp = my* yc+by
x0 = mx*0+bx
y0 = my*0+by
l i n e 1 = curve (pos =[(x0 , y0) , (xap , yap)] , co l o r=co lo r . yel low , r ad iu s =4)
l i n e 2 = curve (pos =[(xap , yap) , (xbp , ybp)] , co l o r=co lo r . yel low , r ad iu s =4)
l i n e 3 = curve (pos =[(xbp , ybp) , (xcp , ycp)] , co l o r=co lo r . yel low , r ad iu s =4)
t op l i n e = curve (pos =[(x0 , y0) , (xcp , ycp)] , co l o r=co lo r . red , r ad iu s =4)

de f F (x , f) : # F function
f [0] = 3* x [3] + 4* x [4] + 4* x [5] − 8 . 0
f [1] = 3* x [0] + 4* x [1] − 4* x [2]
f [2] = x [6] * x [0] − x [7] * x [1] − 10 .0
f [3] = x [6] * x [3] − x [7] * x [4]
f [4] = x [7] * x [1] + x [8] * x [2] − 20 .0
f [5] = x [7] * x [4] − x [8] * x [5]
f [6] = pow (x [0] , 2) + pow (x [3] , 2) − 1 . 0
f [7] = pow (x [1] , 2) + pow (x [4] , 2) − 1 . 0
f [8] = pow (x [2] , 2) + pow (x [5] , 2) − 1 . 0

de f dFi_dXj (x , der iv , n) : # Deriva t ives
h = 1e−4
f o r j in range (0 , n) :

temp = x [j]
x [j] = x [j] + h / 2 .
F (x , f)
f o r i in range (0 , n) : de r i v [i , j] = f [i]
x [j] = temp

f o r j in range (0 , n) :
temp = x [j]
x [j] = x [j] − h / 2 .
F (x , f)
f o r i in range (0 , n) : de r i v [i , j] = (de r i v [i , j] − f [i]) / h
x [j] = temp

f o r i t in range (1 , 100) :
r a t e (1) # 1 second between graphs
F (x , f)
dFi_dXj (x , der iv , n)
B = ar ray ([[− f [0]] , [− f [1]] , [− f [2]] , [− f [3]] , [− f [4]] , [− f [5]] , \
[− f [6]] , [− f [7]] , [− f [8]]])
s o l = so l v e (der iv , B)
dx = take (so l , (0 ,) , 1) # Fir s t column of sol

1396.6 Exercise: TestingMatrix Programs

f o r i in range (0 , n) :
x [i] = x [i] + dx [i]

p l o t c on f i g ()
errX = errF = errXi = 0 .0
f o r i in range (0 , n) :

i f (x [i] != 0 .) : e rrXi = abs (dx [i] / x [i])
e l s e : e rrXi = abs (dx [i])
i f (e rrXi > errX) : errX = errXi
i f (abs (f [i]) > errF) : errF = abs (f [i])
i f ((errX <= eps) and (e rrF <= eps)) : break

p r in t (’Number o f i t e r a t i o n s = ’ , i t , "\n Final So lut ion : ")
f o r i in range (0 , n) :

pr in t (’x [’ , i , ’] = ’ , x [i])

6.6.2
Explorations

1. See at what point your initial guess for the angles of the strings gets so bad
that the computer is unable to find a physical solution.

2. A possible problem with the formalism we have just laid out is that by in-
corporating the identity sin2 θi + cos2 θi = 1 into the equations, we may be
discarding some information about the sign of sin θ or cos θ. If you look at
Figure 6.1, you can observe that for some values of the weights and lengths, θ2
may turn out to be negative, yet cos θ should remain positive. We can build
this condition into our equations by replacing f7− f9 with f ’s based on the
form

f7 = x4−
√

1 − x21 , f8 = x5−
√

1 − x22 , f9 = x6−
√

1 − x23 . (6.46)

See if this makes any difference in the solutions obtained.
3. ⊙ Solve the similar three-mass problem. The approach is the same, but the

number of equations is larger.

141

7
Trial-and-Error Searching and Data Fitting

In this chapter, we add more tools to our computational toolbox. First, we devise
ways to find solutions to equations by a trial-and-error search, sometimes using our
new-found numerical differentiation tools. Although trial-and-error searchingmay
not sound very precise, it is in fact widely used to solve problems where analytic
solutions do not exist or are not practical. We have already looked at one such ex-
ample inChapter 6, wherewe sawhow the two-weights-on-a-stringproblem led to
matrix equations. In Chapter 8, we combine trial-and-error searching with the so-
lution of ordinary differential equations to solve the general quantum eigenvalue
problem. The second part of this chapter introduces some aspects of data fitting.
We examine how to interpolate within a table of numbers and how to do a least-
squares fit of a function to data, the latter often requiring a search.

7.1
Problem 1: A Search for Quantum States in a Box

Many computer techniques are well-defined sets of procedures leading to definite
outcomes. In contrast, some computational techniques are trial-and-error algo-
rithms in which decisions on what path to follow are made based on the current
values of variables, and the program quits only when it thinks it has solved the
problem. (We already did some of this when we summed a power series until the
terms became small.) Writing this type of program is usually interesting because
we must foresee how to have the computer act intelligently in all possible situa-
tions, and running them is very much like an experiment in which it is hard to
predict what the computer will come up with.

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

142 7 Trial-and-Error Searchingand Data Fitting

Problem Probably themost standard problem in quantummechanics1) is to solve
for the energies of a particle of massm bound within a 1D square well of radius a:

V (x) =

{
−V0, for |x| ≤ a ,
0, for |x| ≥ a .

(7.1)

As shown in quantum mechanics texts (Gottfried, 1966), the energies of the
bound states E = −EB < 0 within this well are solutions of the transcendental
equations√

10 − EB tan
(√

10 − EB

)
=

√
EB (even) , (7.2)

√
10 − EBcotan

(√
10 − EB

)
=

√
EB (odd) , (7.3)

where even and odd refer to the symmetry of the wave function. Here we have
chosen units such that ℏ = 1, 2m = 1, a = 1, and V0 = 10. Your problem is to

1. Find several bound-state energies EB for even wave functions, that is, the so-
lution of (7.2).

2. See if making the potential deeper, say, by changing the 10 to a 20 or a 30,
produces a larger number of, or deeper, bound states.

7.2
Algorithm: Trial-and-Error Roots via Bisection

Trial-and-error root finding looks for a value of x for which

f (x) ≃ 0 , (7.4)

where the 0 on the right-hand side is conventional (an equation such as 10 sin x =
3x3 can easily be written as 10 sin x− 3x3 = 0). The search procedure starts with a
guessed value for x, substitutes that guess into f (x) (the “trial”), and then sees how
far the LHS is from zero (the “error”). The program then changes x based on the
error and tries out the new guess in f (x). The procedure continues until f (x) ≃ 0
to some desired level of precision, or until the changes in x are insignificant, or if
the search seems endless.
The most elementary trial-and-error technique is the bisection algorithm. It is

reliable but slow. If you know some interval in which f (x) changes sign, then
the bisection algorithm will always converge to the root by finding progressively

1) We solve this same problem in Section 9.1 using an approach that is applicable to almost any
potential and which also provides the wave functions. The approach of this section works only
for the eigen energies of a square well.

1437.2 Algorithm: Trial-and-Error Roots via Bisection

f(x)

x

x+1

x–2

x–1

x+4

x–3

+0–

Figure 7.1 A graphical representation of the
steps involved in solving for a zero of f (x) us-
ing the bisection algorithm. The bisection
algorithm takes the midpoint of the interval as

the new guess for x, and so each step reduces
the interval size by one-half. Four steps are
shown for the algorithm.

smaller and smaller intervals within which the zero lies. Other techniques, such
as the Newton–Raphson method we describe next, may converge more quickly,
but if the initial guess is not close, it may become unstable and fail completely.
The basis of the bisection algorithm is shown in Figure 7.1. We start with two

values of x between which we know that a zero occurs. (You can determine these
bymaking a graph or by stepping through different x values and looking for a sign
change.) To be specific, let us say that f (x) is negative at x− and positive at x+:

f (x−) < 0 , f (x+) > 0 . (7.5)

(Note that it may well be that x− > x+ if the function changes from positive to
negative as x increases.) Thus, we start with the interval x+ ≤ x ≤ x− within which
we know a zero occurs. The algorithm (implemented as in Listing 7.1) then picks
the new x as the bisection of the interval and selects as its new interval the half in
which the sign change occurs:

x = (xPlus + xMinus) / 2
i f (f (x) f (xP lus) > 0) xPlus = x
e l s e xMinus = x

This process continues until the value of f (x) is less than a predefined level of
precision or until a predefined (large) number of subdivisions occurs.

144 7 Trial-and-Error Searchingand Data Fitting

Listing 7.1 The Bisection.py is a simple implementation of the bisection algorithm for finding
a zero of a function, in this case 2 cos x − x.

Bisect ion . py Find zero v ia Bisect ion algorithm

from v i s u a l . graph import *

de f f (x) : # Function = 0?
re turn 2* cos (x) − x

de f b i s e c t i on (xminus , xplus , Nmax, eps) : # x+ , x− , Nmax, error
f o r i t in range (0 , Nmax) :

x = (xp lus + xminus) / 2 . # Mid point
pr in t (" i t " , i t , " x " , x , " f (x) " , f (x))
i f (f (xp lus) * f (x) > 0 .) : # Root in other ha l f

xplus = x # Change x+ to x
e l s e :

xminus = x # Change x− to x
i f (abs (f (x)) < eps) : # Converged?

pr in t ("\n Root found with pr ec i s i o n eps = " , eps)
break

i f i t == Nmax−1:
pr in t ("\n Root NOT found a f t e r Nmax i t e r a t i o n s \n")

re turn x

eps = 1e−6 # Precision of zero
a = 0 . 0 ; b = 7 .0 # Root in [a , b]
imax = 100 # Max no . i t e ra t ions
root = b i s e c t i on (a ,b , imax , eps)
pr in t (" Root =" , root)

The example in Figure 7.1 shows the first interval extending from x− = x+1
to x+ = x−1.We bisect that interval at x, and because f (x) < 0 at themidpoint, we
set x− ≡ x−2 = x and label it x−2 to indicate the second step.We then use x+2 ≡ x+1
and x−2 as the next interval and continue the process.We see that only x− changes
for the first three steps in this example, but for the fourth step x+ finally changes.
The changes then become too small for us to show.

7.2.1
Implementation: Bisection Algorithm

1. The first step in implementing any search algorithm is to get an idea of what
your function looks like. For the present problem, you do this bymaking a plot
of f (E) =

√
10 − EB tan(

√
10 − EB) −

√
EB vs. EB. Note from your plot some

approximate values at which f (EB) = 0. Your program should be able to find
more exact values for these zeros.

2. Write a program that implements the bisection algorithm and use it to find
some solutions of (7.2).

3. Warning: Because the tan function has singularities, you have to be careful.
In fact, your graphics program (or Maple) may not function accurately near
these singularities. One cure is to use a different but equivalent form of the
equation. Show that an equivalent form of (7.2) is√

E cot(
√
10 − E) −

√
10 − E = 0 . (7.6)

1457.3 Improved Algorithm:Newton–Raphson Searching

4. Make a second plot of (7.6), which also has singularities but at different places.
Choose some approximate locations for zeros from this plot.

5. Evaluate f (EB) and thus determine directly the precision of your solution.
6. Compare the roots you find with those given by Maple or Mathematica.

7.3
Improved Algorithm: Newton–Raphson Searching

The Newton–Raphson algorithm finds approximate roots of the equation

f (x) = 0 (7.7)

more quickly than the bisection method. As we see graphically in Figure 7.2, this
algorithm is the equivalent of drawing a straight line f (x) ≃ mx + b tangent to
the curve at an x value for which f (x) ≃ 0 and then using the intercept of the line
with the x-axis at x = −b∕m as an improved guess for the root. If the “curve” was
a straight line, the answer would be exact; otherwise, it is a good approximation
if the guess is close enough to the root for f (x) to be nearly linear. The process
continues until some set level of precision is reached. If a guess is in a region
where f (x) is nearly linear (Figure 7.2), then the convergence is much more rapid
than for the bisection algorithm.
The analytic formulation of the Newton–Raphson algorithm starts with an old

guess x0 and expresses a new guess x as a correction Δx to the old guess:

x0 = old guess , Δx = unknown correction (7.8)

⇒ x = x0 + Δx = (unknown) new guess . (7.9)

1

2

3x

f(x)

Figure 7.2 A graphical representation of the steps involved in solving for a zero of f (x) using
the Newton–Raphsonmethod. The Newton–Raphson method takes the new guess as the zero
of the line tangent to f (x) at the old guess. Two guesses are shown.

146 7 Trial-and-Error Searchingand Data Fitting

We next expand the known function f (x) in a Taylor series around x0 and keep
only the linear terms:

f (x = x0 + Δx) ≃ f (x0) +
d f
dx

||||x0 Δx . (7.10)

We then determine the correction Δx by calculating the point at which this linear
approximation to f (x) crosses the x-axis:

f (x0) +
d f
dx

||||x0 Δx = 0 , (7.11)

⇒ Δx = −
f (x0)

d f ∕dx||x0 . (7.12)

The procedure is repeated starting at the improved x until some set level of pre-
cision is obtained.
The Newton–Raphson algorithm (7.12) requires evaluation of the deriva-

tive d f ∕dx at each value of x0. In many cases, you may have an analytic expres-
sion for the derivative and can build it into the algorithm. However, especially for
more complicated problems, it is simpler and less error-prone to use a numerical
forward-difference approximation to the derivative2):

d f
dx

≃
f (x + δx) − f (x)

δx
, (7.13)

where δx is some small change in x that you just chose (different from the Δ used
for searching in (7.12)). While a central-difference approximation for the deriva-
tive would be more accurate, it would require additional evaluations of the f ’s,
and once you find a zero, it does not matter how you got there. In Listing 7.2, we
give a programNewtonCD.py that implement the searchwith the central difference
derivative.

Listing 7.2 NewtonCD.py uses the Newton–Raphson method to search for a zero of the func-
tion f (x). A central-difference approximation is used to determine d f∕dx.

NewtonCD . py Newton Search with centra l d i f ference

from math import cos

x = 4 . ; dx = 3 . e−1; eps = 0 . 2 ; # Parameters
imax = 100 ; # Max no of i t e ra t ions

de f f (x) : # Function
re turn 2* cos (x) − x

f o r i t in range (0 , imax + 1) :
F = f (x)
i f (abs (F) <= eps) : # Check for convergence

pr in t ("\n Root found , F =" , F , " , to lerance eps = " , eps)

2) We discuss numerical differentiation in Chapter 5.

1477.3 Improved Algorithm:Newton–Raphson Searching

break
p r in t (" I t e r a t i o n # = " , i t , " x = " , x , " f (x) = " , F)
d f = (f (x + dx / 2) − f (x − dx / 2)) / dx # Central d i f f
dx = − F / df
x += dx # New guess

7.3.1
Newton–Raphsonwith Backtracking

Two examples of possible problems with the Newton–Raphson algorithm are
shown in Figure 7.3. In Figure 7.3a, we see a case where the search takes us
to an x value where the function has a local minimum or maximum, that is,
where d f ∕dx = 0. Because Δx = − f ∕ f ′, this leads to a horizontal tangent (di-
vision by zero), and so the next guess is x = ∞, from where it is hard to return.
When this happens, you need to start your search with a different guess and pray
that you do not fall into this trap again. In cases where the correction is very large
but maybe not infinite, you may want to try backtracking (described below) and
hope that by taking a smaller step you will not get into as much trouble.
In Figure 7.3b, we see a case where a search falls into an infinite loop surround-

ing the zero without ever getting there. A solution to this problem is called back-
tracking. As the name implies, in cases where the new guess x0 + Δx leads to an
increase in themagnitude of the function, | f (x0 +Δx)|2 > | f (x0)|2, you can back-
track somewhat and try a smaller guess, say, x0 +Δx∕2. If themagnitude of f still
increases, then you just need to backtrack somemore, say, by trying x0 + Δx∕4 as
your next guess, and so forth. Because you know that the tangent line leads to a
local decrease in | f |, eventually an acceptable small enough step should be found.
The problem in both these cases is that the initial guesseswere not close enough

to the regions where f (x) is approximately linear. So again, a good plot may help
produce a good first guess. Alternatively, you may want to start your search with
the bisection algorithm and then switch to the fasterNewton–Raphson algorithm
when you get closer to the zero.

f(x) f(x)

x

x

2

2
4

31

1

(a) (b)

Figure 7.3 Two examples of how the
Newton–Raphson algorithmmay fail if the
initial guess is not in the region where f (x)
can be approximated by a straight line. (a) A
guess lands at a local minimum/maximum,

that is, a place where the derivative vanishes,
and so the next guess ends up at x = ∞. (b)
The search has fallen into an infinite loop.
The technique know as “backtracking” could
eliminate this problem.

148 7 Trial-and-Error Searchingand Data Fitting

7.3.2
Implementation: Newton–RaphsonAlgorithm

1. Use the Newton–Raphson algorithm to find some energies EB that are solu-
tions of (7.2). Compare these solutions with the ones found with the bisection
algorithm.

2. Again, notice that the 10 in (7.2) is proportional to the strength of the potential
that causes the binding. See if making the potential deeper, say, by changing
the 10 to a 20 or a 30, produces more or deeper bound states. (Note that in
contrast to the bisection algorithm, your initial guess must be closer to the
answer for the Newton–Raphson algorithm to work.)

3. Modify your algorithm to include backtracking and then try it out on some
difficult cases.

4. Evaluate f (EB) and thus determine directly the precision of your solution.

7.4
Problem 2: Temperature Dependence of Magnetization

Problem Determine M(T) the magnetization as a function of temperature for
simple magnetic materials.
A collection of N spin-1/2 particles each with the magnetic moment μ is at

temperature T . The collection has an external magnetic field B applied to it and
comes to equilibrium with NL particles in the lower energy state (spins aligned
with the magnetic field), and with NU particles in the upper energy state (spins
opposed to the magnetic field). The Boltzmann distribution law tells us that the
relative probability of a state with energy E is proportional to exp(−E∕(kBT)),
where kB is Boltzmann’s constant. For a dipole with moment μ, its energy in a
magnetic field is given by the dot product E=−μ ⋅B. Accordingly, spin-up particle
have lower energy in amagnetic field than spin-down particles, and thus aremore
probable.
Applying the Boltzmann distribution to our spin problem, we have that the

number of particles in the lower energy level (spin up) is

NL = N eμB∕(kBT)

eμB∕(kBT) + e−μB∕(kBT)
, (7.14)

while the number of particles in the upper energy level (spin down) is

NU = N e−μB∕(kBT)

eμB∕(kBT) + e−μB∕(kBT)
. (7.15)

As discussed by (Kittel, 2005), we now assume that the molecular magnetic
field B = λM is much larger than the applied magnetic field and so replace B by
the molecular field. This permits us to eliminate B from the preceding equations.
The magnetization M(T) is given by the individual magnetic moment μ times

1497.4 Problem 2: Temperature Dependence of Magnetization

the net number of particles pointing in the direction of the magnetic field:

M(T) = μ × (NL − NU) (7.16)

= Nμ tanh
(
λμM(T)
kBT

)
. (7.17)

Note that this expression appears to make sense because as the temperature ap-
proaches zero, all spins will be aligned along the direction of B and soM(T = 0) =
Nμ.

Solution via Searching Equation 7.17 relates the magnetization and the temper-
ature. However, it is not really a solution to our problem because M appears on
the LHS of the equation as well as within the hyperbolic function on the RHS.
Generally, a transcendental equation of this sort does not have an analytic solu-
tion that would giveM as simply a function of the temperature T . But by working
backward, we can find a numerical solution. To do that we first express (7.17) in
terms of the reduced magnetization m, the reduced temperature t, and the Curie
temperature Tc:

m(t) = tanh
(
m(t)
t

)
, (7.18)

m(T) = M(T)
Nμ

, t = T
Tc

, Tc =
Nμ2λ
kB

. (7.19)

While it is no easier to find an analytic solution to (7.18) than it was to (7.17), the
simpler form of (7.18) makes the programming easier as we search for values of t
and m that satisfy (7.18).

m
0

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.5 1 1.5 2 2.5

t = 0.5

t = 1

t = 2

tanh(m/t) – m

Figure 7.4 A function of the reduced magnetismm at three reduced temperatures t. A zero of
this function determines the value of the magnetism at a particular value of t.

150 7 Trial-and-Error Searchingand Data Fitting

One approach to a trial-and-error solution is to define a function

f (m, t) = m − tanh
(
m(t)
t

)
, (7.20)

and then, for a variety of fixed t = ti values, search for those m values at which
f (m, ti) = 0. (One could just as well fix the value of m to mj and search for the
value of t for which f (mj , t) = 0; once you have a solution, you have a solution.)
Each zero so found gives us a single value of m(ti). A plot or a table of these val-
ues for a range of ti values then provides the best we can do as the desired solu-
tion m(t).
Figure 7.4 shows three plots of f (m, t) as a function of the reduced magnetiza-

tionm, each plot for a different value of the reduced temperature. As you can see,
other than the uninteresting solution at m = 0, there is only one solution (a zero)
near m = 1 for t = 0.5, and no solution at other temperatures.

7.4.1
Searching Exercise

1. Find the root of (7.20) to six significant figures for t = 0.5 using the bisection
algorithm.

2. Find the root of (7.20) to six significant figures for t = 0.5 using the Newton–
Raphson algorithm.

3. Compare the time it takes to find the solutions for the bisection and Newton–
Raphson algorithms.

4. Construct a plot of the reduced magnetization m(t) as a function of the re-
duced temperature t.

7.5
Problem 3: Fitting An Experimental Spectrum

Data fitting is an art worthy of serious study by all scientists (Bevington and Robin-
son,2002). In the sections to follow,we just scratch the surfacebyexamininghowto
interpolatewithin a table of numbers and how to do a least-squares fit to data. We
also show how to go about making a least-squares fit to nonlinear functions using
some of the search techniques and subroutine librarieswe have already discussed.

Problem The cross sections measured for the resonant scattering of neutrons
from a nucleus are given in Table 7.1. Your problem is to determine values for the
cross sections at energy values lying between those in the table.
You can solve this problem in a number of ways. The simplest is to numerically

interpolate between the values of the experimental f (Ei) given in Table 7.1. This
is direct and easy but does not account for there being experimental noise in the
data. A more appropriate solution (discussed in Section 7.7) is to find the best

1517.5 Problem 3: Fitting An Experimental Spectrum

Table 7.1 Experimental values for a scattering cross section (f (E) in the theory), each with
absolute error ±σi , as a function of energy (xi in the theory).

i = 1 2 3 4 5 6 7 8 9

Ei (MeV) 0 25 50 75 100 125 150 175 200
g(Ei) (mb) 10.6 16.0 45.0 83.5 52.8 19.9 10.8 8.25 4.7
Error (mb) 9.34 17.9 41.5 85.5 51.5 21.5 10.8 6.29 4.14

fit of a theoretical function to the data. We start with what we believe to be the
“correct” theoretical description of the data,

f (E) =
f r

(E − Er)2 + Γ2∕4
, (7.21)

where f r , Er, and Γ are unknown parameters. We then adjust the parameters to
obtain the best fit. This is a best fit in a statistical sense but in fact may not pass
through all (or any) of the data points. For an easy, yet effective, introduction to
statistical data analysis, we recommend (Bevington and Robinson, 2002).
These two techniques of interpolation and least-squares fitting are powerful

tools that let you treat tables of numbers as if they were analytic functions and
sometimes let you deduce statistically meaningful constants or conclusions from
measurements. In general, you can view data fitting as global or local. In global
fits, a single function in x is used to represent the entire set of numbers in a table
like Table 7.1. While it may be spiritually satisfying to find a single function that
passes through all the data points, if that function is not the correct function for
describing the data, the fit may show nonphysical behavior (such as large oscilla-
tions) between the data points. The rule of thumb is that if you must interpolate,
keep it local and view global interpolations with a critical eye.
Consider Table 7.1 as ordered data that we wish to interpolate. We call the in-

dependent variable x and its tabulated values xi(i = 1, 2,…), and assume that the
dependent variable is the function g(x), with the tabulated values gi = g(xi). We
assume that g(x) can be approximated as an (n − 1)-degree polynomial in each
interval i:

gi(x) ≃ a0 + a1x + a2x2 +⋯ + an−1xn−1 , (x ≃ xi) . (7.22)

Because our fit is local, we do not assume that one g(x) can fit all the data in the
table but instead use a different polynomial, that is, a different set of ai values,
for each interval. While each polynomial is of low degree, multiple polynomials
are needed to span the entire table. If some care is taken, the set of polynomials
so obtained will behave well enough to be used in further calculations without
introducing much unwanted noise or discontinuities.
The classic interpolation formula was created by Lagrange. He figured out a

closed-form expression that directly fits the (n − 1)-order polynomial (7.22) to n
values of the function g(x) evaluated at the points xi . The formula for each interval

152 7 Trial-and-Error Searchingand Data Fitting

is written as the sum of polynomials:

g(x) ≃ g1λ1(x) + g2λ2(x) +⋯ + gnλn(x) , (7.23)

λi(x) =
n∏

j(≠i)=1
x − x j

xi − x j
=

x − x1
xi − x1

x − x2
xi − x2

⋯
x − xn
xi − xn

. (7.24)

For three points, (7.23) provides a second-degree polynomial, while for eight
points it gives a seventh-degree polynomial. For example, assume that we are
given the points and function values

x1−4 = (0, 1, 2, 4) g1−4 = (−12,−12,−24,−60) . (7.25)

With four points, the Lagrange formula determines a third-order polynomial that
reproduces each of the tabulated values:

g(x) = (x − 1)(x − 2)(x − 4)
(0 − 1)(0 − 2)(0 − 4)

(−12) + x(x − 2)(x − 4)
(1 − 0)(1 − 2)(1 − 4)

(−12)

+ x(x − 1)(x − 4)
(2 − 0)(2 − 1)(2 − 4)

(−24) + x(x − 1)(x − 2)
(4 − 0)(4 − 1)(4 − 2)

(−60),

⇒ g(x) = x3 − 9x2 + 8x − 12 .
(7.26)

As a check, we see that

g(4) = 43 − 9(42) + 32 − 12 = −60 , g(0.5) = −10.125 . (7.27)

If the data contain little noise, this polynomial can be used with some confidence
within the range of the data, but with risk beyond the range of the data.
Notice that Lagrange interpolation has no restriction that the points xi be

evenly spaced. Usually, the Lagrange fit is made to only a small region of the table
with a small value of n, despite the fact that the formula works perfectly well for
fitting a high-degree polynomial to the entire table. The difference between the
value of the polynomial evaluated at some x and that of the actual function can
be shown to be the remainder

Rn ≃
(x − x1)(x − x2)⋯ (x − xn)

n!
g(n)(ζ) , (7.28)

where ζ lies somewhere in the interpolation interval.What significant here is that
we see that if significant high derivatives exist in g(x), then it cannot be approxi-
mated well by a polynomial. For example, a table of noisy data would have signif-
icant high derivatives.

7.5.1
Lagrange Implementation, Assessment

Consider the experimental neutron scattering data in Table 7.1. The expected the-
oretical functional form that describes these data is (7.21), and our empirical fits
to these data are shown in Figure 7.5.

1537.5 Problem 3: Fitting An Experimental Spectrum

1. Write a subroutine to perform an n-point Lagrange interpolation using (7.23).
Treat n as an arbitrary input parameter. (You may also perform this exercise
with the spline fits discussed in Section 7.5.2.)

2. Use the Lagrange interpolation formula to fit the entire experimental spec-
trum with one polynomial. (This means that you must fit all nine data points
with an eight-degree polynomial.) Then use this fit to plot the cross section in
steps of 5MeV.

3. Use your graph to deduce the resonance energy Er (your peak position) and Γ
(the full-width at half-maximum). Compare your results with those predicted
by a theorist friend, (Er , Γ) = (78, 55)MeV.

4. A more realistic use of Lagrange interpolation is for local interpolation with
a small number of points, such as three. Interpolate the preceding cross-
sectional data in 5-MeV steps using three-point Lagrange interpolation for
each interval. (Note that the end intervals may be special cases.)

5. We deliberately have not discussed extrapolation of data because it can lead
to serious systematic errors; the answer you get may well depend more on the
function you assume than on the data you input. Add some adventure to your
life and use the programs you have written to extrapolate to values outside
Table 7.1. Compare your results to the theoretical Breit–Wigner shape (7.21).

This example shows how easy it is to go wrong with a high-degree-polynomial
fit to data with errors. Although the polynomial is guaranteed to pass through all
the data points, the representation of the function away from these points can be
quite unrealistic. Using a low-order interpolation formula, say, n = 2 or 3, in each
interval usually eliminates the wild oscillations, but may not have any theoreti-
cal justification. If these local fits are matched together, as we discuss in the next
section, a rather continuous curve results. Nonetheless, youmust recall that if the
data contain errors, a curve that actually passes through themmay lead you astray.
We discuss how to do this properly with least-squares fitting in Section 7.7.

7.5.2
Cubic Spline Interpolation (Method)

If you tried to interpolate the resonant cross section with Lagrange interpolation,
then you saw that fitting parabolas (three-point interpolation) within a table may
avoid the erroneous and possibly catastrophic deviations of a high-order formula.
(A two-point interpolation, which connects the points with straight lines,may not
lead you far astray, but it is rarely pleasing to the eye or precise.) A sophisticated
variation of an n = 4 interpolation, known as cubic splines, often leads to surpris-
ingly eye-pleasing fits. In this approach (Figure 7.5), cubic polynomials are fit to
the function in each interval, with the additional constraint that the first and sec-
ond derivatives of the polynomials be continuous from one interval to the next.
This continuity of slope and curvature is what makes the spline fit particularly
eye-pleasing. It is analogous to what happens when you use the flexible spline

154 7 Trial-and-Error Searchingand Data Fitting

0 50 100 150 200

E (MeV)

0

20

40

60

80

C
ro

s
s
 S

e
c
ti
o

n

Data
Lagrange

Cubic Splines
Parabola (lst sq)

Figure 7.5 Three fits to data. Dashed: Lagrange interpolation using an eight-degree polyno-
mial; Short dashes: cubic splines fit ; Long dashed: Least-squares parabola fit.

drafting tool (a lead wire within a rubber sheath) from which the method draws
its name.
The series of cubic polynomials obtained by spline-fitting a table of data can

be integrated and differentiated and is guaranteed to have well-behaved deriva-
tives. The existence of meaningful derivatives is an important consideration. As a
case in point, if the interpolated function is a potential, you can take the deriva-
tive to obtain the force. The complexity of simultaneously matching polynomials
and their derivatives over all the interpolation points leads to many simultaneous
linear equations to be solved. This makes splines unattractive for hand calcula-
tion, yet easy for computers and, not surprisingly, popular in both calculations and
computer drawing programs. To illustrate, the smooth solid curve in Figure 7.5 is
a spline fit.
The basic approximation of splines is the representation of the function g(x) in

the subinterval [xi , xi+1] with a cubic polynomial:

g(x) ≃ gi(x) , for xi ≤ x ≤ xi+1 , (7.29)

gi(x) = gi + g′i (x − xi) +
1
2
g′′i (x − xi)2 +

1
6
g′′′i (x − xi)3 . (7.30)

This representationmakes it clear that the coefficients in the polynomial equal the
values of g(x) and its first, second, and third derivatives at the tabulated points xi .
Derivatives beyond the third vanish for a cubic. The computational chore is to
determine these derivatives in terms of the N tabulated gi values. The matching
of gi at the nodes that connect one interval to the next provides the equations

gi(xi+1) = gi+1(xi+1) , i = 1,N − 1 . (7.31)

1557.5 Problem 3: Fitting An Experimental Spectrum

Thematching of the first and second derivatives at each interval’s boundaries pro-
vides the equations

g′i−1(xi) = g′i (xi) , g′′i−1(xi) = g′′i (xi) . (7.32)

The additional equations needed to determine all constants are obtained by
matching the third derivatives at adjacent nodes. Values for the third derivatives
are found by approximating them in terms of the second derivatives:

g′′′i ≃
g′′i+1 − g′′i
xi+1 − xi

. (7.33)

As discussed in Chapter 5, a central-difference approximation would be more ac-
curate than a forward-difference approximation, yet (7.33) keeps the equations
simpler.
It is straightforward yet complicated to solve for all the parameters in (7.30).

We leave that to the references (Thompson, 1992; Press et al., 1994). We can see,
however, that matching at the boundaries of the intervals results in only (N − 2)
linear equations for N unknowns. Further input is required. It usually is taken
to be the boundary conditions at the endpoints a = x1 and b = xN , specifically,
the second derivatives g′′(a) and g′′(b). There are several ways to determine these
second derivatives:

Natural spline: Set g′′(a) = g′′(b) = 0; that is, permit the function to have a slope
at the endpoints but no curvature. This is “natural” because the derivative
vanishes for the flexible spline drafting tool (its ends being free).

Input values for g′ at the boundaries: The computer uses g′(a) to approxi-
mate g′′(a). If you do not know the first derivatives, you can calculate them
numerically from the table of gi values.

Input values for g′′ at the boundaries: Knowing values is of course better than
approximating values, but it requires the user to input information. If the val-
ues of g′′ are not known, they can be approximated by applying a forward-
difference approximation to the tabulated values:

g′′(x) ≃
[g(x3) − g(x2)]∕[x3 − x2] − [g(x2) − g(x1)]∕[x2 − x1]

[x3 − x1]∕2
. (7.34)

7.5.2.1 Cubic Spline Quadrature (Exploration)
A powerful integration scheme is to fit an integrand with splines and then inte-
grate the cubic polynomials analytically. If the integrand g(x) is known only at its
tabulated values, then this is about as good an integration scheme as is possible;
if you have the ability to calculate the function directly for arbitrary x, Gaussian
quadrature may be preferable. We know that the spline fit to g in each interval is
the cubic (7.30)

g(x) ≃ gi + g′i (x − xi) +
1
2
g′′i (x − xi)2 +

1
6
g′′′i (x − xi)3 . (7.35)

156 7 Trial-and-Error Searchingand Data Fitting

It is easy to integrate this to obtain the integral of g for this interval and then to
sum over all intervals:

xi+1

∫
xi

g(x)dx ≃
(
gix +

1
2
g′i x

2 + 1
6
g′′i x

3 + 1
24

g′′′i x4
)||||xi+1xi

, (7.36)

xk

∫
x j

g(x)dx =
k∑
i= j

(
gix +

1
2
g′i x

2
i +

1
6
g′′i x

3 + 1
24

g′′′i x4
)||||xi+1xi

. (7.37)

Making the intervals smaller does not necessarily increase precision, as subtrac-
tive cancelations in (7.36) may get large.

Spline Fit of Cross Section (Implementation) Fitting a series of cubics to data is a
little complicated to program yourself, so we recommend using a library routine.
While we have found quite a few Java-based spline applications available on the
Internet, none seemed appropriate for interpreting a simple set of numbers. That
being the case, we have adapted the splint.c and the spline.c functions from (Press
et al., 1994) to produce the SplineInteract.py program shown in Listing 7.3 (there
is also an applet). Your problem for this section is to carry out the assessment in
Section 7.5.1 using cubic spline interpolation rather than Lagrange interpolation.

7.6
Problem 4: Fitting Exponential Decay

Problem Figure 7.6 presents actual experimental data on the number of de-
cays ΔN of the π meson as a function of time (Stetz et al., 1973). Notice that the
time has been “binned” into Δt = 10 ns intervals and that the smooth curve is the
theoretical exponential decay expected for very large numbers of pions (which
there is not). Your problem is to deduce the lifetime τ of the π meson from these
data (the tabulated lifetime of the pion is 2.6 × 10−8 s).

Theory Assume that we start with N0 particles at time t = 0 that can decay to
other particles.3) If we wait a short time Δt, then a small number ΔN of the par-
ticles will decay spontaneously, that is, with no external influences. This decay
is a stochastic process, which means that there is an element of chance involved
in just when a decay will occur, and so no two experiments are expected to give
exactly the same results. The basic law of nature for spontaneous decay is that
the number of decays ΔN in a time interval Δt is proportional to the number of
particles N(t) present at that time and to the time interval

ΔN(t) = −1
τ
N(t)Δt ⇒ ΔN(t)

Δt
= −λN(t) . (7.38)

3) Spontaneous decay is discussed further and simulated in Section 4.5.

1577.6 Problem 4: Fitting Exponential Decay

Listing 7.3 SplineInteract.py performs a cubic spline fit to data and permits interactive con-
trol. The arrays x[] and y[] are the data to fit, and the values of the fit at Nfit points are output.

Spl ineInteract . py Spline f i t with s l id e to control number of points

from v i s u a l import * ; from v i s u a l . graph import * ;
from v i s u a l . graph import gd i sp l ay , gcurve
from v i s u a l . con t ro l s import s l i d e r , contro l s , t ogg l e

x = ar ray ([0 . , 0 . 12 , 0 . 25 , 0 . 37 , 0 . 5 , 0 . 62 , 0 . 75 , 0 . 87 , 0 . 9 9]) # input
y = ar ray ([1 0 . 6 , 16 . 0 , 45 . 0 , 83 . 5 , 52 . 8 , 19 . 9 , 10 . 8 , 8 . 25 , 4 . 7])
n = 9 ; np = 15

In i t i a l i z e
y2 = zeros ((n) , f l o a t) ; u = zeros ((n) , f l o a t)
graph1 = gd i sp l ay (x=0 , y=0 , width =500 , he ight =500 ,

t i t l e = ’ Spl ine Fit ’ , x t i t l e = ’x ’ , y t i t l e = ’y ’)
funct1 = gdots (co l o r = co lo r . ye l low)
funct2 = gdots (co l o r = co lo r . red)
graph1 . v i s i b l e = 0

de f update () : # Nfit = 30 = output
Nf i t = i n t (con t ro l . va lue)
f o r i in range (0 , n) : # Spread out points

funct1 . p l o t (pos = (x [i] , y [i]))
funct1 . p l o t (pos = (1 . 0 1 * x [i] , 1 . 01 * y [i]))
funct1 . p l o t (pos = (. 9 9 * x [i] , . 9 9 * y [i]))
yp1 = (y [1]− y [0]) / (x [1]−x [0]) − (y [2]− y [1]) / \

(x [2]−x [1]) +(y [2]− y [0]) / (x [2]−x [0])
ypn = (y [n−1] − y [n−2]) / (x [n−1] − x [n−2]) −

(y [n−2]−y [n−3]) / (x [n−2]−x [n−3]) + (y [n−1]−y [n−3]) / (x [n−1]−x [n−3])
i f (yp1 > 0 .99 e30) : y2 [0] = 0 . ; u [0] = 0 .
e l s e :

y2 [0] = − 0 . 5
u [0] = (3 . / (x [1] − x [0])) * ((y [1] − y [0]) / (x [1] − x [0]) − yp1)

f o r i in range (1 , n − 1) : # Decomp loop
s i g = (x [i] − x [i − 1]) / (x [i + 1] − x [i − 1])
p = s i g * y2 [i − 1] + 2 .
y2 [i] = (s i g − 1 .) / p
u [i] = (y [i +1]−y [i]) / (x [i +1]−x [i]) − (y [i]−y [i −1]) / (x [i]−x [i −1])
u [i] = (6 . * u [i] / (x [i + 1] − x [i − 1]) − s i g *u [i − 1]) / p

i f (ypn > 0 .99 e30) : qn = un = 0 . # Test for natural
e l s e :

qn = 0 . 5 ;
un = (3 / (x [n−1]−x [n−2])) * (ypn − (y [n−1]−y [n−2]) / (x [n−1]−x [n−2]))

y2 [n − 1] = (un − qn*u [n − 2]) / (qn* y2 [n − 2] + 1 .)
f o r k in range (n − 2 , 1 , − 1) :

y2 [k] = y2 [k] * y2 [k + 1] + u [k]
f o r i in range (1 , N f i t + 2) : # Begin f i t

xout = x [0] + (x [n − 1] − x [0]) * (i − 1) / (N f i t)
k lo = 0 ; khi = n − 1 # Bisect ion algor
whi le (khi − k lo >1) :

k = (khi + k lo) >> 1
i f (x [k] > xout) : khi = k
e l s e : k lo = k

h = x [khi] − x [k lo]
i f (x [k] > xout) : khi = k
e l s e : k lo = k
h = x [khi] − x [k lo]
a = (x [khi] − xout) /h
b = (xout − x [k lo]) /h
yout = a * y [k lo] + b * y [khi] +

((a * a * a−a) * y2 [k lo]+(b *b *b−b) * y2 [khi]) *h*h/6
funct2 . p l o t (pos = (xout , yout))

c = cont ro l s (x=500 , y=0 , width =200 , he ight =200) # Control v ia s l i d e r

158 7 Trial-and-Error Searchingand Data Fitting

cont ro l = s l i d e r (pos =(−50 ,50 ,0) , min = 2 , max = 100 , ac t ion = update)
togg l e (pos = (0 , 35 , − 5) , t e x t1 = "Number o f po ints " , he ight = 0)
cont ro l . va lue = 2
update ()

whi le 1 :
c . i n t e r a c t ()
r a t e (50) # update < 10/ sec
funct2 . v i s i b l e = 0

0 40 80 120
t [ns]

0

20

40

N
u

m
b

e
r

N(t)

data

fit

Figure 7.6 A reproduction of the experimen-
tal measurement by Stetz et al. (1973) giving
the number of decays of a π meson as a func-
tion of time since its creation. Measurements

were made during time intervals (box sizes) of
10-ns width. The dashed curve is the result of
a linear least-squares fit to the log N(t).

Here τ = 1∕λ is the lifetime of the particle, with λ the rate parameter. The actual
decay rate is given by the second equation in (7.38). If the number of decays ΔN
is very small compared to the number of particlesN , and if we look at vanishingly
small time intervals, then the difference equation (7.38) becomes the differential
equation

dN(t)
dt

≃ −λN(t) = 1
τ
N(t) . (7.39)

This differential equation has an exponential solution for the number as well as
for the decay rate:

N(t) = N0e−t∕τ ,
dN(t)
dt

= −
N0

τ
e−t∕τ = dN(0)

dt
e−t∕τ . (7.40)

Equation 7.40 is the theoretical formula we wish to “fit” to the data in Figure 7.6.
The output of such a fit is a “best value” for the lifetime τ.

7.7
Least-Squares Fitting (Theory)

Books have been written and careers have been spent discussing what is meant
by a “good fit” to experimental data. We cannot do justice to the subject here and

1597.7 Least-Squares Fitting (Theory)

refer the reader to Bevington and Robinson (2002); Press et al. (1994); Thompson
(1992). However, we will emphasize three points:

1. If the data being fit contain errors, then the “best fit” in a statistical sense
should not pass through all the data points.

2. If the theory is not an appropriate one for the data (e.g., the parabola in Fig-
ure 7.5), then its best fit to the data may not be a good fit at all. This is good,
for this is how we know that the theory is not right.

3. Only for the simplest case of a linear least-squares fit, can we write down a
closed-form solution to evaluate and obtain the fit. More realistic problems
are usually solved by trial-and-error search procedures, sometimes using so-
phisticated subroutine libraries. However, in Section 7.8.2 we show how to
conduct such a nonlinear search using familiar tools.

Imagine that you have measured ND data values of the independent variable y as
a function of the dependent variable x:

(xi , yi ± σi) , i = 1,ND , (7.41)

where ±σi is the experimental uncertainty in the ith value of y. (For simplicity
we assume that all the errors σi occur in the dependent variable, although this is
hardly ever true (Thompson, 1992)). For our problem, y is the number of decays
as a function of time, and xi are the times. Our goal is to determine how well a
mathematical function y = g(x) (also called a theory or amodel) can describe these
data. Additionally, if the theory contains some parameters or constants, our goal
can be viewed as determining the best values for these parameters. We assume
that the theory function g(x) contains, in addition to the functional dependence
on x, an additional dependence upon MP parameters {a1 , a2 ,… , aMP

}. Notice
that the parameters {am} are not variables, in the sense of numbers read from a
meter, but rather are parts of the theoretical model, such as the size of a box, the
mass of a particle, or the depth of a potential well. For the exponential decay func-
tion (7.40), the parameters are the lifetime τ and the initial decay rate dN(0)∕dt.
We include the parameters as

g(x) = g(x; {a1 , a2 ,… , aMP
}) = g(x; {am}) , (7.42)

where the ai ’s are parameters and x the independent variable. We use the chi-
square (χ2) measure (Bevington and Robinson, 2002) as a gauge of how well a
theoretical function g reproduces data:

χ2
def
=

ND∑
i=1

(yi − g(xi ; {am})
σi

)2

, (7.43)

where the sum is over the ND experimental points (xi , yi ± σi). The defini-
tion (7.43) is such that smaller values of χ2 are better fits, with χ2 = 0 occurring
if the theoretical curve went through the center of every data point. Notice also

160 7 Trial-and-Error Searchingand Data Fitting

that the 1∕σ2i weighting means that measurements with larger errors4) contribute
less to χ2.
Least-squares fitting refers to adjusting the parameters in the theory until amin-

imum in χ2 is found, that is, finding a curve that produces the least value for the
summed squares of the deviations of the data from the function g(x). In general,
this is the best fit possible and the best way to determine the parameters in a the-
ory. The MP parameters {am ,m = 1,MP} that make χ2 an extremum are found
by solving the MP equations:

𝜕χ2

𝜕am
= 0 , ⇒

ND∑
i=1

[yi − g(xi)]
σ2i

𝜕g(xi)
𝜕am

= 0 , (m = 1,MP) . (7.44)

Often, the function g(x; {am}) has a sufficiently complicated dependence on
the am values for (7.44) to produce MP simultaneous nonlinear equations in
the am values. In these cases, solutions are found by a trial-and-error search
through the MP-dimensional parameter space, as we do in Section 7.8.2. To be
safe, when such a search is completed, you need to check that the minimum χ2
you found is global and not local. One way to do that is to repeat the search for
a whole grid of starting values, and if different minima are found, to pick the one
with the lowest χ2.

7.7.1
Least-Squares Fitting: Theory and Implementation

When the deviations from theory are as a result of random errors and when these
errors are described by a Gaussian distribution, there are some useful rules of
thumb to remember (Bevington and Robinson, 2002). You know that your fit is
good if the value of χ2 calculated via the definition (7.43) is approximately equal to
the number of degrees of freedom χ2 ≃ ND −MP, whereND is the number of data
points and MP is the number of parameters in the theoretical function. If your χ2
is much less than ND − MP, it does not mean that you have a “great” theory or
a really precise measurement; instead, you probably have too many parameters
or have assigned errors (σi values) that are too large. In fact, too small a χ2 may
indicate that you are fitting the random scatter in the data rather than missing
approximately one-third of the error bars, as expected if the errors are random.
If your χ2 is significantly greater than ND −MP, the theory may not be good, you
may have significantly underestimated your errors, or you may have errors that
are not random.
The MP simultaneous equations (7.44) can be simplified considerably if the

functions g(x; {am}) depend linearly on the parameter values ai , for example,

g
(
x; {a1 , a2}

)
= a1 + a2x . (7.45)

4) If you are not given the errors, you can guess them on the basis of the apparent deviation of the
data from a smooth curve, or you can weigh all points equally by setting σi ≡ 1 and continue
with the fitting.

1617.7 Least-Squares Fitting (Theory)

0

100

200

300

400

0 400 800 1200 1600 2000
x

y(x)

Figure 7.7 A linear least-squares best fit of a straight line to data. The deviation of theory from
experiment is greater than would be expected from statistics, whichmeans that a straight line
is not a good theory to describe these data.

In this case (also known as linear regression or straight-line fit), as shown in Fig-
ure 7.7, there areMP = 2 parameters, the slope a2, and the y intercept a1. Notice
that while there are only two parameters to determine, there still may be an arbi-
trary number ND of data points to fit. Remember, a unique solution is not possible
unless the number of data points is equal to or greater than the number of param-
eters. For this linear case, there are just two derivatives,

𝜕g(xi)
𝜕a1

= 1 ,
𝜕g(xi)
𝜕a2

= xi , (7.46)

and after substitution, the χ2 minimization equations (7.44) can be solved (Press
et al., 1994):

a1 =
SxxS y − SxSx y

Δ
, a2 =

SSx y − SxS y

Δ
, (7.47)

S =
ND∑
i=1

1
σ2i

, Sx =
ND∑
i=1

xi
σ2i

, Sy =
ND∑
i=1

yi
σ2i

, (7.48)

Sxx =
ND∑
i=1

x2i
σ2i

, Sx y =
ND∑
i=1

xi yi
σ2i

, Δ = SSxx − S2x . (7.49)

Statistics also gives you an expression for the variance or uncertainty in the
deduced parameters:

σ2a1 =
Sxx
Δ

, σ2a2 =
S
Δ

. (7.50)

This is a measure of the uncertainties in the values of the fitted parameters arising
from the uncertainties σi in themeasured yi values. Ameasure of the dependence

162 7 Trial-and-Error Searchingand Data Fitting

of the parameters on each other is given by the correlation coefficient:

ρ(a1, a2) =
cov(a1, a2)
σa1σa2

, cov(a1 , a2) =
−Sx
Δ

. (7.51)

Here cov(a1 , a2) is the covariance of a1 and a2 and vanishes if a1 and a2 are inde-
pendent. The correlation coefficient ρ(a1 , a2) lies in the range −1 ≤ ρ ≤ 1, with a
positive ρ indicating that the errors in a1 and a2 are likely to have the same sign,
and a negative ρ indicating opposite signs.
The preceding analytic solutions for the parameters are of the form found in

statistics books but are not optimal for numerical calculations because subtrac-
tive cancelation canmake the answers unstable. As discussed in Chapter 3, a rear-
rangement of the equations can decrease this type of error. For example, Thomp-
son (1992) gives improved expressions that measure the data relative to their
averages:

a1 = y − a2x , a2 =
Sx y
Sxx

, x = 1
N

Nd∑
i=1

xi , y = 1
N

Nd∑
i=1

yi ,

Sx y =
Nd∑
i=1

(xi − x)(yi − y)
σ2i

, Sxx =
Nd∑
i=1

(xi − x)2

σ2i
. (7.52)

In Fit.py in Listing 7.4 we give a program that fits a parabola to some data. You
can use it as a model for fitting a line to data, although you can use our closed-
form expressions for a straight-line fit. In Fit.py on the instructor’s site, we give a
program for fitting to the decay data.

7.8
Exercises: Fitting Exponential Decay, Heat Flow and Hubble’s Law

1. Fit the exponential decay law (7.40) to the data in Figure 7.6. This means find-
ing values for τ and ΔN(0)∕Δt that provide a best fit to the data, and then
judging how good the fit is.
a) Construct a table of approximate values for (ΔN∕Δti , ti), for i = 1,ND as

read from Figure 7.6. Because time was measured in bins, ti should corre-
spond to the middle of a bin.

b) Add an estimate of the error σi to obtain a table of the form (ΔN∕Δti ±
σi , ti). You can estimate the errors by eye, say, by estimating how much
the histogram values appear to fluctuate about a smooth curve, or you can
take σi ≃

√
events. (This last approximation is reasonable for large num-

bers, which this is not.)
c) In the limit of very large numbers, we would expect a plot of ln |dN∕dt|

vs. t to be a straight line:

ln
||||ΔN(t)

Δt
|||| ≃ ln

||||ΔN0

Δt
|||| − 1

τ
Δt . (7.53)

1637.8 Exercises: Fitting Exponential Decay, Heat Flow and Hubble’s Law

This means that if we treat ln |ΔN(t)∕Δt| as the dependent variable and
time Δt as the independent variable, we can use our linear-fit results.
Plot ln |ΔN∕Δt| vs. Δt.

d) Make a least-squares fit of a straight line to your data and use it to de-
termine the lifetime τ of the π meson. Compare your deduction to the
tabulated lifetime of 2.6 × 10−8 s and comment on the difference.

e) Plot your best fit on the same graph as the data and comment on the agree-
ment.

f) Deduce the goodness of fit of your straight line and the approximate error
in your deduced lifetime. Do these agree with what your “eye” tells you?

g) Now that you have a fit, look at the data again and estimate what a better
value for the errors in the ordinates might be.

2. Table 7.2 gives the temperature T along a metal rod whose ends are kept at
a fixed constant temperature. The temperature is a function of the distance x
along the rod.
a) Plot the data in Table 7.3 to verify the appropriateness of a linear relation

T(x) ≃ a + bx . (7.54)

b) Because you are not given the errors for each measurement, assume that
the least significant figure has been rounded off and so σ ≥ 0.05.

c) Use that to compute a least-squares straight-line fit to these data.
d) Plot your best a + bx on the curve with the data.
e) After fitting the data, compute the variance and compare it to the devi-

ation of your fit from the data. Verify that about one-third of the points
miss the σ error band (that is what is expected for a normal distribution of
errors).

f) Use your computed variance to determine the χ2 of the fit. Comment on
the value obtained.

g) Determine the variances σa and σb and check whether it makes sense to
use them as the errors in the deduced values for a and b.

3. In 1929, Edwin Hubble examined the data relating the radial velocity v of 24
extra galactic nebulae to their distance r from our galaxy (Hubble, 1929). Al-
though there was considerable scatter in the data, he fit them with a straight
line:

v = Hr , (7.55)

where H is now called the Hubble constant. Table 7.3 contains the distances
and velocities used by Hubble.
a) Plot the data to verify the appropriateness of a linear relation

v(r) ≃ a + Hr . (7.56)

b) Because you are not given the errors for each measurement, you may as-
sume that the least significant figure has been rounded off and so σ ≥ 1.
Or, you may assume that astronomical measurements are hard to make
and that there are at least 10% errors in the data.

164 7 Trial-and-Error Searchingand Data Fitting

Table 7.2 Temperature vs. distance as measured along ametal rod.

xi (cm) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Ti (C) 14.6 18.5 36.6 30.8 59.2 60.1 62.2 79.4 99.9

Table 7.3 Distance vs. radial velocity for 24 extragalactic nebulae.

Object r (Mpc) v (km/s) Object r (Mpc) v (km/s)

0.032 170 3627 0.9 650
0.034 290 4826 0.9 150

6822 0.214 −130 5236 0.9 500
598 0.263 −70 1068 1.0 920
221 0.275 −185 5055 1.1 450
224 0.275 −220 7331 1.1 500

5457 0.45 200 4258 1.4 500
4736 0.5 290 4141 1.7 960
5194 0.5 270 4382 2.0 500
4449 0.63 200 4472 2.0 850
4214 0.8 300 4486 2.0 800
3031 0.9 −30 4649 2.0 1090

c) Compute a least-squares straight-line fit to these data.
d) Plot your best a + Hr on the curve with the data.
e) After fitting the data, compute the variance and compare it to the devi-

ation of your fit from the data. Verify that about one-third of the points
miss the σ error band (that is what is expected for a normal distribution of
errors).

f) Use your computed variance to determine the χ2 of the fit. Comment on
the value obtained.

g) Determine the variances σa and σb and check whether it makes sense to
use them as the errors in the deduced values for a and b.

h) Now that you have a fit, look at the data again and estimate what a better
value for the errors in the ordinates might be.

7.8.1
Linear Quadratic Fit

As indicated earlier, as long as the function being fitted depends linearly on the
unknown parameters ai , the condition of minimum χ2 leads to a set of simulta-
neous linear equations for the a’s that can be solved by hand or on the computer
using matrix techniques. To illustrate, suppose we want to fit the quadratic poly-

1657.8 Exercises: Fitting Exponential Decay, Heat Flow and Hubble’s Law

0.4

0.8

1.2

1.6

1 1.2 1.4 1.6 1.8 2
x

y(x)

Figure 7.8 A linear least-squares best fit of a parabola to data. Here we see that the fit misses
approximately one-third of the points, as expected from the statistics for a good fit.

nomial

g(x) = a1 + a2x + a3x2 (7.57)

to the experimental measurements (xi , yi , i = 1,ND) (Figure 7.8). Because this
g(x) is linear in all the parameters ai , we can still make a linear fit although x
is raised to the second power. (However, if we tried to a fit a function of the
form g(x) = (a1 + a2x) exp(−a3x) to the data, then we would not be able to make
a linear fit because there is not a linear dependence on a3.)
The best fit of this quadratic to the data is obtained by applying theminimum χ2

condition (7.44) forMp = 3 parameters and ND (still arbitrary) data points. A so-
lution represents the maximum likelihood that the deduced parameters provide
a correct description of the data for the theoretical function g(x). Equation 7.44
leads to the three simultaneous equations for a1, a2, and a3:

ND∑
i=1

[yi − g(xi)]
σ2i

𝜕g(xi)
𝜕a1

= 0 ,
𝜕g
𝜕a1

= 1 , (7.58)

ND∑
i=1

[yi − g(xi)]
σ2i

𝜕g(xi)
𝜕a2

= 0 ,
𝜕g
𝜕a2

= x , (7.59)

ND∑
i=1

[yi − g(xi)]
σ2i

𝜕g(xi)
𝜕a3

= 0 ,
𝜕g
𝜕a3

= x2 . (7.60)

Note: Because the derivatives are independent of the parameters (the a’s), the a
dependence arises only from the term in square brackets in the sums, and because
that term has only a linear dependence on the a’s, these equations are linear in
the a’s.

166 7 Trial-and-Error Searchingand Data Fitting

Exercise Show that after some rearrangement, (7.58)–(7.60) can be written as

Sa1 + Sxa2 + Sxxa3 = Sy ,

Sxa1 + Sxxa2 + Sxxxa3 = Sx y ,

Sxxa1 + Sxxxa2 + Sxxxxa3 = Sxx y . (7.61)

Here the definitions of the S’s are simple extensions of those used in (7.47)–(7.49)
and are programmed in Fit.py shown in Listing 7.4. After placing the three un-
known parameters into a vector x and the known three RHS terms in (7.61) into
a vector b, these equations assume the matrix form

Ax = b ,

A =
⎡⎢⎢⎢⎣
S Sx Sxx
Sx Sxx Sxxx
Sxx Sxxx Sxxxx

⎤⎥⎥⎥⎦ , x =
⎡⎢⎢⎢⎣
a1
a2
a3

⎤⎥⎥⎥⎦ , b =
⎡⎢⎢⎢⎣
Sy

Sx y
Sxx y

⎤⎥⎥⎥⎦ . (7.62)

The solution for the parameter vector a is obtained by solving the matrix equa-
tions. Although for 3 × 3 matrices, we can write out the solution in a closed form,
for larger problems the numerical solution requires matrix methods.

Listing 7.4 Fit.py performs a least-squares fit of a parabola to data using the NumPy linalg
package to solve the set of linear equations Sa = s.

Fi t . py Linear least −squares f i t ; e . g . of matrix computation arrays

import pylab as p
from numpy import *
from numpy . l i n a l g import inv
from numpy . l i n a l g import so l v e

t = arange (1 . 0 , 2 . 0 , 0 . 1) # x range curve
x = ar ray ([1 . , 1 . 1 , 1 . 24 , 1 . 35 , 1 . 451 , 1 . 5 , 1 . 9 2]) # Given x va lues
y = ar ray ([0 . 5 2 , 0 . 8 , 0 . 7 , 1 . 8 , 2 . 9 , 2 . 9 , 3 . 6]) # Given y va lues
p . p l o t (x , y , ’ bo ’) # Plot data in blue
s i g = ar ray ([0 . 1 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 2 , 0 . 1 , 0 . 1]) # error bar lenghts
p . e r ro rb a r (x , y , s i g) # Plot error bars
p . t i t l e (’ Linear Least Square Fit ’) # Plot f igure
p . x l a b e l (’x ’) # Label axes
p . y l a b e l (’y ’)
p . g r id (True) # plot grid
Nd = 7
A = zeros ((3 , 3) , f l o a t) # I n i t i a l i z e
bvec = zeros ((3 , 1) , f l o a t)
s s= sx = sxx = sy = sxxx = sxxxx = sxy = sxy = sxxy = 0 .

f o r i in range (0 , Nd) :
s i g2 = s i g [i] * s i g [i]
s s += 1 . / s i g2 ; sx += x [i] / s i g2 ; sy += y [i] / s i g2
rh l = x [i] * x [i] ; sxx += rh l / s i g2 ; sxxy += rh l * y [i] / s i g2
sxy += x [i] * y [i] / s i g2 ; sxxx +=rh l * x [i] / s i g2 ; sxxxx +=rh l * rh l / s i g2

A = ar ray ([[ss , sx , sxx] , [sx , sxx , sxxx] , [sxx , sxxx , sxxxx]])
bvec = ar ray ([sy , sxy , sxxy])

xvec = mu l t ip l y (inv (A) , bvec) # Invert matrix
I t e s t = mu l t ip l y (A, inv (A)) # Matrix multiply

1677.8 Exercises: Fitting Exponential Decay, Heat Flow and Hubble’s Law

pr in t (’ \n x vector via inverse ’)
pr in t (xvec , ’ \n ’)
pr in t (’A* inverse (A) ’)
pr in t (I t e s t , ’ \n ’)

xvec = so l v e (A, bvec) # Solve v ia elimination
pr in t (’x Matrix via d i r ec t ’)
pr in t (xvec , ’ end= ’)
pr in t (’ FitParabola Final Results \n ’)
pr in t (’y(x) = a0 + a1 x + a2 x^2 ’) # Desired f i t
pr in t (’ a0 = ’ , x [0])
pr in t (’ a1 = ’ , x [1])
pr in t (’ a2 = ’ , x [2] , ’ \n ’)
pr in t (’ i x i y i y f i t ’)
f o r i in range (0 , Nd) :

s = xvec [0] + xvec [1] * x [i] + xvec [2] * x [i] * x [i]
pr in t (" %d %5.3 f %5.3 f %8.7 f \n" %(i , x [i] , y [i] , s))

red l ine i s the f i t , red dots the f i t s at y [i]
curve = xvec [0] + xvec [1] * t + xvec [2] * t * *2
po in t s = xvec [0] + xvec [1] * x + xvec [2] * x * *2
p . p l o t (t , curve , ’ r ’ , x , points , ’ ro ’)
p . show ()

Linear Quadratic Fit Assessment

1. Fit the quadratic (7.57) to the followingdata sets [given as (x1 , y1), (x2 , y2),…].
In each case, indicate the values found for the a’s, the number of degrees of
freedom, and the value of χ2.
a) (0, 1)
b) (0, 1), (1, 3)
c) (0, 1), (1, 3), (2, 7)
d) (0, 1), (1, 3), (2, 7), (3, 15)

2. Find a fit to the last set of data to the function

y = Ae−bx2 . (7.63)

Hint: A judicious change of variables will permit you to convert this to a linear
fit. Does a minimum χ2 still have meaning here?

7.8.2
Problem 5: Nonlinear Fit to a Breit–Wigner

Problem Remember how earlier in this chapter we interpolated the values in Ta-
ble 7.1 in order to obtain the experimental cross section Σ as a function of energy.
Although we did not use it, we also gave the theory describing these data, namely,
the Breit–Wigner resonance formula (7.21):

f (E) =
f r

(E − Er)2 + Γ2∕4
. (7.64)

Your problem is to determine what values for the parameters Er , f r , and Γ in (7.64)
provide the best fit to the data in Table 7.1.

168 7 Trial-and-Error Searchingand Data Fitting

Because (7.64) is not a linear function of the parameters (Er , Σ0, Γ), the three
equations that result from minimizing χ2 are not linear equations and so cannot
be solved by the techniques of linear algebra (matrix methods). However, in our
study of the masses on a string problem, we showed how to use the Newton–
Raphson algorithm to search for solutions of simultaneous nonlinear equations.
That technique involved expansion of the equations about the previous guess to
obtain a set of linear equations and then solving the linear equations with thema-
trix libraries.We nowuse this same combination of fitting, trial-and-error search-
ing, andmatrix algebra to conduct a nonlinear least-squares fit of (7.64) to the data
in Table 7.1.
Recall that the condition for a best fit is to find values of theMP parameters am

in the theory g(x , am) that minimize χ2 =
∑

i[(yi − gi)∕σi]2. This leads to theMP
equations (7.44) to solve

ND∑
i=1

[yi − g(xi)]
σ2i

𝜕g(xi)
𝜕am

= 0 , (m = 1,MP) . (7.65)

To find the form of these equations appropriate to our problem, we rewrite our
theory function (7.64) in the notation of (7.65):

a1 = f r , a2 = ER , a3 = Γ2∕4 , x = E , (7.66)

⇒ g(x) =
a1

(x − a2)2 + a3
. (7.67)

The three derivatives required in (7.65) are then

𝜕g
𝜕a1

= 1
(x − a2)2 + a3

,
𝜕g
𝜕a2

=
−2a1(x − a2)[
(x − a2)2 + a3

]2 ,
𝜕g
𝜕a3

=
−a1[

(x − a2)2 + a3
]2 .

(7.68)

Substitution of these derivatives into the best-fit condition (7.65) yields three
simultaneous equations in a1, a2, and a3 that we need to solve in order to fit
the ND = 9 data points (xi , yi) in Table 7.1:

9∑
i=1

yi − g(xi , a)
(xi − a2)2 + a3

= 0 ,

9∑
i=1

yi − g(xi , a)[
(xi − a2)2 + a3

]2 = 0 ,

9∑
i=1

{yi − g(xi , a)}(xi − a2)[
(xi − a2)2 + a3

]2 = 0 . (7.69)

Even without the substitution of (7.64) for g(x , a), it is clear that these three equa-
tions depend on the a’s in a nonlinear fashion. That is okay because in Section
6.1.2 we derived the N-dimensional Newton–Raphson search for the roots of

f i(a1 , a2 ,… , aN) = 0 , i = 1,N , (7.70)

1697.8 Exercises: Fitting Exponential Decay, Heat Flow and Hubble’s Law

where we have made the change of variable yi → ai for the present problem. We
use that same formalism here for the N = 3 Equation 7.69 by writing them as

f1(a1, a2 , a3) =
9∑
i=1

yi − g(xi , a)
(xi − a2)2 + a3

= 0 , (7.71)

f2(a1, a2 , a3) =
9∑
i=1

{
yi − g(xi , a)

}
(xi − a2)[

(xi − a2)2 + a3
]2 = 0 , (7.72)

f3(a1, a2 , a3) =
9∑
i=1

yi − g(xi , a)[
(xi − a2)2 + a3

]2 = 0 . (7.73)

Because f r ≡ a1 is the peak value of the cross section, ER ≡ a2 is the energy
at which the peak occurs, and Γ = 2

√
a3 is the full width of the peak at half-

maximum, good guesses for the a’s can be extracted from a graph of the data. To
obtain the nine derivatives of the three f ’s with respect to the three unknown a’s,
we use two nested loops over i and j, along with the forward-difference approxi-
mation for the derivative

𝜕 f i
𝜕a j

≃
f i(a j + Δa j) − f i(a j)

Δa j
, (7.74)

where Δa j corresponds to a small, say ≤1%, change in the parameter value.

Nonlinear Fit Implementation Use the Newton–Raphson algorithm as outlined
in Section 7.8.2 to conduct a nonlinear search for the best-fit parameters of the
Breit–Wigner theory (7.64) to the data in Table 7.1. Compare the deduced values
of (f r , ER, Γ) to that obtained by inspection of the graph.

171

8
Solving Differential Equations: Nonlinear Oscillations

Part of the joy of having computational tools at your disposal is that it is easy to
solve almost every differential equation.Consequently, whilemost traditional (read
“analytic”) treatments of oscillations are limited to the small displacements about
equilibrium where the restoring forces are linear, we eliminate those restrictions
here and explore some interesting nonlinear physics. First, we look at oscillators
that may be harmonic for certain parameter values, but then become anharmonic.
We start with simple systems that have analytic solutions, use them to test various
differential-equation solvers, and then include time-dependent forces to investi-
gate nonlinear resonances and beating.1)

8.1
Free Nonlinear Oscillations

Problem In Figure 8.1, we show amassm attached to a spring that exerts a restor-
ing force toward the origin, as well as a hand that exerts a time-dependent external
force on themass.We are told that the restoring force exerted by the spring is non-
harmonic, that is, not simply proportional to displacement from equilibrium, but
we are not given details as to how this is nonharmonic. Your problem is to solve
for themotion of the mass as a function of time. Youmay assume that themotion
is constrained to one dimension.

8.2
Nonlinear Oscillators (Models)

This is a problem in classical mechanics for which Newton’s second law provides
us with the equation of motion

Fk (x) + Fext(x , t) = md2x
dt2

, (8.1)

1) In Chapter 15, we make a related study of the realistic pendulum and its chaotic behavior. Some
special properties of nonlinear equations are also discussed in Chapter 24.

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

172 8 SolvingDifferentialEquations:NonlinearOscillations

Fk(x)

Fext(x,t)

x

Figure 8.1 A massm (the block) attached to a spring with restoring force Fk(x) driven by an
external time-dependent driving force (the hand).

where Fk(x) is the restoring force exerted by the spring and Fext(x , t) is the external
force. Equation 8.1 is the differential equation we must solve for arbitrary forces.
Because we are not told just how the spring departs from being linear, we are free
to try out some differentmodels. As our firstmodel, wewish to try a potential that
is a harmonic oscillator for small displacements x and also contains a perturbation
that introduces a nonlinear term to the force for large x values:

V (x) ≃ 1
2
kx2

(
1 − 2

3
αx

)
, (8.2)

⇒ Fk (x) = −dV (x)
dx

= −kx(1 − αx) (8.3)

⇒ md2x
dt2

= −kx(1 − αx) , (8.4)

where we have omitted the time-dependent external force. Equation 8.4 is the
second-order ODE we need to solve. If αx ≪ 1, we should have essentially har-
monic motion, but as x → 1∕α the anharmonic effects would be large.
We can understand the basic physics of this model by looking at the curves as

shown in Figure 8.2a. As long as x < 1∕α, there will be a restoring force and the
motion will be periodic (repeated exactly and indefinitely in time), even although
it is harmonic only for small-amplitude oscillations. Yet, if the amplitude of oscil-
lation is large, there will be an asymmetry in the motion to the right and left of
the equilibrium position. And if x > 1∕α, the force will become repulsive and the
mass will be pushed away from the origin.
As a second model of a nonlinear oscillator, we assume that the spring’s poten-

tial function is proportional to some arbitrary even power p of the displacement x
from equilibrium:

V (x) = 1
p
kxp , (p even) . (8.5)

We require an even p to ensure that the force,

Fk(x) = −dV (x)
dx

= −kxp−1 , (8.6)

1738.3 Types of DifferentialEquations (Math)

Harmonic

Anharmonic

V(x)

x
1/αLinear

Nonlinear

Unbound

V

p = 2

xx

V

p = 6

Linear Nonlinear

Harmonic Anharmonic

(a) (b)

Figure 8.2 (a) The potentials of an harmonic
oscillator (solid curve) and of an anharmonic
oscillator (dashed curve). If the amplitude be-
comes too large for the anharmonic oscillator,
the motion becomes unbound. (b) The shapes

of the potential energy function V(x) ∝ |x|p
for p = 2 and p = 6. The “linear” and “nonlin-
ear” labels refer to the restoring force derived
from these potentials.

contains an odd power of p, which guarantees that it is a restoring force for pos-
itive and negative x values. We display some characteristics of this potential in
Figure 8.2b. We see that p = 2 is the harmonic oscillator and that p = 6 is nearly
a square well with the mass moving almost freely until it hits the wall at x ≃ ±1.
Regardless of the p value, themotion will be periodic, but it will be harmonic only
for p = 2. Newton’s law (8.1) gives the second-order ODE we need to solve

md2x
dt2

= Fext(x , t) − kxp−1 . (8.7)

8.3
Types of Differential Equations (Math)

The background material in this section is presented to avoid confusion about se-
mantics. The well-versed reader may want to skim or skip it.

Order A general form for a first-order differential equation is

dy
dt

= f (t , y) , (8.8)

where the “order” refers to the degree of the derivative on the LHS. The derivative
or force function f (t , y) on the RHS is arbitrary. For instance, even if f (t , y) is a
nasty function of y and t such as

dy
dt

= −3t2 y + t9 + y7 , (8.9)

174 8 SolvingDifferentialEquations:NonlinearOscillations

this is still first order in the derivative. A general form for a second-order differen-
tial equation is

d2y
dt2

+ λ
dy
dt

= f
(
t ,
dy
dt

, y
)

. (8.10)

The derivative function f on the RHS is arbitrary and may involve any power of
the first derivative as well. To illustrate,

d2y
dt2

+ λ
dy
dt

= −3t2
(
dy
dt

)4

+ t9 y(t) (8.11)

is a second-order differential equation, as is Newton’s law (8.1).
In the differential equations (8.8) and (8.10), the time t is the independent vari-

able and the position y is the dependent variable. This means that we are free to
vary the time at which we want a solution, but not the value of the position y at
that time. Note that we often use the symbol y or Y for the dependent variable
but that this is just a symbol. In some applications, we use y to describe a position
that is an independent variable instead of t.

Ordinary and partial Differential equations such as (8.1) and (8.8) are ordinary
differential equations because they contain only one independent variable, in
these cases t. In contrast, an equation such as the Schrödinger equation

iℏ
𝜕ψ(x , t)

𝜕t
= − ℏ2

2m

[
𝜕2ψ
𝜕x2

+
𝜕2ψ
𝜕 y2

+
𝜕2ψ
𝜕z2

]
+ V (x)ψ(x,t) (8.12)

contains several independent variables, and this makes it a partial differential
equation (PDE). The partial derivative symbol 𝜕 is used to indicate that the de-
pendent variable ψ depends simultaneously on several independent variables. In
the early parts of this book, we limit ourselves to ordinary differential equations.
In Chapters 19–25, we examine a variety of PDEs.

Linear andnonlinear Part of the liberation of computational science is that we are
no longer limited to solving linear equations. A linear equation is one in which
only the first power of y or of dny∕dnt appears; a nonlinear equation may contain
higher powers. For example,

dy
dt

= g3(t)y(t) (linear) ,
dy
dt

= λ y(t) − λ2 y2(t) (nonlinear) . (8.13)

An important property of linear equations is the law of linear superposition that
lets us add solutions together to formnew ones. As a case in point, if A(t) and B(t)
are solutions of the linear equation in (8.13), then

y(t) = αA(t) + βB(t) (8.14)

is also a solution for arbitrary values of the constants α and β. In contrast, even
if we were clever enough to guess that the solution of the nonlinear equation

1758.4 Dynamic Form for ODEs (Theory)

in (8.13) is

y(t) = a
1 + be−λt

(8.15)

(which you can verify by substitution), things would be amiss if we tried to obtain
a more general solution by adding together two such solutions:

y1(t) =
a

1 + be−λt
+ a′

1 + b′e−λt
(8.16)

(which you can verify by substitution).

Initial and boundary conditions The general solution of a first-order differential
equation always contains one arbitrary constant. The general solution of a second-
order differential equation contains two such constants, and so forth. For any spe-
cific problem, these constants are fixed by the initial conditions. For a first-order
equation, the sole initial condition may be the position y(t) at some time. For a
second-order equation, the two initial conditions may be the position and veloc-
ity at some time. Regardless of how powerful the hardware and software that you
utilize, mathematics remains valid, and so you must know the initial conditions
in order to solve the problem uniquely.
In addition to the initial conditions, it is possible to further restrict the solutions

of differential equations. One such way is by boundary conditions that constrain
the solution to have fixed values at the boundaries of the solution space. Problems
of this sort are called eigenvalue problems, and they are so demanding that solu-
tions do not always exist, and even when they do exist, a trial-and-error search
may be required to find them. In Chapter 9, we discuss how to extend the tech-
niques of the present unit to boundary-value problems.

8.4
Dynamic Form for ODEs (Theory)

A standard form forODEs, which has found proven to be useful in both numerical
analysis (Press et al., 1994) and classical dynamics (Scheck, 1994;Tabor, 1989; José
and Salatan, 1998), is to express ODEs of any order as N simultaneous first-order
ODEs in the N unknowns y(0)−y(N−1) :

dy(0)

dt
= f (0)(t , y(i)) , (8.17)

dy(1)

dt
= f (1)(t , y(i)) ,

⋱ (8.18)

dy(N−1)

dt
= f (N−1)(t , y(i)) , (8.19)

176 8 SolvingDifferentialEquations:NonlinearOscillations

where a y(i) dependence in f is allowed, but not any dependence on the deriva-
tives dy(i)∕dt. These equations can be expressedmore succinctly by use of theN-
dimensional vectors (indicated here in boldface italic) y and f :

d y(t)
dt

= f (t , y),

y =

⎛⎜⎜⎜⎜⎝
y(0)(t)
y(1)(t)
⋱

y(N−1)(t)

⎞⎟⎟⎟⎟⎠
, f =

⎛⎜⎜⎜⎜⎝
f (0)(t , y)
f (1)(t , y)

⋱

f (N−1)(t , y)

⎞⎟⎟⎟⎟⎠
. (8.20)

The utility of such compact notation is that we can study the properties of the
ODEs, as well as develop algorithms to solve them, by dealingwith the single equa-
tion (8.20) without having to worry about the individual components. To see how
this works, let us convert Newton’s law

d2x
dt2

= 1
m
F
(
t , x , dx

dt

)
(8.21)

to this standard form.The rule is that the RHSmay not contain any explicit deriva-
tives, although individual components of y(i) may represent derivatives. To pull
this off, we define the position x as the first dependent variable y(0) , and the ve-
locity dx∕dt as the second dependent variable y(1) :

y(0)(t)
def
= x(t) , y(1)(t)

def
= dx

dt
=

dy(0)(t)
dt

. (8.22)

The second-order ODE (8.21) now becomes two simultaneous first-order ODEs:

dy(0)

dt
= y(1)(t) ,

dy(1)

dt
= 1

m
F(t , y(0) , y(1)) . (8.23)

This expresses the acceleration (the second derivative in (8.21)) as the first deriva-
tive of the velocity [y(1)]. These equations are now in the standard form (8.20),
with the derivative or force function f having the two components

f (0) = y(1)(t) , f (1) = 1
m
F(t , y(0) , y(1)) , (8.24)

where F may be an explicit function of time as well as of position and velocity.
To be evenmore specific, applying these definitions to our spring problem (8.7),

we obtain the coupled first-order equations

dy(0)

dt
= y(1)(t) ,

dy(1)

dt
= 1

m
[
Fext(x , t) − k y(0)(t)p−1

]
, (8.25)

where y(0)(t) is the position of the mass at time t and y(1)(t) is its velocity. In the
standard form, the components of the force function and the initial conditions are

f (0)(t , y) = y(1)(t) , f (1)(t , y) = 1
m

[
Fext(x , t) − k(y(0))p−1

]
,

y(0)(0) = x0 , y(1)(0) = v0 . (8.26)

1778.5 ODE Algorithms

8.5
ODE Algorithms

The classic way to solve an ODE is to start with the known initial value of the
dependent variable, y0 ≡ y(t = 0), and then use the derivative function f (t , y) to
advance the initial value one small step h forward in time to obtain y(t = h) ≡ y1.
Once you can do that, you can solve the ODE for all t values by just continuing
stepping to larger times, one small h at a time (Figure 8.3).2) Error is always a
concern when integrating differential equations because derivatives require small
differences, and small differences are prone to subtractive cancelations and round-
off error accumulation. In addition, because our stepping procedure for solving
the differential equation is a continuous extrapolation of the initial conditions,
with each step building on a previous extrapolation, this is somewhat like a castle
built on sand; in contrast to interpolation, there are no tabulated values on which
to anchor your solution.
It is simplest if the time steps used throughout the integration remain constant

in size, and that is mostly what we shall do. Industrial-strength algorithms, such
as the one we discuss in Section 8.6, adapt the step size by making h larger in
regions where y varies slowly (this speeds up the integration and cuts down on
the round-off error) and making h smaller in regions where y varies rapidly.

8.5.1
Euler’s Rule

Euler’s rule (Figure 8.4) is a simple algorithm for integrating the differential equa-
tion (8.8) by one step and is just the forward-difference algorithm for the deriva-
tive:

d y(t)
dt

≃
y(tn+1) − y(tn)

h
= f (t , y) , (8.27)

⇒ yn+1 ≃ yn + h f (tn , yn) , (8.28)

where yn
def
= y(tn) is the value of y at time tn . We know from our discussion of

differentiation that the error in the forward-difference algorithm is (h2), and so
then is the error in Euler’s rule.

t = 0

y0 y1 y2 y3 h yN

t = T

Figure 8.3 A sequence of uniform steps of length h taken in solving a differential equation.
The solution starts at time t = 0 and is integrated in steps of h until t = T .

2) To avoid confusion, notice that y(n) is the nth component of the y vector, while yn is the value
of y after n time steps. Yes, there is a price to pay for elegance in notation.

178 8 SolvingDifferentialEquations:NonlinearOscillations

y(t)

tn+1tn

h

Euler’s Rule

Figure 8.4 Euler’s algorithm for integration of a differential equation one step forward in
time. This linear extrapolation with the slope evaluated at the initial point is seen to lead to an
error Δ.

To indicate the simplicity of this algorithm, we apply it to our oscillator prob-
lem (8.4) for the first time step:

y(0)1 = x0 + v0h , y(1)1 = v0 + h 1
m

[
Fext(t = 0) + Fk (t = 0)

]
. (8.29)

Compare these to the projectile equations familiar from first-year physics,

x = x0 + v0h + 1
2
ah2 , v = v0 + ah , (8.30)

and we see that with Euler’s rule the acceleration does not contribute to the dis-
tance covered (no h2 term), yet it does contribute to the velocity (and so will con-
tribute belatedly to the distance in the next time step). This is clearly a simple
algorithm that requires very small h values to obtain precision. Yet using small
values for h increases the number of steps and the accumulation of the round-
off error, which may lead to instability.3) Whereas we do not recommend Eu-
ler’s algorithm for general use, it is commonly used to start off a more precise
algorithm.

8.6
Runge–Kutta Rule

Although no single algorithm is good for solving all ODEs, the fourth-order
Runge–Kutta algorithm, rk4, or its extension with adaptive step size, rk45, has
proven to be robust and capable of industrial-strength work. In spite of rk4 being
our recommended standardmethod, we derive the simpler rk2 here, and just state
the result for rk4.

3) Instability is often a problem when you integrate a y(t) that decreases as the integration
proceeds, analogous to upward recursion of spherical Bessel functions. In this case, and if you
have a linear ODE, you are best off integrating inward from large times to small times and then
scaling the answer to agree with the initial conditions.

1798.6 Runge–Kutta Rule

slope
y(t)

rk2

tn+1

tn+1/2

tn

Figure 8.5 The rk2 algorithm for integration of a differential equation uses a slope (bold line
segment) evaluated at the interval’s midpoint, and is seen to lead to a smaller error than Euler’s
algorithm in Figure 8.4.

The Runge–Kutta algorithms for integrating a differential equation are based
upon the formal (exact) integral of our differential equation:

dy
dt

= f (t , y) ⇒ y(t) = ∫ f (t , y)d t (8.31)

⇒ yn+1 = yn +

tn+1

∫
tn

f (t , y)d t . (8.32)

To derive the second-order Runge–Kutta algorithm rk2 (Figure 8.5 and rk2.py),
we expand f (t , y) in a Taylor series about themidpoint of the integration interval
and retain two terms:

f (t , y) ≃ f (tn+1∕2 , yn+1∕2) + (t − tn+1∕2)
d f
dt

(tn+1∕2) + (h2) . (8.33)

Because (t − tn+1∕2) raised to any odd power is equally positive and negative over
the interval tn ≤ t ≤ tn+1, the integral of the (t − tn+1∕2) term in (8.32) vanishes
and we obtain our algorithm:

tn+1

∫
tn

f (t , y)d t ≃ f (tn+1∕2 , yn+1∕2)h + (h3) , (8.34)

⇒ yn+1 ≃ yn + h f (tn+1∕2 , yn+1∕2) +(h3) (rk2) . (8.35)

We see that while rk2 contains the same number of terms as Euler’s rule, it ob-
tains a higher level of precision by taking advantage of the cancelation of the(h)
terms. Yet the price for improved precision is having to evaluate the derivative
function and the solution y at the middle of the time interval, t = tn + h∕2. And
there is the rub, for we do not know the value of yn+1∕2 and cannot use this algo-
rithm to determine it. The way out of this quandary is to use Euler’s algorithm to

180 8 SolvingDifferentialEquations:NonlinearOscillations

approximate yn+1∕2:

yn+1∕2 ≃ yn +
1
2
h
dy
dt

= yn +
1
2
h f (tn , yn) . (8.36)

Putting the pieces all together gives the complete rk2 algorithm:

yn+1 ≃ yn + k2 , (rk2) (8.37)

k2 = h f
(
tn +

h
2
, yn +

k1
2

)
, k1 = h f (tn , yn) , (8.38)

where we use boldface italic to indicate the vector nature of y and f . We see that
the known derivative function f is evaluated at the ends and the midpoint of
the interval, but that only the (known) initial value of the dependent variable y is
required. This makes the algorithm self-starting.
As an example of the use of rk2, we apply it to our spring problem:

y(0)1 = y(0)0 + h f (0)
(
h
2
, y(0)0 + k1

)
≃ x0 + h

[
v0 +

h
2
Fk(0)

]
,

y(1)1 = y(1)0 + h f (1)
[
h
2
, y0 +

h
2
f (0, y0)

]
≃ v0 +

h
m

[
Fext

(
h
2

)
+ Fk

(
y(1)0 +

k1
2

)]
.

These equations say that the position y(0) changes because of the initial velocity
and force, while the velocity y(1) changes because of the external force at t = h∕2
and the internal force at two intermediate positions.We see that the position y(0)
now has an h2 time dependence, which at last brings us up to the level of first-year
physics.
The fourth-order Runge–Kutta method rk4 (Listing 8.1) obtains (h4) preci-

sion by approximating y as a Taylor series up to h2 (a parabola) at themidpoint of
the interval, which again leads to cancellation of lower order error. rk4 provides
an excellent balance of power, precision, and programming simplicity. There are
now four gradient (k) terms to evaluate, with four subroutine calls. This provides
an improved approximation to f (t , y) near the midpoint. Although rk4 is com-
putationally more expensive than the Euler method, its precision is much better,
and some time is saved by using larger values for the step size h. Explicitly, rk4
requires the evaluation of four intermediate slopes, and these are approximated
with the Euler algorithm to (Press et al., 1994):

yn+1 = yn +
1
6
(k1 + 2k2 + 2k3 + k4) , (8.39)

k1 = h f (tn , yn) , k2 = h f
(
tn +

h
2
, yn +

k1
2

)
,

k3 = h f
(
tn +

h
2
, yn +

k2
2

)
, k4 = h f (tn + h, yn + k3) .

1818.6 Runge–Kutta Rule

Listing 8.1 rk4.py solves an ODE with the RHS given by the method f () using a fourth-order
Runge–Kutta algorithm. Note that to avoid introducing bugs, the method f (), which you will
need to change for each problem, is kept separate from the algorithm.

rk4 . py 4th order Runge Kutta

from v i s u a l . graph import *

In i t i a l i z a t i on
a = 0 .
b = 10 .
n = 100
ydumb = zeros ((2) , f l o a t) ; y = zeros ((2) , f l o a t)
fReturn = zeros ((2) , f l o a t) ; k1 = zeros ((2) , f l o a t)
k2 = zeros ((2) , f l o a t) ; k3 = zeros ((2) , f l o a t)
k4 = zeros ((2) , f l o a t)
y [0] = 3 . ; y [1] = −5.
t = a ; h = (b−a) /n ;

de f f (t , y) : # Force function
fReturn [0] = y [1]
fReturn [1] = −100.* y [0] −2 . * y [1] + 10 . * s in (3 . * t)
re turn fReturn

graph1 = gd i sp l ay (x=0 , y=0 , width = 400 , he ight = 400 , t i t l e = ’RK4 ’ ,
x t i t l e = ’ t ’ , y t i t l e =

’Y[0] ’ , xmin=0 ,xmax=10 , ymin=−2,ymax=3)
funct1 = gcurve (co lo r = co lo r . ye l low)
graph2 = gd i sp l ay (x=400 , y=0 , width = 400 , he ight = 400 , t i t l e = ’RK4 ’ ,

x t i t l e = ’ t ’ , y t i t l e =
’Y[1] ’ , xmin=0 ,xmax=10 , ymin=−25,ymax=18)

funct2 = gcurve (co lo r = co lo r . red)

de f rk4 (t , h , n) :
k1 = [0] * (n)
k2 = [0] * (n)
k3 = [0] * (n)
k4 = [0] * (n)
fR = [0] * (n)
ydumb = [0] * (n)
fR = f (t , y) # Returns RHS ’ s
f o r i in range (0 , n) :

k1 [i] = h* fR [i]
f o r i in range (0 , n) :

ydumb [i] = y [i] + k1 [i] / 2 .
k2 = h* f (t+h / 2 . , ydumb)
f o r i in range (0 , n) :

ydumb [i] = y [i] + k2 [i] / 2 .
k3 = h* f (t+h / 2 . , ydumb)
f o r i in range (0 , n) :

ydumb [i] = y [i] + k3 [i]
k4 = h* f (t+h , ydumb)
f o r i in range (0 , 2) :

y [i] = y [i] + (k1 [i] + 2 . * (k2 [i] + k3 [i]) + k4 [i]) / 6 .
re turn y

whi le (t < b) : # Time loop
i f ((t + h) > b) :

h = b − t # Last step
y = rk4 (t , h , 2)
t = t + h
ra t e (30)
funct1 . p l o t (pos = (t , y [0]))
funct2 . p l o t (pos = (t , y [1]))

182 8 SolvingDifferentialEquations:NonlinearOscillations

A variation of rk4, known as the Runge–Kutta–Fehlberg method (Mathews,
2002), or rk45, varies the step size while doing the integration with the hope of
obtaining better precision and maybe better speed. Our implementation, rk45.py,
is given in Listing 8.2. It automatically doubles the step size and tests to see how
an estimate of the error changes. If the error is still within acceptable bounds, the
algorithm will continue to use the larger step size and thus speed up the com-
putation; if the error is too large, the algorithm will decrease the step size until
an acceptable error is found. As a consequence of the extra information obtained
in the testing, the algorithm does obtains (h5) precision, but sometimes at the
expense of extra computing time. Whether that extra time is recovered by being
able to use a larger step size depends upon the application.

Listing 8.2 rk45.py solves an ODE with the RHS given by the method f () using a fourth-order
Runge–Kutta algorithm with adaptive step size.

rk45 . py Adaptive step s ize Runge Kutta

from v i s u a l . graph import *

a = 0 . ; b = 10 . # Error tolerance , endpoints
Tol = 1 .0E−8
ydumb = zeros ((2) , f l o a t) # I n i t i a l i z e
y = zeros ((2) , f l o a t)
fReturn = zeros ((2) , f l o a t)
e r r = zeros ((2) , f l o a t)
k1 = zeros ((2) , f l o a t)
k2 = zeros ((2) , f l o a t)
k3 = zeros ((2) , f l o a t)
k4 = zeros ((2) , f l o a t)
k5 = zeros ((2) , f l o a t)
k6 = zeros ((2) , f l o a t)
n = 20
y [0] = 1 . ; y [1] = 0 .

h = (b − a) /n ; t = a ; j = 0
hmin = h / 6 4 ; hmax = h*64 # Min and max step s ize s
f l o p s = 0 ; Eexact = 0 . ; e r ro r = 0 .
sum = 0 .

de f f (t , y , fReturn) : # Force function
fReturn [0] = y [1]
fReturn [1] = − 6 . * pow (y [0] , 5 .)

graph1 = gd i sp l ay (width = 600 , he ight = 600 , t i t l e = ’RK 45 ’ ,
x t i t l e = ’ t ’ , y t i t l e = ’Y[0] ’)

funct1 = gcurve (co lo r = co lo r . b lue)
graph2 = gd i sp l ay (width = 500 , he ight = 500 , t i t l e = ’RK45 ’ ,

x t i t l e = ’ t ’ , y t i t l e = ’Y[1] ’)
funct2 = gcurve (co lo r = co lo r . red)
funct1 . p l o t (pos = (t , y [0]))
funct2 . p l o t (pos = (t , y [1]))

whi le (t < b) : # Loop over time
funct1 . p l o t (pos = (t , y [0]))
funct2 . p l o t (pos = (t , y [1]))
i f ((t + h) > b) :

h = b − t # Last step
f (t , y , fReturn) # Evaluate f , return in fReturn
k1 [0] = h* fReturn [0] ; k1 [1] = h* fReturn [1]
f o r i in range (0 , 2) :

1838.7 Adams–Bashforth–MoultonPredictor–Corrector Rule

ydumb [i] = y [i] + k1 [i] / 4
f (t + h /4 , ydumb , fReturn)
k2 [0] = h* fReturn [0] ; k2 [1] = h* fReturn [1]
f o r i in range (0 , 2) :

ydumb [i] = y [i] + 3* k1 [i] / 32 + 9* k2 [i] / 32
f (t + 3*h /8 , ydumb , fReturn)
k3 [0] = h* fReturn [0] ; k3 [1] = h* fReturn [1]
f o r i in range (0 , 2) :

ydumb [i] = y [i] + 1932* k1 [i] /2197 − 7200* k2 [i] / 2 1 9 7 . +
7296* k3 [i] /2197

f (t + 12*h /13 , ydumb , fReturn)
k4 [0] = h* fReturn [0] ; k4 [1] = h* fReturn [1]
f o r i in range (0 , 2) :

ydumb [i] = y [i] + 439* k1 [i] /216 − 8* k2 [i] + 3680* k3 [i] /513 −
845* k4 [i] /4104

f (t + h , ydumb , fReturn)
k5 [0] = h* fReturn [0] ; k5 [1] = h* fReturn [1]
f o r i in range (0 , 2) :

ydumb [i] = y [i] − 8* k1 [i] / 27 + 2* k2 [i] − 3544* k3 [i] /2565 +
1859* k4 [i] /4104 − 11* k5 [i] / 40

f (t + h /2 , ydumb , fReturn)
k6 [0] = h* fReturn [0] ; k6 [1] = h* fReturn [1] ;
f o r i in range (0 , 2) :

e r r [i] = abs (k1 [i] /360 − 128* k3 [i] /4275 − 2197* k4 [i] /75240
+ k5 [i] / 5 0 . + 2* k6 [i] / 5 5)

i f (e r r [0] < Tol or e r r [1] < Tol or h <= 2*hmin) : # Accept step
f o r i in range (0 , 2) :

y [i] = y [i] + 25* k1 [i] / 2 1 6 . + 1408* k3 [i] / 2 5 6 5 . +
2197* k4 [i] / 4 1 0 4 . − k5 [i] / 5 .

t = t + h
j = j + 1

i f (e r r [0] == 0 or e r r [1] == 0) :
s = 0 # Trap d iv i s ion by 0

e l s e :
s = 0 .84 *pow (Tol *h / e r r [0] , 0 . 2 5) # Reduce step

i f (s < 0 .75 and h > 2*hmin) :
h /= 2 . # Increase step

e l s e :
i f (s > 1 .5 and 2* h < hmax) :

h *= 2 .
f l o p s = f l o p s + 1
E = pow (y [0] , 6 .) + 0 . 5 * y [1] * y [1]
Eexact = 1 .
e r ro r = abs ((E − Eexact) / Eexact)
sum += er ro r

pr in t (" < error >= " , sum / f l op s , " , f l o ps = " , f l o p s)

8.7
Adams–Bashforth–Moulton Predictor–Corrector Rule

Another approach for obtaining high precision in an ODE algorithm uses the so-
lution from previous steps yn−2 and yn−1, in addition to yn , to predict yn+1. (The
Euler and rk methods use just one previous step.) Many of these types of methods
tend to be like a Newton’s search method; we start with a guess or prediction for
the next step and then use an algorithm such as rk4 to check on the prediction and
thereby obtain a correction. As with rk45, one can use the correction as a measure
of the error and then adjust the step size to obtain improved precision (Press et al.,
1994). For those readers who may want to explore such methods, ABM.py in List-

184 8 SolvingDifferentialEquations:NonlinearOscillations

ing 8.3 gives our implementation of the Adams–Bashforth–Moulton predictor–
corrector scheme.

yn+1 = yn +
1
6
(k0 + 2k1 + 2k2 + k3) ,

k0 = h f (tn , yn) , k1 = h f
(
tn +

h
2
, yn +

k1
2

)
,

k2 = h f
(
tn +

h
2
, yn +

k2
2

)
, k3 = h f (tn + h, yn + k3) .

Listing 8.3 ABM.py solves an ODE with the RHS given by the method f () using the ABM
predictor–corrector algorithm.

ABM. py : Adams BM method to integra te ODE
Solves y ’ = (t − y) /2 , with y [0] = 1 over [0 , 3]

from v i s u a l . graph import *

numgr = gd i sp l ay (x=0 , y=0 , width =600 , he ight =300 , xmin =0 .0 , xmax = 3 . 0 ,
t i t l e =" Numerical So lut ion" , x t i t l e = ’ t ’ , y t i t l e = ’y ’ , ymax=2 . ,

ymin=0 .9)
numsol = gcurve (co lo r=co lo r . yel low , d i s p l a y = numgr)
exac t g r = gd i sp l ay (x=0 , y=300 , width =600 , he ight =300 , t i t l e ="Exact

so lu t i o n " ,
x t i t l e = ’ t ’ , y t i t l e = ’y ’ , xmax=3.0 , xmin =0 .0 , ymax=2.0 ,

ymin=0 .9)

ex so l = gcurve (co lo r = co lo r . cyan , d i s p l a y = exac tg r)
n = 24 # N steps > 3
A = 0 ; B = 3 .
t = [0] *500 ; y = [0] *500 ; yy =[0]*4

de f f (t , y) : # RHS F function
re turn (t − y) / 2 . 0

de f rk4 (t , yy , h1) :
f o r i in range (0 , 3) :

t = h1 * i
k0 = h1 * f (t , y [i])
k1 = h1 * f (t + h1 / 2 . , yy [i] + k0 / 2 .)
k2 = h1 * f (t + h1 / 2 . , yy [i] + k1 / 2 .)
k3 = h1 * f (t + h1 , yy [i] + k2)
yy [i + 1] = yy [i] + (1 . / 6 .) * (k0 + 2 . * k1 + 2 . * k2 + k3)
pr in t (i , yy [i])

re turn yy [3]

de f ABM(a , b ,N) :
Compute 3 addit iona l s t a r t ing va lues using rk

h = (b−a) / N # step
t [0] = a ; y [0] = 1 . 0 0 ; F0 = f (t [0] , y [0])
f o r k in range (1 , 4) :

t [k] = a + k * h
y [1] = rk4 (t [1] , y , h) # 1 s t step
y [2] = rk4 (t [2] , y , h) # 2nd step
y [3] = rk4 (t [3] , y , h) # 3rd step
F1 = f (t [1] , y [1])
F2 = f (t [2] , y [2])
F3 = f (t [3] , y [3])
h2 = h / 2 4 .

f o r k in range (3 , N) : # Predictor

1858.7 Adams–Bashforth–MoultonPredictor–Corrector Rule

p = y [k] + h2 * (−9 . * F0 + 37 . * F1 − 59 . * F2 + 55 . * F3)
t [k + 1] = a + h * (k+1) # Next absc issa
F4 = f (t [k+1] , p)
y [k+1] = y [k] + h2 * (F1−5 .* F2 + 19 . * F3 + 9 . * F4) # Corrector
F0 = F1 # Update va lues
F1 = F2
F2 = F3
F3 = f (t [k + 1] , y [k + 1])

re turn t , y

pr in t (" k t Y numerical Y exact ")
t , y = ABM(A, B , n)
f o r k in range (0 , n+1) :

pr in t (" %3d %5.3 f %12.11 f %12.11 f "
%(k , t [k] , y [k] , (3 . * exp(− t [k] / 2 .) −2.+ t [k])))

numsol . p l o t (pos = (t [k] , y [k]))
ex so l . p l o t (pos = (t [k] , 3 . * exp(− t [k] / 2 .) −2. + t [k]))

8.7.1
Assessment: rk2 vs. rk4 vs. rk45

While you are free to do as you please, unless you are very careful, we recommend
that you not write your own rk4 or rk45 methods. You will be using this code for
some high-precision work, and unless you get every fraction and method call just
right, your code may appear to work well but still not give all the precision that
you should be obtaining, and therefore we give you rk4, and rk45 codes to use.
However, we do recommend that you write your own rk2, as doing so will make
it clearer as to how the Runge–Kutta methods work, but without all the pain and
danger.

1. Write your own rk2 method. Design your method for a general ODE; this
means making the derivative function f (t , x) a separate method.

2. Use your rk2 solver in a program that solves the equation of motion (8.7)
or (8.25). Plot both the position x(t) and velocity dx∕dt as functions of time.

3. Once your ODE solver is running, do a number of things to check that it is
working well and that you know what h values to use.
a) Adjust the parameters in your potential so that it corresponds to a pure

harmonic oscillator (set p = 2 or α = 0). For an oscillator initially at rest,
we have an analytic result with which to compare:

x(t) = A sin(ω0t) , v = ω0A cos(ω0 t) , ω0 =
√
k∕m . (8.40)

b) Pick values of k and m such that the period T = 2π∕ω is a nice number
with which to work (something like T = 1).

c) Start with a step size h ≃ T∕5 and make h smaller until the solution looks
smooth, has a period that remains constant for a large number of cycles,
and agrees with the analytic result. As a general rule of thumb, we suggest
that you start with h ≃ T∕100, where T is a characteristic time for the
problem at hand. You should start with a large h so that you can see a bad
solution turn good.

186 8 SolvingDifferentialEquations:NonlinearOscillations

d) Make sure that you have exactly the same initial conditions for the analytic
and numerical solutions (zero displacement, nonzero velocity) and then
plot the two together. It is good if you cannot tell them apart, yet that only
ensures that there are approximately two places of agreement.

e) Try different initial velocities and verify that a harmonic oscillator is
isochronous, that is, that its period does not change as the amplitude
varies.

4. Now that you know you can get a good solution of an ODE with rk2, compare
the solutions obtained with the rk2, rk4, and rk45 solvers.

5. Make a table of comparisons similar to Table 8.1. There we compare rk4 and
rk45 for the two equations

2y y′′ + y2 − y′ 2 = 0 , (8.41)

y′′ + 6y5 = 0 , (8.42)

with initial conditions ([y(0), y′ (0)] = (1, 1). Although nonlinear, (8.41) does
have the analytic solution y(t) = 1 + sin t 4). Equation 8.42 corresponds to our
standard potential (8.5), with p = 6. Although we have not tuned rk45, Ta-
ble 8.2 shows that by setting its tolerance parameter to a small enough number,
rk45 will obtain better precision than rk4 (Figure 8.6), but that it requires ∼ 10
timesmore floating-point operations and takes∼ 5 times longer. Yet for (8.41),
we obtained increased precision in less time.

–15

–7

–9

–13

lo
g

 |
R

e
l
E

rr
o

r|

time

Error in rk4

N = 5000

N = 1000

N = 500

Figure 8.6 The logarithm of the relative error
in the solution of an ODE obtained with rk4
using a differing number N of time steps over
a fixed time interval. The logarithm approxi-

mately equals the negative of the number of
places of precision. Increasing the number of
steps used for a fixed interval is seen to lead to
smaller error.

4) Be warned, the rk procedures may be inaccurate for this equation if integrated exactly through
the point y(t) = 0 because then terms in the equation proportional to y vanish and this
leaves y′ 2 = 0, which is problematic. A different algorithm may be better there.

1878.8 Solution for NonlinearOscillations (Assessment)

Table 8.1 Comparison of ODE solvers for different equations.

Eq. No. Method Initial h No. of flops Time (ms) Relative error

(8.41) rk4 0.01 1000 5.2 2.2 × 10−8

rk45 1.00 72 1.5 1.8 × 10−8

(8.42) rk4 0.01 227 8.9 1.8 × 10−8

rk45 0.1 3143 36.7 5.7 × 10−11

8.8
Solution for Nonlinear Oscillations (Assessment)

Use your rk4 program to study anharmonic oscillations by trying powers in the
range p = 2−12, or anharmonic strengths in the range 0 ≤ αx ≤ 2. Do not include
any explicit time-dependent forces yet. Note that for large values of p, the forces
and accelerations get large near the turning points, and so youmay need a smaller
step size h than that used for the harmonic oscillator.

1. Check that the solution remains periodic with constant amplitude and pe-
riod for a given initial condition regardless of how nonlinear you make the
force. In particular, check that the maximum speed occurs at x = 0 and that
the velocity v = 0 at maximum x’s, the latter being a consequence of energy
conservation.

2. Verify that nonharmonic oscillators are nonisochronous, that is, vibrations
with different amplitudes have different periods (Figure 8.7).

3. Explain why the shapes of the oscillations change for different p’s or α’s.
4. Devise an algorithm to determine the period T of the oscillation by recording

times at which the mass passes through the origin. Note that because the mo-

0

–4

0

4

Amplitude Dependence, p = 7

time

x(t)

Figure 8.7 The position vs. time for oscillations within the potential V ∝ x7 for four different
initial amplitudes. Each is seen to have a different period.

188 8 SolvingDifferentialEquations:NonlinearOscillations

tion may be asymmetric, you must record at least three times to deduce the
period.

5. Construct a graph of the deduced period as a function of initial amplitude.
6. Verify that the motion is oscillatory, but not harmonic, as the energy ap-

proaches k∕6α2 or for p > 6.
7. Verify that for the anharmonic oscillator with E = k∕6α2, the motion changes

from oscillatory to translational. See how close you can get to the separatrix
where a single oscillation takes an infinite time. (There is no separatrix for the
power-law potential.)

8.8.1
Precision Assessment: Energy Conservation

We have not explicitly built energy conservation into our ODE solvers. Nonethe-
less, unless you have explicitly included a frictional force, it follows mathemati-
cally from the form of the equations of motion that energy must be a constant for
all values of p or α. That being the case, the constancy of energy is a demanding
test of the numerics.

1. Plot the potential energy PE(t) = V [x(t)], the kinetic energy KE(t) =mv2(t)∕2,
and the total energy E(t) = KE(t) + PE(t), for 50 periods. Comment on the
correlation between PE(t) and KE(t) and how it depends on the potential’s
parameters.

2. Check the long-term stability of your solution by plotting

− log10
||||E(t) − E(t = 0)

E(t = 0)
|||| ≃ number of places of precision (8.43)

for a large number of periods (Figure 8.6). Because E(t) should be indepen-
dent of time, the numerator is the absolute error in your solution, and when
divided by E(0), becomes the relative error (approximately 10−11). If you can-
not achieve 11 or more places, then you need to decrease the value of h or
debug.

3. Because a particle bound by a large-p oscillator is essentially “free” most of
the time, you should observe that the average of its kinetic energy over time
exceeds its average potential energy. This is actually the physics behind the
Virial theorem for a power-law potential (Marion and Thornton, 2003):

⟨KE⟩ = p
2
⟨PE⟩ . (8.44)

Verify that your solution satisfies the Virial theorem. (Those readers who have
worked the perturbed oscillator problem can use this relation to deduce an
effective p value, which should be between 2 and 3.)

1898.9 Extensions:Nonlinear Resonances, Beats, Friction

8.9
Extensions: Nonlinear Resonances, Beats, Friction

Problem So far our oscillations have been rather simple. We have ignored fric-
tion and have assumed that there are no external forces (hands) influencing the
system’s natural oscillations. Determine

1. How the oscillations change when friction is included?
2. How the resonances and beats of nonlinear oscillators differ from those of

linear oscillators?
3. How introducing friction affects resonances?

8.9.1
Friction (Model)

The world is full of friction, and not all of it is bad. For while friction makes it
harder to pedal a bike through the wind, it also lets you walk on ice, and generally
adds stability to dynamical systems. The simplest models for frictional force are
called static, kinetic, and viscous friction:

F (static)
f ≤ −μsN , F (kinetic)

f = −μkN
v|v| , F (viscous)

f = −bv . (8.45)

Here N is the normal force on the object under consideration, μ and b are param-
eters, and v is the velocity. This model for static friction is appropriate for objects
at rest, while themodel for kinetic friction is appropriate for an object sliding on a
dry surface. If the surface is lubricated, or if the object is moving through a viscous
medium, then a frictional force dependent on velocity is a better model.5)

1. Extend your harmonic oscillator code to include the three types of friction
in (8.45) and observe how the motion differs for each.

2. Hint: For the simulation with static plus kinetic friction, each time the oscil-
lator has v = 0 you need to check that the restoring force exceeds the static
force of friction. If not, the oscillation must end at that instant. Check that
your simulation terminates at nonzero x values.

3. For your simulations with viscous friction, investigate the qualitative changes
that occur for increasing b values:

Underdamped: b < 2mω0 Oscillate within decaying envelope
Critically: b = 2mω0 Nonoscillatory, finite decay time
Overdamped: b > 2mω0 Nonoscillatory, infinite decay time

5) The effect of air resistance on projectile motion is studied in Section 9.6.

190 8 SolvingDifferentialEquations:NonlinearOscillations

8.9.2
Resonances and Beats: Model, Implementation

Stable physical systems will oscillate if displaced slightly from their rest positions.
The frequency ω0 with which such a system executes small oscillations about its
rest positions is called its natural frequency. If an external sinusoidal force is ap-
plied to this system, and if the frequency of the external force equals the natural
frequency ω0, then a resonance may occur in which the oscillator absorbs energy
from the external force and the amplitude of oscillation increases with time. If the
oscillator and the driving force remain in phase over time, the amplitude of oscil-
lation will increase continuously unless there is somemechanism, such as friction
or nonlinearities, to limit the growth.
If the frequency of the driving force is close to, but not exactly equal to, the

natural frequency of the oscillator, then a related phenomena, known as beating,
may occur. In this situation there is interference between the natural oscillation,
which is independent of the driving force, and the oscillation resulting from the
external force. If the frequency of the external driving force is very close to the
natural frequency, then the resulting motion

x ≃ x0 sinωt + x0 sin ω0t =
(
2x0 cos

ω − ω0

2
t
)
sin

ω + ω0

2
t , (8.46)

resembles the natural oscillation of the system at the average frequency (ω + ω0)∕
2, yet with an amplitude 2x0 cos((ω − ω0)∕2)t that varies slowly with the beat fre-
quency (ω − ω0)∕2.

8.10
Extension: Time-Dependent Forces

To extend our simulation to include an external force,

Fext(t) = F0 sinωt , (8.47)

we need to include a time dependence in the force function f (t , y) of our ODE
solver.

1. Add the sinusoidal time-dependent external force (8.47) to the space-dependent
restoring force in your program (do not include friction yet).

2. Start with a very large value for the magnitude of the driving force F0. This
should lead tomode locking (the 500-pound-gorilla effect), where the system is
overwhelmed by the driving force and, after the transients die out, the system
oscillates in phase with the driver regardless of the driver’s frequency.

3. Now lower F0 until it is close to the magnitude of the natural restoring force
of the system. You need to have this near equality for beating to occur.

4. Verify that for the harmonic oscillator, the beat frequency, that is, the number
of variations in intensity per unit time, equals the frequency difference (ω −
ω0)∕2π in cycles per second, where ω ≃ ω0.

1918.10 Extension: Time-Dependent Forces

5. Once you have a value for F0 matched well with your system, make a series of
runs in which you progressively increase the frequency of the driving force in
the range ω0∕10 ≤ ω ≤ 10ω0.

6. Make of plot of the maximum amplitude of oscillation vs. the driver’s ω.
7. Explorewhat happenswhen youmake a nonlinear system resonate. If the non-

linear system is close to being harmonic, you should get beating in place of
the blowup that occurs for the linear system. Beating occurs because the nat-
ural frequency changes as the amplitude increases, and thus the natural and
forced oscillations fall out of phase. Yet once out of phase, the external force
stops feeding energy into the system, and so the amplitude decreases, andwith
the decrease in amplitude, the frequency of the oscillator returns to its natu-
ral frequency, the driver and oscillator get back in phase, and the entire cycle
repeats.

8. Investigate nowhow the inclusion of viscous frictionmodifies the curve of am-
plitude vs. driver frequency. You should find that friction broadens the curve.

9. Explain how the character of the resonance changes as the exponent p in the
potential V (x) = k|x|p∕p is made larger and larger. At large p, the mass effec-
tively “hits” the wall and falls out of phase with the driver, and so the driver is
less effective at pumping energy into the system.

193

9
ODE Applications: Eigenvalues, Scattering, and Projectiles

Now that we know how to solve ODEs numerically, we use our newfound skills in
some different ways. First, we combine our ODE solver with a search algorithm to
solve the quantum eigenvalue problem. Then we solve some of the simultaneous
ODEs that arise in the scattering problem, and explore classical chaotic scattering.
Finally, we look upward to balls falling out of the sky and planets that do not.

9.1
Problem: Quantum Eigenvalues in Arbitrary Potential

Quantum mechanics describes phenomena that occur on atomic or subatomic
scales (an elementary particle is subatomic). It is a statistical theory in which the
probability that a particle is located in a region dx around the point x is =|ψ(x)|2 dx, where ψ(x) is called thewave function. If a particle of definite energy E
moving in one dimension experiences a potential V (x), its wave function is deter-
mined by an ordinary differential equation (partial differential equation for more
than one dimension) known as the time-independent Schrödinger equation1):

−ℏ2

2m
d2ψ(x)
dx2

+ V (x)ψ(x) = Eψ(x) . (9.1)

Although we say we are solving for the energy E, in practice we solve for the wave
vector κ, where the two are related for bound states by

κ2 = −2m
ℏ2 E = 2m

ℏ2 |E| . (9.2)

The Schrödinger equation now takes the form

d2ψ(x)
dx2

− 2m
ℏ2 V (x)ψ(x) = κ2ψ(x) . (9.3)

1) The time-dependent equation requires the solution of a partial differential equation, as
discussed in Chapter 22.

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

194 9 ODE Applications: Eigenvalues, Scattering, and Projectiles

When our problem tells us that the particle is bound, this means that it is confined
to some finite region of space, which implies that ψ(x) is normalizeable. The only
way for that to happen is if ψ(x) decay exponentially as x → ±∞ (where the po-
tential vanishes):

ψ(x) →

{
e−κx , for x → +∞ ,
e+κx , for x → −∞ .

(9.4)

In summary, although it is straightforward to solve the ODE (9.1) with the tech-
niques we have learned so far, we must also require that the solution ψ(x) simul-
taneously satisfies the boundary conditions (9.4). This extra condition turns the
ODE problem into an eigenvalue problem that has solutions (eigenvalues) for only
certain values of the energy E or equivalently κ. The ground-state energy corre-
sponds to the smallest (most negative) eigenvalue. The ground-state wave func-
tion (eigenfunction), whichwemust determine in order to find its energy, must be
nodeless and even (symmetric) about x = 0. The excited states have higher (less
negative) energies and wave functions that may be odd (antisymmetric).

9.1.1
Model: Nucleon in a Box

The numerical methods we describe are capable of handling the most realistic
potential shapes. Yet to make a connection with the standard textbook case and
to permit some analytic checking, we will use a simple model in which the poten-
tial V (x) in (9.1) is a finite square well (Figure 9.1):

V (x) =

{
−V0 = −83MeV, for |x| ≤ a = 2 fm ,
0, for |x| > a = 2 fm ,

(9.5)

where values of 83MeV for the depth and 2 fm for the radius are typical for nu-
clei (these are the units in which we solve the problem). With this potential, the
Schrödinger equation (9.3) becomes

d2ψ(x)
dx2

+
(2m
ℏ2 V0 − κ2

)
ψ(x) = 0 , for |x| ≤ a , (9.6)

d2ψ(x)
dx2

− κ2ψ(x) = 0 , for |x| > a . (9.7)

To evaluate the ratio of constants here, we insert c2, the speed of light squared, into
both the numerator and the denominator and then these familiar values (Landau,
1996):

2m
ℏ2 = 2mc2

(ℏc)2
≃ 2 × 940MeV

(197.32MeV fm)2
= 0.0483MeV−1 fm−2 . (9.8)

1959.2 Algorithms: Eigenvalues via ODE Solver+ Search

xmatch

0
x

V(x)
–V0

0

–a a

Figure 9.1 Computed wave function and the
square-well potential (bold lines). The wave
function computed by integration in from the
left is matched to the one computed by in-

tegration in from the right (dashed curve) at
a point near the right edge of the well. Note
how the wave function decays rapidly outside
the well.

9.2
Dual Algorithms: Eigenvalues via ODE Solver + Search

The solution of the eigenvalue problemcombines the numerical solution of the or-
dinary differential equation (9.3) with a trial-and-error search for a wave function
that satisfies the boundary conditions (9.4). This is carried out in several steps:2)

1. Start on the very far left at x = −Xmax ≃ −∞, where Xmax ≫ a. Because the
potential V = 0 in this region, the analytic solution here is e±κx . Accordingly,
assume that the wave function there satisfies the left-hand boundary condi-
tion:

ψL(x = −Xmax) = e+κx = e−κXmax . (9.9)

2. Use your favorite ODE solver to step ψL(x) in toward the origin (to the right)
from x = −Xmax until you reach thematching radius xmatch. The exact value of
this matching radius is not important, and our final solution should be inde-
pendent of it. In Figure 9.1, we show a sample solution with xmatch = +a; that
is, we match at the right edge of the potential well. In Figure 9.2 we see some
guesses that do not match.

3. Start at the extreme right, that is, at x = +Xmax ≃ +∞, with a wave function
that satisfies the right-hand boundary condition:

ψR(x = +κXmax) = e−κx = e−κXmax . (9.10)

2) The procedure outlined here is for a general potential that falls off gradually. For a square
well with sharp cutoffs, the analytic solution is valid right up to the walls, and we could start
integrating inwards from there in this special case. In contrast, if we were working with a
Coulomb potential, its very slow falloff would does not match onto a simple exponential, even
at infinity (Landau, 1996).

196 9 ODE Applications: Eigenvalues, Scattering, and Projectiles

4. Use your rk4 ODE solver to step ψR(x) in toward the origin (to the left)
from x = +Xmax until you reach thematching radius xmatch

5. In order for probability and current to be continuous at x = xmatch, ψ(x)
and ψ′(x) must be continuous there. Requiring the ratio ψ′(x)∕ψ(x), called
the logarithmic derivative, to be continuous there encapsulates both continu-
ity conditions into a single condition and is independent of ψ’s normalization.

6. Although we do not know ahead of time which E or κ values are eigenvalues,
we still need a starting value for the energy in order to use our ODE solver.
Such being the case, we start the solution with a guess for the energy. A good
guess for ground-state energy would be a value somewhat up from that at the
bottom of the well, E > −V0.

7. Because it is unlikely that any guess will be correct, the left- and right-wave
functions will not quite match at x = xmatch (Figure 9.2). This is okay because
we can use the amount of mismatch to improve the next guess. We measure
how well the right and left wave functions match by calculating the difference
in logarithmic derivatives:

Δ(E , x) =
ψ′
L(x)∕ψL(x) − ψ′

R(x)∕ψR(x)
ψ′
L(x)∕ψL(x) + ψ′

R(x)∕ψR(x)

|||||x=xmatch

, (9.11)

where the denominator is used to avoid overly large or small numbers. Next,
we try a different energy, note howmuch Δ(E) has changed, and use this to de-
duce an intelligent guess at the next energy. The search continues until the left
and right ψ′∕ψmatchwithin some set tolerance that depends on the precision
in energy desired.

0x

Low E
High E

Figure 9.2 Two guesses for the energy that are either too low or too high to be an eigenvalue.
We see that the low-E guess does not oscillate enough to match onto a dying exponential, and
that the high-E guess oscillates too much.

1979.2 Algorithms: Eigenvalues via ODE Solver+ Search

9.2.1
Numerov Algorithm for Schrödinger ODE ⊙

We generally recommend the fourth-order Runge–Kutta method for solving
ODEs, and its combination with a search routine for solving the eigenvalue prob-
lem. In this section we present the Numerov method, an algorithm that is spe-
cialized for ODEs not containing any first derivatives (such as our Schrödinger
equation). While this algorithm is not as general as rk4, it is of (h6) and thus
speeds up the calculation by providing additional precision.
We start by rewriting the Schrödinger equation (9.3) in the generic form

d2ψ
dx2

+ k2(x)ψ = 0 , k2(x) = 2m
ℏ2

{
E + V0 , for |x| < a ,
E , for |x| > a ,

(9.12)

where k2 = −κ2 for bound states. Observe that although (9.12) is specialized to
a square well, other potentials would have a function V (x) in place of −V0. The
trick in the Numerov method is to get extra precision in the second derivative by
taking advantage of there being no first derivative dψ∕dx in (9.12). We start with
the Taylor expansions of the wave functions

ψ(x+ h) ≃ ψ(x)+ hψ(1) (x)+ h2
2
ψ(2)(x)+ h3

3!
ψ(3)(x)+ h4

4!
ψ(4)(x)+⋯ (9.13)

ψ(x − h) ≃ ψ(x) − hψ(1)(x) + h2
2
ψ(2)(x) − h3

3!
ψ(3)(x) + h4

4!
ψ(4)(x) +⋯ ,

(9.14)

where ψ(n) signifies the nth derivative dnψ∕dxn . Because the expansion of ψ(x −
h) has odd powers of h appearing with negative signs, all odd powers cancel when
we add ψ(x + h) and ψ(x − h) together:

ψ(x + h) + ψ(x − h) ≃ 2ψ(x) + h2ψ(2)(x) + h4
12

ψ(4)(x) + (h6) , (9.15)

⇒ ψ(2)(x) ≃
ψ(x + h) + ψ(x − h) − 2ψ(x)

h2
− h2

12
ψ(4)(x) + (h4) . (9.16)

To obtain an algorithm for the second derivative, we eliminate the fourth-
derivative term by applying the operator 1 + (h2∕12)(d2∕dx2) to the Schrödinger
equation (9.12):

ψ(2)(x) + h2
12

ψ(4)(x) + k2(x)ψ + h2
12

d2

dx2
[k2(x)ψ(4)(x)] = 0 . (9.17)

198 9 ODE Applications: Eigenvalues, Scattering, and Projectiles

We eliminate the ψ(4) terms by substituting the derived expression for the ψ(2):

ψ(x + h) + ψ(x − h) − 2ψ(x)
h2

+ k2(x)ψ(x) + h2
12

d2

dx2
[k2(x)ψ(x)] ≃ 0 .

(9.18)

Now we use a central-difference approximation for the second derivative of
k2(x)ψ(x):

h2
d2[k2(x)ψ(x)]

dx2
≃ [(k2ψ)x+h − (k2ψ)x] + [(k2ψ)x−h − (k2ψ)x] . (9.19)

After this substitution, we obtain the Numerov algorithm:

ψ(x + h) ≃
2
[
1 − 5

12
h2k2(x)

]
ψ(x) −

[
1 + h2

12
k2(x − h)

]
ψ(x − h)

1+h2k2(x+h)
12

. (9.20)

We see that theNumerov algorithmuses the values ofψ at the twoprevious steps x
and x − h to move ψ forward to x + h. To step backward in x, we need only to
reverse the sign of h. Our implementation of this algorithm, Numerov.py, is given
in Listing 9.1.

Listing 9.1 QuantumNumerov.py solves the 1D time-independent Schrödinger equation for
bound-state energies using a Numerov method (rk4 also works, as we show in Listing 9.2).

QuantumNumerov : Quantum BS via Numerov ODE solver + search

from v i s u a l import *
from v i s u a l . graph import *

p s i g r = d i s p l a y (x=0 , y=0 , width =600 , he ight =300 , t i t l e = ’R & L Wave Funcs ’)
p s i = curve (x= l i s t (range (0 , 1000)) , d i s p l a y=psigr , co lo r=co lo r . ye l low)
ps i2g r = d i s p l a y (x=0 , y=300 , width =600 , he ight =200 , t i t l e = ’Wave func ^2 ’)
ps io = curve (x= l i s t (range (0 , 1000)) , co lo r=co lo r . magenta , d i s p l a y=ps i2g r)
energr = d i s p l a y (x=0 , y=500 , width =600 , he ight =200 , t i t l e = ’ Potent ia l & E ’)
poten = curve (x= l i s t (range (0 , 1000)) , co lo r=co lo r . cyan , d i s p l a y=energr)
autoen = curve (x= l i s t (range (0 , 1000)) , d i s p l a y=energr)

d l = 1e−6 # very small in t e rva l to stop bisect ion
u l = zeros ([1 5 0 1] , f l o a t)
ur = zeros ([1 5 0 1] , f l o a t)
k2 l = zeros ([1 5 0 1] , f l o a t) # k**2 l e f t wavefunc
k2r = zeros ([1 5 0 1] , f l o a t)
n = 1501
m = 5 # plot every 5 points
imax = 100
x l0 = −1000; xr0 = 1000 # leftmost , rightmost x
h = 1 . 0 * (xr0−x l0) / (n−1 .)
amin = −0.001; amax = −0.00085 # root l imi t s
e = amin # I n i t i a l E guess
de = 0 .01
u l [0] = 0 . 0 ; u l [1] = 0 . 00001 ; ur [0] = 0 . 0 ; ur [1] = 0.00001
im = 500 # match point
nl = im+2; nr = n−im+1 # le f t , r ight wv
i s t e p = 0

1999.2 Algorithms: Eigenvalues via ODE Solver+ Search

de f V(x) : # Square well
i f (abs (x) <=500) : v = −0.001
e l s e : v = 0
re turn v

de f se tk2 () : # k2
f o r i in range (0 , n) :

x l = x l0+ i *h
xr = xr0− i *h
k2 l [i] = e−V(x l)
k2r [i] = e−V(xr)

de f numerov (n , h , k2 , u) : # Numerov algorithm
b=(h * * 2) / 12 . 0
f o r i in range (1 , n−1) :
u [i +1] = (2 * u [i] * (1 −5*b * k2 [i]) −(1.+b * k2 [i −1]) *u [i −1]) /(1+ b * k2 [i +1])

se tk2 ()
numerov (nl , h , k2l , u l) # Left ps i
numerov (nr , h , k2r , ur) # Right ps i
f a c t = ur [nr −2]/ u l [im] # Scale
f o r i in range (0 , n l) : u l [i] = f a c t * u l [i]
f0 = (ur [nr−1]+ u l [nl −1]−ur [nr−3]−u l [nl −3]) / (2 * h* ur [nr −2]) # Log deriv

de f normalize () :
asum = 0
f o r i in range (0 ,n) :

i f i > im :
u l [i] = ur [n−i −1]
asum = asum+ul [i] * u l [i]

asum = sqr t (h*asum) ;
e l a b e l = l a b e l (pos =(700 , 500) , t e x t= ’ e=’ , box=0 , d i s p l a y=ps ig r)
e l a b e l . t e x t = ’ e=%10.8 f ’ %e
i l a b e l = l a b e l (pos =(700 ,400) , t e x t= ’ i s t ep=’ , box=0 , d i s p l a y=ps ig r)
i l a b e l . t e x t = ’ i s t ep=%4s ’ %i s t e p
poten . pos = [(−1500 ,200) , (−1000 ,200) ,(−1000 ,−200) ,

(0 , −200) , (0 , 200) , (1000 ,200)]
autoen . pos = [(−1000 , e *400000.0+200) , (0 , e *400000.0+200)]
l a b e l (pos=(−1150 ,−240) , t e x t= ’ 0 .001 ’ , box=0 , d i s p l a y=energr)
l a b e l (pos =(−1000 ,300) , t e x t= ’ 0 ’ , box=0 , d i s p l a y=energr)
l a b e l (pos =(−900 ,180) , t e x t= ’ -500 ’ , box=0 , d i s p l a y=energr)
l a b e l (pos =(−100 ,180) , t e x t= ’ 500 ’ , box=0 , d i s p l a y=energr)
l a b e l (pos =(−500 ,180) , t e x t= ’ 0 ’ , box=0 , d i s p l a y=energr)
l a b e l (pos =(900 ,120) , t e x t= ’ r ’ , box=0 , d i s p l a y=energr)
j =0
f o r i in range (0 , n ,m) :

x l = x l0 + i *h
u l [i] = u l [i] / asum # wave function normalized
ps i . x [j] = x l − 500 # plot ps i
ps i . y [j] = 10000 .0* u l [i] # v e r t i c a l l ine for match of wvfs
l i n e = curve (pos=[(−830 ,−500) ,(−830 ,500)] ,

co lo r=co lo r . red , d i s p l a y=ps ig r)
ps io . x [j] = xl −500 # plot ps i
psio . y [j] = 1 .0 e5 * u l [i] * * 2
j +=1

whi le abs (de) > dl and i s t e p < imax : # bisect ion algorithm
r a t e (2) # Slow animation
e1 = e
e = (amin+amax) /2
f o r i in range (0 , n) :

k2 l [i] = k2 l [i] + e−e1
k2r [i] = k2r [i] + e−e1

im = 500 ;
nl = im+2
nr = n−im+1;
numerov (nl , h , k2l , u l) # New wavefuntions

200 9 ODE Applications: Eigenvalues, Scattering, and Projectiles

numerov (nr , h , k2r , ur)
f a c t = ur [nr −2]/ u l [im]
f o r i in range (0 , n l) : u l [i] = f a c t * u l [i]
f1 = (ur [nr−1]+ u l [nl −1]−ur [nr−3]−u l [nl −3]) / (2 * h* ur [nr −2]) # Log deriv
r a t e (2)
i f f0 * f1 < 0 : # Bisect ion l o c a l i z e root

amax = e
de = amax − amin

e l s e :
amin = e
de = amax − amin
f0 = f1

normalize ()
i s t e p = i s t e p + 1

9.2.2
Implementation: Eigenvalues via ODE Solver + Bisection Algorithm

1. Combine your bisection algorithm search programwith your rk4 or Numerov
ODE solver program to create an eigenvalue solver. Start with a step size h =
0.04.

2. Write a function that calculates the matching function Δ(E , x) as a function
of energy and matching radius. This subroutine will be called by the bisec-
tion algorithm program to search for the energy at which Δ(E , x = 2) (9.11)
vanishes.

3. As a first guess, take E ≃ 65MeV.
4. Search until Δ(E , x) changes in only the fourth decimal place. We do this in

the code QuantumEigen.py shown in Listing 9.2.
5. Print out the value of the energy for each iteration. This will give you a feel

as to how well the procedure converges, as well as a measure of the precision
obtained. Try different values for the tolerance until you are confident that you
are obtaining three good decimal places in the energy.

6. Build in a limit to the number of energy iterations you permit, and print out a
warning if the iteration scheme fails.

7. As we have shown, plot the wave function and potential on the same graph
(you will have to scale one plot to get both of them to fit).

8. Deduce, by counting the number of nodes in the wave function, whether the
solution found is a ground state (no nodes) or an excited state (with nodes)
and whether the solution is even or odd about the origin (the ground state
must be even).

9. Include in your version of Figure 9.1 a horizontal line within the potential in-
dicating the energy of the ground state relative to the potential’s depth.

10. Increase the value of the initial energy guess and search for excited states.
Make sure to examine the wave function for each state found to establish that
it is continuous, and to count the number of nodes to see if you have missed a
state.

11. Add each new state found as another horizontal bar within the potential.
12. Verify that you have solved the problem, that is, the spacing between levels is

on the order of MeV for a nucleon bound in a several-fermi potential well.

2019.2 Algorithms: Eigenvalues via ODE Solver+ Search

Listing 9.2 QuantumEigen.py solves the 1D time-independent Schrödinger equation for
bound-state energies using the rk4 algorithm.

QuantumNumerov : Quantum BS via Numerov ODE solver + search

QuantumEigen . py : Finds E and psi v ia rk4 + bisect ion

mass / ((hbar * c) * *2)= 940MeV/(197.33MeV−fm) **2 =0.4829 , well width=20.0 fm
well depth 10 MeV, Wave function not normalized .

from v i s u a l import *

p s i g r = d i s p l a y (x=0 , y=0 , width =600 , he ight =300 , t i t l e = ’R & L Wavefunc ’)
Lwf = curve (x= l i s t (range (502)) , co l o r=co lo r . red)
Rwf = curve (x= l i s t (range (997)) , co l o r=co lo r . ye l low)
eps = 1E−3 # Precision
n_steps = 501
E = −17.0 # E guess
h = 0.04
count_max = 100
Emax = 1 . 1 *E # E l imi t s
Emin = E / 1 . 1

de f f (x , y , F , E) :
F [0] = y [1]
F [1] = − (0 .4829) * (E−V(x)) * y [0]

de f V(x) :
i f (abs (x) < 1 0 .) : re turn (−16 .0) # Well depth
e l s e : re turn (0 .)

de f rk4 (t , y , h , Neqs , E) :
F = zeros ((Neqs) , f l o a t)
ydumb = zeros ((Neqs) , f l o a t)
k1 = zeros ((Neqs) , f l o a t)
k2 = zeros ((Neqs) , f l o a t)
k3 = zeros ((Neqs) , f l o a t)
k4 = zeros ((Neqs) , f l o a t)
f (t , y , F , E)
f o r i in range (0 , Neqs) :

k1 [i] = h*F [i]
ydumb [i] = y [i] + k1 [i] / 2 .

f (t + h / 2 . , ydumb , F , E)
f o r i in range (0 , Neqs) :

k2 [i] = h*F [i]
ydumb [i] = y [i] + k2 [i] / 2 .

f (t + h / 2 . , ydumb , F , E)
f o r i in range (0 , Neqs) :

k3 [i]= h*F [i]
ydumb [i] = y [i] + k3 [i]

f (t + h , ydumb , F , E) ;
f o r i in range (0 , Neqs) :

k4 [i]=h*F [i]
y [i]= y [i]+(k1 [i]+2 * (k2 [i]+k3 [i])+k4 [i]) / 6 . 0

de f d i f f (E , h) :
y = zeros ((2) , f l o a t)
i_match = n_steps / / 3 # Matching radius
nL = i_match + 1
y [0] = 1 . E−15; # I n i t i a l l e f t wf
y [1] = y [0] * sq r t (−E *0 . 4829)
f o r i x in range (0 , nL + 1) :

x = h * (i x −n_steps / 2)
rk4 (x , y , h , 2 , E)

l e f t = y [1] / y [0] # Log der iva t iv e
y [0] = 1 . E−15; # slope for even ; reverse for odd

202 9 ODE Applications: Eigenvalues, Scattering, and Projectiles

y [1] = −y [0] * sq r t (−E *0 . 4829) # I n i t i a l i z e R wf
f o r i x in range (n_steps , nL+1 ,−1) :

x = h * (i x+1−n_steps / 2)
rk4 (x , y , −h , 2 , E)

r i g h t = y [1] / y [0] # Log der iva t iv e
re turn ((l e f t − r i g h t) / (l e f t + r i g h t))

de f p lo t (E , h) : # Repeat integrat ions for plot
x = 0 .
n_steps = 1501 # # integrat ion steps
y = zeros ((2) , f l o a t)
yL = zeros ((2 , 5 0 5) , f l o a t)
i_match = 500 # Matching point
nL = i_match + 1 ;
y [0] = 1 . E−40 # I n i t i a l l e f t wf
y [1] = − sq r t (−E *0 . 4829) * y [0]
f o r i x in range (0 , nL+1) :

yL [0] [i x] = y [0]
yL [1] [i x] = y [1]
x = h * (i x −n_steps / 2)
rk4 (x , y , h , 2 , E)

y [0] = −1.E−15 # − slope : even ; reverse for odd
y [1] = − sq r t (−E *0 . 4829) * y [0]
j =0
f o r i x in range (n_steps −1 ,nL + 2 ,−1) : # right wave function

x = h * (i x + 1 −n_steps / 2) # Integrate in
rk4 (x , y , −h , 2 , E)
Rwf . x [j] = 2 . * (i x + 1 −n_steps / 2) −500.0
Rwf . y [j] = y [0] *35 e−9 +200
j +=1

x = x−h
normL = y [0] / yL [0] [nL]
j =0
Renormalize L wf & der iva t iv e
f o r i x in range (0 , nL+1) :

x = h * (ix−n_steps /2 + 1)
y [0] = yL [0] [i x] * normL
y [1] = yL [1] [i x] * normL
Lwf . x [j] = 2 . * (i x −n_steps /2+1) −500.0
Lwf . y [j] = y [0] *35 e−9+200 # Factor for s ca le
j +=1

f o r count in range (0 , count_max+1) :
r a t e (1) # Slow rate to show changes
I t e ra t ion loop
E = (Emax + Emin) / 2 . # Divide E range
Di f f = d i f f (E , h)
i f (d i f f (Emax , h) * D i f f > 0) : Emax = E # Bisect ion algorithm
e l s e : Emin = E
i f (abs (D i f f) < eps) : break
i f count >3: # Fi r s t i t e r a t e s too i r regu la r

r a t e (4)
p lo t (E , h)

e l a b e l = l a b e l (pos =(700 , 400) , t e x t= ’E=’ , box=0)
e l a b e l . t e x t = ’E=%13.10f ’ %E
i l a b e l = l a b e l (pos =(700 , 600) , t e x t= ’ i s t ep=’ , box=0)
i l a b e l . t e x t = ’ i s t ep=%4s ’ %count

e l a b e l = l a b e l (pos =(700 , 400) , t e x t= ’E=’ , box=0) # Last i t e ra t ion
e l a b e l . t e x t = ’E=%13.10f ’ %E
i l a b e l = l a b e l (pos =(700 , 600) , t e x t= ’ i s t ep=’ , box=0)
i l a b e l . t e x t = ’ i s t ep=%4s ’ %count

pr in t (" Final e igenvalue E = " ,E)
pr in t (" i t e r a t i o n s , max = " , count)

2039.4 Problem: Classical Chaotic Scattering

9.3
Explorations

1. Check to see how well your search procedure works by using arbitrary values
for the starting energy. For example, because no bound-state energies can lie
below the bottom of the well, try E ≥ −V0, as well as some arbitrary fractions
of V0. In every case, examine the resulting wave function and check that it is
both symmetric and continuous.

2. Increase the depth of your potential progressively until you find several bound
states. Look at the wave function in each case and correlate the number of
nodes in the wave function with the position of the bound state in the well.

3. Explore how a bound-state energy changes as you change the depth V0 of the
well. In particular, as you keep decreasing the depth, watch the eigenenergy
move closer to E = 0 and see if you can find the potential depth at which the
bound state has E ≃ 0.

4. For a fixed well depth V0, explore how the energy of a bound state changes as
the well radius a is varied. Larger radius should give increased binding.

5. ⊙ Conduct some explorations in which you discover different combinations
of (V0 , a) that give the same ground-state energies (discrete ambiguities). The
existence of several different combinationsmeans that a knowledge of ground-
state energy is not enough to determine a unique depth of the well.

6. Modify the procedures to solve for the eigenvalues and eigenfunctions for odd
wave functions.

7. Solve for the wave function of a linear potential:

V (x) = −V0

{|x|, for |x| < a ,
0, for |x| > a .

(9.21)

There is less potential here than for a square well, so you may expect smaller
binding energies and a less confined wave function. (For this potential, there
are no analytic results with which to compare.)

8. Compare the results obtained, and the time the computer took to get them,
using both the Numerov and rk4 methods.

9. Newton–Raphson extension:Extend the eigenvalue search byusing theNewton–
Raphson method in place of the bisection algorithm. Determine how much
faster it is.

9.4
Problem: Classical Chaotic Scattering

Problem One expects the classical scattering of a projectile from a barrier to be a
continuous process. Yet it has been observed in experiments conducted on pinball
machines (Figure 9.3) that for certain conditions the projectile undergoesmultiple
internal scatterings and ends upwith a final trajectory that is apparently unrelated

204 9 ODE Applications: Eigenvalues, Scattering, and Projectiles

Figure 9.3 A photograph of a pinball machine in which multiple scatterings occur from the
bumpers.

to the initial one. Your problem is to determine if this process can be modeled as
scattering from a static potential, or if theremust be active mechanisms built into
the pinball machines that cause chaotic scattering.
Although this problem is easy to solve on the computer, the results have some

chaotic features that are surprising (chaos is discussed further in Chapter 14). In
fact, the applet Disper2e.html (created by Jaime Zuluaga) that simulates this prob-
lem continues to be a source of wonderment for readers as well as authors.

9.4.1
Model and Theory

Ourmodel for balls bouncing off the electrically activated bumpers in pinball ma-
chines is a point particle scattering from the stationary 2D potential (Blehel et al.,
1990)

V (x , y) = ±x2 y2e−(x2+y2) . (9.22)

As seen in Figure 9.4, this potential has four circularly symmetric peaks in the x y
plane. The two signs correspond to repulsive and attractive potentials, respec-
tively (the pinball machine contains only repulsive interactions). Because there
are four peaks in this potential, we suspect that it may be possible to have multi-
ple scatterings in which the projectile bounces back and forth between the peaks,
somewhat as in a pinball machine.
The theory for this problem is classical dynamics. Visualize a scattering experi-

ment in which a projectile starting out at an infinite distance from a target with a
definite velocity v and an impact parameter b (Figure 9.4) is incident on a target.
After interacting with the target and moving a large distance from it, the scat-
tered particle is observed at the scattering angle θ. Because the potential cannot
recoil and thereby carry off energy, the speed of the projectile does not change,

2059.4 Problem: Classical Chaotic Scattering

v

V(x,y)

x

y

θ

b

v'

Figure 9.4 Scattering from the potential V(x , y) = x2y2e−(x
2+y2) which in some ways models

a pinball machine. The incident velocity v is in the y direction, and the impact parameter (x
value) is b. The velocity of the scattered particle is v′ and its scattering angle is θ.

but its direction does. An experiment typically measures the number of particles
scattered and then converts this to a function, the differential cross section σ(θ),
which is independent of the details of the experimental apparatus:

σ(θ) = lim
ΔΩ,ΔA→0

Nscatt(θ)∕ΔΩ
Nin∕ΔAin

. (9.23)

Here Nscatt(θ) is the number of particles per unit time scattered into the detector
at angle θ subtending a solid angle ΔΩ,Nin is the number of particle per unit time
incident on the target of cross-sectional area ΔAin, and the limit in (9.23) is for
infinitesimal detector and area sizes.
The definition (9.23) for the cross section is the one that experimentalists use to

convert their measurements to a function that can be calculated by theory.We, as
theorists, solve for the trajectory of a particle scattered from the potential (9.22)
and from that deduce the scattering angle θ. Once we have the scattering angle,
we predict the differential cross section from the dependence of the scattering
angle upon the classical impact parameter b (Marion and Thornton, 2003):

σ(θ) =
||||dθdb |||| b

sin θ(b)
. (9.24)

The surprise you should find in the simulation is that for certain potential param-
eters, dθ∕db can get to be very large or discontinuous, and this, accordingly, leads
to large and discontinuous cross sections.

206 9 ODE Applications: Eigenvalues, Scattering, and Projectiles

The dynamical equations to solve are just the vector form of Newton’s law for
the simultaneous x and y motions in the potential (9.22):

F = ma

−𝜕V
𝜕x

î − 𝜕V
𝜕 y

ĵ = md2x
dt2

,

∓2x ye−(x2+y2) [y(1 − x2)î + x(1 − y2) ĵ
]
= md2x

dt2
î + m

d2 y
dt2

ĵ .

(9.25)

The equations for the x and y motions are simultaneous second-order ODEs:

md2x
dt2

= ∓2y2x(1 − x2)e−(x2+y2) , (9.26)

m
d2 y
dt2

= ∓2x2 y(1 − y2)e−(x2+y2) . (9.27)

Because the force vanishes at the peaks in Figure 9.4, these equations tell us that
the peaks are at x = ±1 and y = ±1. Substituting these values into the poten-
tial (9.22) yields Vmax = ±e−2, which sets the energy scale for the problem.

9.4.2
Implementation

Although (9.26) and (9.27) are simultaneous second-order ODEs, we can still use
our standard rk4 ODE solver on them after expressing them in the standard form,
only now the arrays will be 4D rather than the previous 2D:

d y(t)
dt

= f (t , y) , (9.28)

y(0)
def
= x(t) , y(1)

def
= y(t) , (9.29)

y(2)
def
= dx

dt
, y(3)

def
=

dy
dt

, (9.30)

where the order in which the y(i)s are assigned is arbitrary. With these definitions
and equations (9.26) and (9.27), we can assign values for the force function:

f (0) = y(2) , f (1) = y(3) , (9.31)

f (2) = ∓1
m

2y2x(1 − x2)e−(x2+y2) (9.32)

= ∓1
m

2y(1)2 y(0)(1 − y(0)2)e−(y(0)
2+y(1)2) , (9.33)

f (3) = ∓1
m

2x2 y(1 − y2)e−(x2+y2) (9.34)

= ∓1
m

2y(0)2 y(1)(1 − y(1)2)e−(y(0)
2+y(1)2) . (9.35)

2079.4 Problem: Classical Chaotic Scattering

To deduce the scattering angle from our simulation, we need to examine the tra-
jectory of the scattered particle at a very large separation from the target. To ap-
proximate that, we wait until the scattered particle no longer feels the potential
(say |PE|∕KE ≤ 10−10) and call this infinity. The scattering angle is then deduced
from the components of velocity,

θ = tan−1
(v y

vx

)
= math.atan2(y, x) . (9.36)

Here atan2 is a function that computes the arctangent in the correct quadrant
without requiring any explicit divisions (that can blow up).

9.4.3
Assessment

1. Apply the rk4 method to solve the simultaneous second-order ODEs (9.26)
and (9.27) with a 4D force function.

2. The initial conditions are (a) an incident particle with only a y component of
velocity and (b) an impact parameter b (the initial x value). You do not need
to vary the initial y, but it should be large enough such that PE∕KE ≤ 10−10,
which means that the KE ≃ E.

3. Good parameters to use arem = 0.5, v y(0) = 0.5, vx(0) = 0.0, Δb = 0.05,−1 ≤
b ≤ 1. Youmay want to lower the energy and use a finer step size once you have
found regions of rapid variation in the cross section.

4. Plot a number of trajectories [x(t), y(t)] that show usual and unusual behav-
iors. In particular, plot those for which backward scattering occurs, and con-
sequently for which there is much multiple scattering.

5. Plot a number of phase-space trajectories [x(t), ẋ(t)] and [y(t), ẏ(t)]. How do
these differ from those of bound states?

6. Determine the scattering angle θ = atan2(Vx,Vy) by determining the velocity
of the scattered particle after it has left the interaction region, that is, PE∕KE≤
10−10.

7. Identify which characteristics of a trajectory lead to discontinuities in dθ∕db
and thus σ(θ).

8. Run the simulations for both attractive and repulsive potentials and for a range
of energies less than and greater than Vmax = exp(−2).

9. Time delay: Another way to find unusual behavior in scattering is to compute
the time delay T(b) as a function of the impact parameter b. The time delay
is the increase in the time taken by a particle to travel through the interaction
region. Look for highly oscillatory regions in the semilog plot of T(b), and
once you find some, repeat the simulation at a finer scale by setting b ≃ b∕10
(the structures are fractals, see Chapter 16).

208 9 ODE Applications: Eigenvalues, Scattering, and Projectiles

V0
y

R

H

x

with drag

0

0

θ

Figure 9.5 The trajectories of a projectile fired with initial velocity V0 in the θ direction. The
lower curve includes air resistance.

9.5
Problem: Balls Falling Out of the Sky

Golf and baseball players claim that balls appear to fall straight down out of the
sky at the end of their trajectories (the solid curve in Figure 9.5). Your problem is to
determine whether there is a simple physics explanation for this effect or whether
it is “all in the mind’s eye.” And while you are wondering why things fall out of the
sky, see if you can use your new-found numerical tools to explain why planets do
not fall out of the sky.

9.6
Theory: Projectile Motion with Drag

Figure 9.5 shows the initial velocity V0 and inclination θ for a projectile launched
from the origin. If we ignore air resistance, the projectile has only the force of
gravity acting on it and therefore has a constant acceleration g = 9.8m∕s2 in the
negative y direction. The analytic solutions to the equations of motion are

x(t) = V0x t , y(t) = V0y t −
1
2
gt2 , (9.37)

vx(t) = V0x , v y(t) = V0y − gt , (9.38)

where (V0x , V0y) = V0(cos θ, sin θ). Solving for t as a function of x and substituting
it into the y(t) equation show that the trajectory is a parabola:

y =
V0y

V0x
x −

g
2V 2

0x

x2 . (9.39)

Likewise, it is easy to show (solid curve in Figure 9.5) that without friction the
range R = 2V 2

0 sin θ cos θ∕g and the maximum height H = 1
2
V 2
0 sin2 θ∕g.

The parabola of frictionless motion is symmetric about its midpoint and so
does not describe a ball dropping out of the sky. Maybe air resistance will change
that? The basic physics is Newton’s second law in two dimensions for a frictional
force F (f) opposing motion, and a vertical gravitational force −mg ê y:

F (f) − mg ê y = md2x(t)
dt2

, (9.40)

2099.6 Theory: ProjectileMotionwith Drag

⇒ F (f)
x = md2x

dt2
, F (f)

y − mg = m
d2 y
dt2

, (9.41)

where the boldface italic symbols indicate vector quantities.
The frictional force F (f) is not a basic force of nature but rather a simple model

of a complicated phenomenon. We know that friction always opposes motion,
which means it is in the direction opposite to velocity. One model assumes that
the frictional force is proportional to a power n of the projectile’s speed (Marion
and Thornton, 2003; Warburton andWang, 2004):

F (f) = −km|v|n v|v| , (9.42)

where the −v∕|v| factor ensures that the frictional force is always in a direction
opposite that of the velocity. Physical measurements indicate that the power n
is noninteger and varies with velocity, and so a more accurate model would be a
numerical one that uses the empirical velocity dependence n(v). With a constant
power law for friction, the equations of motion are

d2x
dt2

= −kvnx
vx|v| ,

d2 y
dt2

= −g − kvny
v y|v| , |v| = √

v2x + v2y . (9.43)

We shall consider three values for n, each of which represents a differentmodel for
the air resistance: (1) n = 1 for low velocities; (2) n = 3∕2, for medium velocities;
and (3) n = 2 for high velocities.

9.6.1
Simultaneous Second-Order ODEs

Although (9.43) are simultaneous second-orderODEs, we can still use our regular
ODE solver on them after expressing them in the standard form

d y
dt

= f (t , y) (standard form) , (9.44)

y(0) = x(t) , y(1) = dx
dt

, y(2) = y(t) , y(3) =
dy
dt

. (9.45)

We express the equations of motion in terms of y to obtain the standard form:

dy(0)

dt
= y(1) ,

dy(1)

dt
= 1

m
F (f)
x (y) , (9.46)

dy(2)

dt
= y(3) ,

dy(3)

dt
= 1

m
F (f)
y (y) − g . (9.47)

And now we just read off the components of the force function f (t , y):

f (0) = y(1) , f (1) = 1
m
F (f)
x , f (2) = y(3) , f (3) = 1

m
F (f)
y − g . (9.48)

Our implementation, ProjectiveAir.py, is given in Listing 9.3.

210 9 ODE Applications: Eigenvalues, Scattering, and Projectiles

Listing 9.3 ProjectileAir.py solves for projectile motion with air resistance as well as analyti-
cally for the frictionless case.

Pro j ec t i l eAir . py : Numerical so lut ion for p ro j e c t i l e with drag

from v i s u a l import *
from v i s u a l . graph import *

v0 = 2 2 . ; ang le = 3 4 . ; g = 9 . 8 ; k f = 0 . 8 ; N = 5
v0x = v0 * cos (ang le * p i / 1 8 0 .) ; v0y = v0 * s in (ang le * p i / 1 8 0 .)
T = 2 . * v0y / g ; H = v0y * v0y / 2 . / g ; R = 2 . * v0x * v0y / g
graph1 = gd i sp l ay (t i t l e = ’ P r o j e c t i l e with & without Drag ’ ,

x t i t l e = ’x ’ , y t i t l e = ’y ’ , xmax=R , xmin=−R/ 2 0 . , ymax=8 , ymin=−6.0)
funct = gcurve (co l o r=co lo r . red)
funct1 = gcurve (co lo r=co lo r . ye l low)
pr in t (’No Drag T =’ ,T , ’ , H =’ ,H, ’ , R =’ ,R)

de f plotNumeric (k) :
vx = v0 * cos (ang le * p i / 1 8 0 .)
vy = v0 * s in (ang le * p i / 1 8 0 .)
x = 0 .0
y = 0 .0
dt = vy / g /N/ 2 .
pr in t ("\n With Fr ict ion ")
pr in t (" x y")
f o r i in range (N) :

r a t e (30)
vx = vx − k * vx * dt
vy = vy − g * dt − k * vy * dt
x = x + vx * dt
y = y + vy * dt
funct . p l o t (pos=(x , y))
pr in t (" %13.10 f %13.10 f "%(x , y))

de f p l o tAna l y t i c () :
v0x = v0 * cos (ang le * p i / 1 8 0 .)
v0y = v0 * s in (ang le * p i / 1 8 0 .)
dt = 2 . * v0y / g /N
pr in t ("\n No Fr ict ion ")
pr in t (" x y")
f o r i in range (N) :

r a t e (30)
t = i * dt
x = v0x * t
y = v0y * t −g * t * t / 2 .
funct1 . p l o t (pos=(x , y))
pr in t (" %13.10 f %13.10 f "%(x , y))

plotNumeric (k f)
p l o tAna l y t i c ()

9.6.2
Assessment

1. Modify your rk4 programso that it solves the simultaneousODEs for projectile
motion (9.43) with friction (n = 1).

2. Check that you obtain graphs similar to those in Figure 9.5.
3. The model (9.42) with n = 1 is okay for low velocities. Now modify your pro-

gram to handle n = 3∕2 (medium-velocity friction) and n = 2 (high-velocity
friction). Adjust the value of k for the latter two cases such that the initial force
of friction kvn0 is the same for all three cases.

4. What is your conclusion about balls falling out of the sky?

2119.7 Exercises:2- and 3-Body Planet Orbits and Chaotic Weather

9.7
Exercises: 2- and 3-Body Planet Orbits and Chaotic Weather

Planets via Two of Newton’s Laws Newton’s explanation of the motion of the plan-
ets in terms of a universal law of gravitation is one of the greatest achievements of
science. He was able to prove that planets traveled in elliptical orbits with the sun
at one vertex, and then go on to predict the periods of the motion. All Newton
needed to postulate was that the force between a planet of mass m and the sun of
mass M is

F (g) = −GmM
r2

, (9.49)

where r is the planet–CM distance, G is the universal gravitational constant, and
the attractive force lies along the line connecting the planet and the sun (Fig-
ure 9.6a). Seeing that he had to invent calculus to do it, the hard part for Newton
was solving the resulting differential equations. In contrast, the numerical solu-
tion is straightforward because even for planets the equation of motion is still

F = ma = md2x
dt2

, (9.50)

with the force (9.49) having Cartesian components (Figure 9.6)

Fx = F (g) cos θ = F (g) x
r
= F (g) x√

x2 + y2
, (9.51)

Fy = F (g) sin θ = F (g) y
r
= F (g) y√

x2 + y2
. (9.52)

The equation of motion (9.50) becomes two simultaneous second-order ODEs:

d2x
dt2

= −GM x
(x2 + y2)3∕2

,
d2 y
dt2

= −GM
y

(x2 + y2)3∕2
. (9.53)

1. Assume units such that GM = 1 and the initial conditions

x(0) = 0.5 , y(0) = 0 , vx(0) = 0.0 , v y(0) = 1.63 . (9.54)

2. Modify your ODE solver program to solve (9.53).
3. Establish that you use small enough time steps so that the orbits are closed

and fall upon themselves.
4. Experiment with the initial conditions until you find the ones that produce a

circular orbit (a special case of an ellipse).
5. Once you have obtained good precision, note the effect of progressively in-

creasing the initial velocity until the orbits open up and the planets become
projectiles.

6. Using the same initial conditions that produced the ellipse, investigate the ef-
fect of the power in (9.49) being 1∕r2+α with α ≠ 0. Even for small α you should
find that the ellipses now rotate or precess (Figure 9.6). (A small value for α is
predicted by general relativity.)

212 9 ODE Applications: Eigenvalues, Scattering, and Projectiles

f

x

θ
r

y
(x,y)

fx

fy

(a) (b)

Figure 9.6 (a) The gravitational force on a
planet at distance r from the sun. The x and
y components of the force are indicated. (b)
Output from the applet Planet showing the

precession of a planet’s orbit when the gravi-
tational force∝ 1∕r4 (successive orbits do not
lie on top of each other).

Three-Body Problem: The Discovery of Neptune The planet Uranus was discovered
in 1781 byWilliamHerschel and found to have an orbital period of approximately
84 years. By the year 1846, Uranus had just about completed a full orbit around
the sun since its discovery, but did not seem to be followingprecisely the positions
predicted by Newton’s law of gravity. However, theoretical calculations indicated
that if there was a yet-to-be-discovered planet lying about 50% further away from
the sun than Uranus, then its perturbation on the orbit of Uranus could explain
the disagreement with Newton’s law. The planet Neptune was thus discovered
theoretically and confirmed experimentally. (If Pluto is discarded as just a dwarf
planet, then Neptune is the most distant planet in the solar system.)
Assume that the orbits of Neptune and Uranus are circular and coplanar (as

shown in Figure 9.7), and that the initial angular positions with respect to the x-
axis are as follows:

Mass Distance Orbital period Angular position
(×10−5 Solar Masses) (AU) (Years) (in 1690)

Uranus 4.366 244 19.1914 84.0110 ∼ 205.640
Neptune 5.151 389 30.0611 164.7901 ∼ 288.380

Using these data and rk4, find the variation in angular position of Uranus with
respect to the Sun as a result of the influence of Neptune during one complete
orbit of Neptune. Consider only the forces of the Sun and Neptune on Uranus. In
the astronomical units, Ms = 1 and G = 4π2.
You can do this calculation following the procedure outlined above inwhich the

problems is reduced to simultaneous ODEs for the x and y Cartesian coordinates,
and the components of the forces along x and y are computed. Another approach
that you may want to try, computes the explicit values of the derivatives used in

2139.7 Exercises:2- and 3-Body Planet Orbits and Chaotic Weather

Figure 9.7 A snapshot from the animated
output of the code UranusNeptune.py (on
Instructor’s disk) showing: (a) the orbits of
Uranus (inner circle) and of Neptune (outer
circle) with the Sun in the center. The ar-

rows indicate the Uranus–Neptune force that
causes a perturbation in the orbits. (b) The
perturbation in the angular position of Uranus
as a result of the presence of Neptune.

the rk4 method (http://spiff.rit.edu/richmond/nbody/OrbitRungeKutta4_fixed.pdf):

k1v =
FT (rsu , rnu)

mu
, k1r = vu , (9.55)

k2v =
FT (rsu + k1r

dt
2
, rnu)

mu
, k2r = vu + k2v

dt
2

, (9.56)

k3v =
FT (rsu + k2r

dt
2
, rnu)

mu
, k3r = vu + k3v

dt
2

, (9.57)

k4v =
FT (rsu + k3r dt , rnu)

mu
, k4r = vu + k4v dt , (9.58)

vu = vu + (k1v + 2k2v + 2k3v + k4v)
dt
6
, (9.59)

r = r + (k1r + 2k2r + 2k3r + k4r)
dt
6

, (9.60)

with a similar set of k’s defined for Neptune because the force is equal and oppo-
site.

214 9 ODE Applications: Eigenvalues, Scattering, and Projectiles

To help you get started, here is a listing of some of the constants used in our
program:

G = 4* pi * p i # AU, Msun=1
mu = 4.366244 e−5 # Uranus mass
M = 1 .0 # Sun mass
mn = 5.151389 e−5 # Neptune mass
du = 19.1914 # Uranus Sun dis tance
dn = 30.0611 # Neptune sun dis tance
Tur = 84.0110 # Uranus Period
Tnp = 164.7901 # Neptune Period
omeur = 2* pi /Tur # Uranus angular ve loc i t y
omennp = 2* p i /Tnp # Neptune angular ve loc i t y
omreal = omeur
u rv e l = 2* p i * du /Tur # Uranus orb i t a l v e loc i t y UA/ yr
npvel = 2* p i *dn /Tnp # Neptune orb i t a l v e loc i t y UA/ yr
radur = (2 0 5 . 6 4) * p i / 180 . # in radians
urx = du* cos (radur) # in i t x uranus in 1690
ury = du* s in (radur) # in i t y uranus in 1690
u rv e l x = u rv e l * s in (radur)
u rv e l y = −u rv e l * cos (radur)
radnp = (2 8 8 . 3 8) * p i / 180 . # Neptune angular pos .

215

10
High-Performance Hardware and Parallel Computers

This chapter discusses a number of topics associatedwith high-performance com-
puting (HPC) andparallel computing.Although thismay sound like somethingonly
specialists should be reading, using history as a guide, present HPC hardware and
software will be desktop machines in less than a decade, and so you may as well
learn these things now. We start with a discussion of a high-performance com-
puter’s memory and central processor design, and then examine various general
aspects of parallel computing. Chapter 11 goes on to discuss some practical pro-
gramming aspects of HPC and parallel computing. HPC is a broad subject, and our
presentation is brief and given from a practitioner’s point of view. The text (Quinn,
2004) surveys parallel computing and message passing interface from a computer
sciencepoint of view.Other referenceson parallel computing include van de Velde
(1994); Fox (1994), and Pancake (1996).

10.1
High-Performance Computers

By definition, supercomputers are the fastest andmost powerful computers avail-
able, and at present, the term refers to machines with hundreds of thousands of
processors. They are the superstars of the high-performance class of computers.
Personal computers (PCs) small enough in size and cost to be used by an indi-
vidual, yet powerful enough for advanced scientific and engineering applications,
can also be high-performance computers.We define high-performance computers
as machines with a good balance among the following major elements:

∙ Multistaged (pipelined) functional units,
∙ Multiple central processing units (CPUs),
∙ Multiple cores,
∙ Fast central registers,
∙ Very large, fast memories,
∙ Very fast communication among functional units,
∙ Vector, video, or array processors,
∙ Software that integrates the above effectively and efficiently.

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

216 10 High-Performance Hardware and Parallel Computers

As the simplest example, it makes little sense to have a CPU of incredibly high
speed coupled to a memory system and software that cannot keep up with it.

10.2
Memory Hierarchy

An idealized model of computer architecture is a CPU sequentially executing a
stream of instructions and reading from a continuous block of memory. To illus-
trate, in Figure 10.1 we have a vector A[] and an array M[.. , ..] loaded in memory
and about to be processed. The real world is more complicated than this. First,
arrays are not stored in 2D blocks, but rather in the linear order. For instance, in
Python, Java, and C it is in row-major order:

M(0, 0)M(0, 1)M(0, 2)M(1, 0)M(1, 1)M(1, 2)M(2, 0)M(2, 1)M(2, 2) .
(10.1)

In Fortran, it is in column-major order:

M(1, 1)M(2, 1)M(3, 1)M(1, 2)M(2, 2)M(3, 2)M(1, 3)M(2, 3)M(3, 3) .
(10.2)

Second, as illustrated in Figures 10.2 and 10.3, the values for the matrix elements
may not even be in the same physical place. Some may be in RAM, some on the
disk, some in cache, and some in the CPU. To give these words more meaning,
in Figures 10.3 and 10.2 we show simple models of the memory architecture of a
high-performance computer. This hierarchical arrangement arises from an effort
to balance speed and cost, with fast, expensive memory supplemented by slow,
less expensive memory. The memory architecture may include the following ele-
ments:

CPU Central processing unit, the fastest part of the computer. The CPU consists
of a number of very high-speed memory units called registers containing the
instructions sent to the hardware to do things like fetch, store, and operate
on data. There are usually separate registers for instructions, addresses, and
operands (current data). In many cases, the CPU also contains some special-
ized parts for accelerating the processing of floating-point numbers.

Cache A small, very fast bit of memory that holds instructions, addresses, and
data in their passage between the very fast CPU registers and the slower RAM
(also called a high-speed buffer). This is seen in the next level down the pyra-
mid in Figure 10.2. The main memory is also called dynamic RAM (DRAM),
while the cache is called static RAM (SRAM). If the cache is used properly,
it can greatly reduce the time that the CPU waits for data to be fetched from
memory.

Cache lines The data transferred to and from the cache or CPU are grouped
into cache or data lines. The time it takes to bring data frommemory into the
cache is called latency.

21710.2 Memory Hierarchy

CPU

A(1)

A(2)

A(3)

A(N)

M(1,1)

M(2,1)

M(3,1)

M(N,N)

M(N,1)

M(1,2)

M(2,2)

M(3,2)

Figure 10.1 The logical arrangement of the CPU and memory showing a Fortran array A(N)
and matrixM(N , N) loaded into memory.

Main Store

Paging Storage Controller

cache

RAM

CPU

2
M

B

2
G

B

3
2

T
B

32
 k

B

Figure 10.2 Typical memory hierarchy for a single-processor, high-performance computer
(B = bytes, k, M, G, T= kilo, mega, giga, tera).

RAM Random-access or central memory is in the middle of thememory hierar-
chy in Figure 10.2. RAM is fast because its addresses can be accessed directly
in random order, and because no mechanical devices are needed to read it.

Pages Central memory is organized into pages, which are blocks of memory of
fixed length. The operating system labels and organizes its memory pages
much like we do the pages of a book; they are numbered and kept track of
with a table of contents. Typical page sizes range from 4 to 16 kB, but on su-
percomputers they may be in the MB range.

Hard disk Finally, at the bottom of the memory pyramid is permanent storage
on magnetic disks or optical devices. Although disks are very slow compared
to RAM, they can store vast amounts of data and sometimes compensate for
their slower speeds by using a cache of their own, the paging storage controller.

Virtual memory True to its name, this is a part of memory you will not find in
our figures because it is virtual. It acts like RAM but resides on the disk.

218 10 High-Performance Hardware and Parallel Computers

Swap Space

Page N

RAM

Data Cache

Registers

CPU

A(2048)A(2032) ...A(16)A(1) ... Page 1

Page 2

Page 3

A(1)
A(2)
A(3)

A(N)

M(2,1)
M(1,1)

M(N,1)

M(3,1)

M(1,2)
M(2,2)
M(3,2)

M(N,N)

Figure 10.3 The elements of a computer’s memory architecture in the process of handling
matrix storage.

When we speak of “fast” and “slow” memory we are using a time scale set by the
clock in the CPU. To be specific, if your computer has a clock speed or cycle time
of 1 ns, this means that it could perform a billion operations per second, if it could
get its hands on the needed data quickly enough (typically,more than 10 cycles are
needed to execute a single instruction). While it usually takes 1 cycle to transfer
data from the cache to the CPU, the other types of memories are much slower.
Consequently, you can speedup your program by having all needed data available
for the CPU when it tries to execute your instructions; otherwise the CPU may
drop your computation and go on to other choreswhile your data gets transferred
from lower memory (we talk more about this soon in the discussion of pipelining
or cache reuse). Compilers try to do this for you, but their success is affected by
your programming style.
As shown in Figure 10.3, virtual memory permits your program to use more

pages of memory than can physically fit into RAM at one time. A combination of
operating system and hardwaremaps this virtual memory into pages with typical
lengths of 4–16 kB. Pages not currently in use are stored in the slower memory
on the hard disk and brought into fast memory only when needed. The separate
memory location for this switching is known as swap space (Figure 10.4a).
Observe that when an application accesses the memory location for M[i,j], the

number of the page of memory holding this address is determined by the com-
puter, and the location of M[i,j] within this page is also determined. A page fault
occurs if the needed page resides on disk rather than in RAM. In this case, the en-
tire page must be read into memory while the least recently used page in RAM is
swapped onto the disk. Thanks to virtual memory, it is possible to run programs
on small computers that otherwise would require larger machines (or extensive
reprogramming). The price you pay for virtual memory is an order-of-magnitude
slowdown of your program’s speed when virtual memory is actually invoked. But

21910.3 The Central ProcessingUnit

D

C
A

B
A

C D

BA

(a) (b)

Figure 10.4 (a) Multitasking of four programs in memory at one time. On a SISD computer the
programs are executed in round robin order. (b) Four programs in the four separate memories
of a MIMD computer.

this may be cheap compared to the time you would have to spend to rewrite your
program so it fits into RAM, or themoney youwould have to spend to buy enough
RAM for your problem.
Virtual memory also allowsmultitasking, the simultaneous loading into mem-

ory of more programs than can physically fit into RAM (Figure 10.4b). Although
the ensuing switching among applications uses computing cycles, by avoiding
long waits while an application is loaded into memory, multitasking increases to-
tal throughout and permits an improved computing environment for users. For
example, it is multitasking that permits a windowing system, such as Linux, Ap-
pleOS, orWindows, to provide uswithmultiple windows. Although eachwindow
application uses a fair amount ofmemory, only the single application currently re-
ceiving input must actually reside in memory; the rest are paged out to disk. This
explains why you may notice a slight delay when switching to an idle window; the
pages for the now-active program are being placed into RAM, and the least used
application still in memory is simultaneously being paged out.

10.3
The Central Processing Unit

How does the CPU get to be so fast? Often, it utilizes prefetching and pipelining;
that is, it has the ability to prepare for the next instruction before the current one
has finished. It is like an assembly line or a bucket brigade in which the person
filling the buckets at one end of the line does not wait for each bucket to arrive at
the other end before filling another bucket. In the same way, a processor fetches,
reads, and decodes an instruction while another instruction is executing. Conse-
quently, despite the fact that it may take more than one cycle to perform some
operations, it is possible for data to be entering and leaving the CPU on each cy-
cle. To illustrate, Table 10.1 indicates how the operation c = (a + b)∕(d × f) is
handled. Here the pipelined arithmetic units A1 and A2 are simultaneously doing
their jobs of fetching and operating on operands, yet arithmetic unit A3must wait
for the first two units to complete their tasks before it has something to do (during
which time the other two sit idle).

220 10 High-Performance Hardware and Parallel Computers

Table 10.1 Computation of c = (a + b)∕(d × f).

Arithmetic Unit Step 1 Step 2 Step 3 Step 4

A1 Fetch a Fetch b Add —
A2 Fetch d Fetch f Multiply —
A3 — — — Divide

10.4
CPU Design: Reduced Instruction Set Processors

Reduced instruction set computer (RISC) architecture (also called superscalar) is a
design philosophy for CPUs developed for high-performance computers and now
used broadly. It increases the arithmetic speed of the CPU by decreasing the num-
ber of instructions the CPUmust follow. To understand RISC, we contrast it with
CISC (complex instruction set computer) architecture. In the late 1970s, processor
designers began to take advantage of very-large-scale integration (VLSI),which al-
lowed the placement of hundreds of thousands of elements on a single CPU chip.
Much of the space on these early chipswas dedicated tomicrocode programswrit-
ten by chip designers and containing machine language instructions that set the
operating characteristics of the computer. There were more than 1000 instruc-
tions available, andmany were similar to higher level programming languages like
Pascal and Forth. The price paid for the large number of complex instructions was
slow speed, with a typical instruction taking more than 10 clock cycles. Further-
more, a 1975 study by Alexander and Wortman of the XLP compiler of the IBM
System/360 showed that about 30 low-level instructions accounted for 99% of the
use with only 10 of these instructions accounting for 80% of the use.
The RISC philosophy is to have just a small number of instructions available at

the chip level, but to have the regular programmer’s high-level language, such as
Fortran or C, translate them into efficient machine instructions for a particular
computer’s architecture. This simpler scheme is cheaper to design and produce,
lets the processor run faster, and uses the space saved on the chip by cutting down
onmicrocode to increase arithmetic power. Specifically, RISC increases the num-
ber of internal CPU registers, thus, making it possible to obtain longer pipelines
(cache) for the data flow, a significantly lower probability of memory conflict, and
some instruction-level parallelism.
The theory behind this philosophy for RISC design is the simple equation de-

scribing the execution time of a program:

CPU time = number of instructions × cycles/instruction × cycle time .
(10.3)

Here “CPU time” is the time required by a program, “number of instructions” is
the total number of machine-level instructions the program requires (sometimes
called the path length), “cycles/instruction” is the number of CPU clock cycles

22110.5 CPU Design:Multiple-Core Processors

each instruction requires, and “cycle time” is the actual time it takes for one CPU
cycle. After thinking about (10.3), we can understand the CISC philosophy that
tries to reduce CPU time by reducing the number of instructions, as well as the
RISC philosophy, which tries to reduce the CPU time by reducing cycles/instruc-
tion (preferably to 1). For RISC to achieve an increase in performance requires a
greater decrease in cycle time and cycles/instruction than is the increase in the
number of instructions.
In summary, the elements of RISC are the following:

Single-cycle execution, for most machine-level instructions.
Small instruction set, of less than 100 instructions.
Register-based instructions, operating on values in registers, withmemory ac-

cess confined to loading from and storing to registers.
Many registers, usually more than 32.
Pipelining, concurrent preparation of several instructions that are then exe-

cuted successively.
High-level compilers, to improve performance.

10.5
CPU Design: Multiple-Core Processors

The present time is seeing a rapid increase in the inclusion of multicore (up to
128) chips as the computational engine of computers, and we expect that number
to keep rising. As seen in Figure 10.5, a dual-core chip has two CPUs in one inte-
grated circuit with a shared interconnect and a shared level-2 cache. This type of
configuration with two or more identical processors connected to a single shared
main memory is called symmetric multiprocessing, or SMP.
Although multicore chips were originally designed for game playing and single

precision, they are finding use in scientific computing as new tools, algorithms,
and programming methods are employed. These chips attain more integrated
speed with less heat and more energy efficiency than single-core chips, whose
heat generation limits them to clock speeds of less than 4GHz. In contrast to
multiple single-core chips, multicore chips use fewer transistors per CPU and are
thus simpler to make and cooler to run.
Parallelism is built into a multicore chip because each core can run a different

task. However, because the cores usually share the same communication channel
and level-2 cache, there is the possibility of a communication bottleneck if both
CPUs use the bus at the same time. Usually the user need not worry about this,
but the writers of compilers and software must. Modern compilers automatically
make use of the multiple cores, with MPI even treating each core as a separate
processor.

222 10 High-Performance Hardware and Parallel Computers

CPU Core
and

L1 Caches

CPU Core
and

L1 Caches

Bus Interface
and

L2 Caches

Dual CPU Core Chip

(a) (b)

Figure 10.5 (a) A generic view of the Intel core-2 dual-core processor, with CPU-local level-1
caches and a shared, on-die level-2 cache (courtesy of D. Schmitz). (b) The AMD Athlon 64 X2
3600 dual-core CPU (Wikimedia Commons).

10.6
CPU Design: Vector Processors

Often the most demanding part of a scientific computation involves matrix oper-
ations. On a classic (von Neumann) scalar computer, the addition of two vectors
of physical length 99 to form a third, ultimately requires 99 sequential additions
(Table 10.2). There is actually much behind-the-scenes work here. For each ele-
ment i there is the fetch of a(i) from its location in memory, the fetch of b(i) from
its location inmemory, the addition of the numerical values of these two elements
in a CPU register, and the storage in memory of the sum in c(i). This fetching uses
up time and is wasteful in the sense that the computer is being told again and
again to do the same thing.
When we speak of a computer doing vector processing, we mean that there are

hardware components that perform mathematical operations on entire rows or
columns of matrices as opposed to individual elements. (This hardware can also
handle single-subscripted matrices, that is, mathematical vectors.) In the vector
processing of [A] + [B] = [C], the successive fetching of and addition of the ele-
ments A and B are grouped together and overlaid, and Z ≃ 64−256 elements (the
section size) are processed with one command, as seen in Table 10.3. Depending
on the array size, this method may speedup the processing of vectors by a factor
of approximately 10. If all Z elements were truly processed in the same step, then
the speedup would be ∼ 64−256.
Vector processing probably had its heyday during the time when computer

manufacturers produced large mainframe computers designed for the scientific
and military communities. These computers had proprietary hardware and soft-
ware and were often so expensive that only corporate or military laboratories

22310.7 Introduction to Parallel Computing

Table 10.2 Computation of matrix [C] = [A] + [B]-

Step 1 Step 2 ⋯ Step 99

c(1) = a(1) + b(1) c(2) = a(2) + b(2) ⋯ c(99) = a(99) + b(99)

Table 10.3 Vector processing of matrix [A] + [B] = [C].

Step 1 Step 2 ⋯ Step Z

c(1) = a(1) + b(1)
c(2) = a(2) + b(2)

⋯

c(Z) = a(Z) + b(Z)

could afford them. While the Unix and then PC revolutions have nearly elimi-
nated these large vector machines, some do exist, as well as PCs that use vector
processing in their video cards. Who is to say what the future holds in store?

10.7
Introduction to Parallel Computing

There is a little question that advances in the hardware for parallel computing
are impressive. Unfortunately, the software that accompanies the hardware often
seems stuck in the 1960s. In our view, message passing and GPU programming
have toomany details for application scientists toworry about and (unfortunately)
requires coding at an elementary level reminiscent of the early days of computing.
However, the increasing occurrence of clusters in which the nodes are symmetric
multiprocessors has led to the development of sophisticated compilers that fol-
low simpler programming models; for example, partitioned global address space
compilers such as CoArray Fortran, Unified Parallel C, and Titanium. In these
approaches, the programmer views a global array of data and then manipulates
these data as if they were contiguous. Of course, the data really are distributed,
but the software takes care of that outside the programmer’s view. Although such
a program may make use of processors less efficiently than would a hand-coded
program, it is a lot easier than redesigning your program. Whether it is worth
your time to make a program more efficient depends on the problem at hand,
the number of times the program will be run, and the resources available for the
task. In any case, if each node of the computer has a number of processors with
a shared memory and there are a number of nodes, then some type of a hybrid
programming model will be needed.

224 10 High-Performance Hardware and Parallel Computers

10.8
Parallel Semantics (Theory)

We saw earlier that many of the tasks undertaken by a high-performance com-
puter are run in parallel by making use of internal structures such as pipelined
and segmented CPUs, hierarchical memory, and separate I/O processors. While
these tasks are run “in parallel,” the modern use of parallel computing or paral-
lelism denotes applying multiple processors to a single problem (Quinn, 2004). It
is a computing environment in which some number of CPUs are running asyn-
chronously and communicating with each other in order to exchange intermedi-
ate results and coordinate their activities.
For an instance, consider the matrix multiplication:

[B] = [A][B] . (10.4)

Mathematically, this equation makes no sense unless [A] equals the identity ma-
trix [I]. However, it doesmake sense as an algorithm that produces new value of B
on the LHS in terms of old values of B on the RHS:

[Bnew] = [A][Bold] (10.5)

⇒ Bnew
i, j =

N∑
k=1

Ai,kBold
k , j . (10.6)

Because the computation of Bnew
i, j for specific values of i and j is independent of

the computation of all the other values of Bnew
i, j , each Bnew

i, j can be computed in
parallel, or each row or column of [Bnew] can be computed in parallel. If B were
not a matrix, then we could just calculate B = AB with no further ado. However,
if we try to perform the calculation using just matrix elements of [B] by replacing
the old values with the new values as they are computed, then we must somehow
establish that the Bk , j on the RHS of (10.6) are the values of [B] that existed before
the matrix multiplication.
This is an example of data dependency, in which the data elements used in the

computation depend on the order in which they are used. A way to account for
this dependency is to use a temporary matrix for [Bnew], and then to assign [B] to
the temporary matrix after all multiplications are complete:

[Temp] = [A][B] , (10.7)

[B] = [Temp] . (10.8)

In contrast, the matrix multiplication [C] = [A][B] is a data parallel operation
in which the data can be used in any order. So already we see the importance of
communication, synchronization, and understanding of the mathematics behind
an algorithm for parallel computation.
The processors in a parallel computer are placed at the nodes of a communica-

tion network. Each node may contain one CPU or a small number of CPUs, and

22510.8 Parallel Semantics (Theory)

the communication network may be internal to or external to the computer. One
way of categorizing parallel computers is by the approach they utilize in handling
instructions and data. From this viewpoint there are three types of machines:

Single instruction, single data (SISD) These are the classic (vonNeumann) se-
rial computers executing a single instruction on a single data stream before
the next instruction and next data stream are encountered.

Single instruction, multiple data (SIMD) Here instructions are processed
from a single stream, but the instructions act concurrently on multiple data
elements. Generally, the nodes are simple and relatively slow but are large in
number.

Multiple instructions, multiple data (MIMD) In this category, each processor
runs independently of the others with independent instructions and data.
These are the types of machines that utilize message-passing packages, such
as MPI, to communicate among processors. They may be a collection of PCs
linked via a network, or more integrated machines with thousands of pro-
cessors on internal boards, such as the Blue Gene computer described in
Section 10.15. These computers, which do not have a shared memory space,
are also calledmulticomputers. Although these types of computers are some
of the most difficult to program, their low cost and effectiveness for certain
classes of problems have led to their being the dominant type of parallel com-
puter at present.

The running of independent programs on a parallel computer is similar to the
multitasking feature used by Unix and PCs. In multitasking (Figure 10.4a), sev-
eral independent programs reside in the computer’s memory simultaneously and
share the processing time in a round robin or priority order. On a SISD computer,
only one program runs at a single time, but if other programs are inmemory, then
it does not take long to switch to them. In multiprocessing (Figure 10.4b), these
jobs may all run at the same time, either in different parts of memory or in the
memory of different computers. Clearly, multiprocessing becomes complicated if
separate processors are operating on different parts of the same program because
then synchronization and load balance (keeping all the processors equally busy)
are concerns.
In addition to instructions and data streams, another way of categorizing par-

allel computation is by granularity. A grain is defined as a measure of the compu-
tational work to be performed, more specifically, the ratio of computation work
to communication work.

Coarse-grain parallel Separate programs running on separate computer sys-
tems with the systems coupled via a conventional communication network.
An illustration is six Linux PCs sharing the same files across a network but
with a different central memory system for each PC. Each computer can be
operating on a different, independent part of one problem at the same time.

Medium-grain parallel Several processors executing (possibly different) pro-
grams simultaneouslywhile accessing a commonmemory. The processors are

226 10 High-Performance Hardware and Parallel Computers

usually placed on a common bus (communication channel) and communicate
with each other through the memory system. Medium-grain programs have
different, independent, parallel subroutines running on different processors.
Because the compilers are seldom smart enough to figure out which parts of
the program to run where, the user must include the multitasking routines in
the program.1)

Fine-grain parallel As the granularity decreases and the number of nodes in-
creases, there is an increased requirement for fast communication among the
nodes. For this reason, fine-grain systems tend to be custom-designed ma-
chines. The communication may be via a central bus or via shared memory
for a small number of nodes, or through some form of high-speed network
for massively parallel machines. In the latter case, the user typically divides
the work via certain coding constructs, and the compiler just compiles the
program. The program then runs concurrently on a user-specified number of
nodes. For example, different for loops of a program may be run on different
nodes.

10.9
DistributedMemory Programming

An approach to concurrent processing that, because it is built from commodity
PCs, has gained dominant acceptance for coarse- and medium-grain systems is
distributed memory. In it, each processor has its own memory and the proces-
sors exchange data among themselves through a high-speed switch and network.
The data exchanged or passed among processors have encoded to and from ad-
dresses and are calledmessages. The clusters of PCs or workstations that consti-
tute aBeowulf 2) are examples of distributedmemory computers (Figure 10.6). The
unifying characteristic of a cluster is the integration of highly replicated compute
and communication components into a single system, with each node still able
to operate independently. In a Beowulf cluster, the components are commodity
ones designed for a general market, as are the communication network and its
high-speed switch (special interconnects are used by major commercial manu-
facturers, but they do not come cheaply).Note: A group of computers connected
by a network may also be called a cluster, but unless they are designed for parallel
processing, with the same type of processor used repeatedly and with only a lim-
ited number of processors (the front end) onto which users may log in, they are
not usually called a Beowulf.

1) Some experts define our medium grain as coarse grain yet this distinction changes with time.
2) Presumably there is an analogy between the heroic exploits of the son of Ecgtheow and the

nephew of Hygelac in the 1000 C.E. poem Beowulf and the adventures of us common folk
assembling parallel computers from common elements that have surpassed the performance of
major corporations and their proprietary, multimillion-dollar supercomputers.

22710.10 Parallel Performance

Figure 10.6 Two views of parallel computing (courtesy of Yuefan Deng).

The literature contains frequent arguments concerning the differences among
clusters, commodity clusters, Beowulfs, constellations,massively parallel systems,
and so forth (Dongarra et al., 2005). Although, we recognize that there are major
differences between the clusters on the top 500 list of computers and the ones that
a university researcher may set up in his or her lab, we will not distinguish these
fine points in the introductory materials we present here.
For a message-passing program to be successful, the data must be divided

among nodes so that, at least for a while, each node has all the data it needs to
run an independent subtask. When a program begins execution, data are sent to
all the nodes. When all the nodes have completed their subtasks, they exchange
data again in order for each node to have a complete new set of data to perform
the next subtask. This repeated cycle of data exchange followed by processing
continues until the full task is completed. Message-passing MIMD programs are
also single-program, multiple-data programs, which means that the program-
mer writes a single program that is executed on all the nodes. Often a separate
host program, which starts the programs on the nodes, reads the input files and
organizes the output.

10.10
Parallel Performance

Imagine a cafeteria line in which all the servers appear to be working hard and
fast yet the ketchup dispenser has some relish partially blocking its output and
so everyone in line must wait for the ketchup lovers up front to ruin their food
before moving on. This is an example of the slowest step in a complex process
determining the overall rate. An analogous situation holds for parallel processing,
where the ketchup dispenser may be a relatively small part of the program that
can be executed only as a series of serial steps. Because the computation cannot
advance until these serial steps are completed, this small part of the programmay
end up being the bottleneck of the program.
As we soon will demonstrate, the speedup of a program will not be significant

unless you can get∼90% of it to run in parallel, and even thenmost of the speedup

228 10 High-Performance Hardware and Parallel Computers

will probably be obtained with only a small number of processors. This means
that you need to have a computationally intense problem to make paralleliza-
tion worthwhile, and that is one of the reasons why some proponents of parallel
computers with thousands of processors suggest that you should not apply the
new machines to old problems but rather look for new problems that are both
big enough and well-suited for massively parallel processing to make the effort
worthwhile.
The equation describing the effect on speedup of the balance between serial

and parallel parts of a program is known as Amdahl’s law (Amdahl, 1967; Quinn,
2004). Let

p = number of CPUs , T1 = time to run on 1 CPU ,
Tp = time to run on p CPUs . (10.9)

The maximum speedup Sp attainable with parallel processing is thus

Sp =
T1

Tp
→ p . (10.10)

In practice, this limit is never met for a number of reasons: some of the program
is serial, data and memory conflicts occur, communication and synchronization
of the processors take time, and it is rare to attain a perfect load balance among all
the processors. For the moment, we ignore these complications and concentrate
on how the serial part of the code affects the speedup. Let f be the fraction of the
program that potentially may run on multiple processors. The fraction 1 − f of
the code that cannot be run in parallel must be run via serial processing and thus
takes time:

Ts = (1 − f)T1 (serial time) . (10.11)

The time Tp spent on the p parallel processors is related to Ts by

Tp = f
T1
p

. (10.12)

That being so, the maximum speedup as a function of f and the number of pro-
cessors is

Sp =
T1

Ts + Tp
= 1

1 − f + f ∕p
(Amdahl’s law) . (10.13)

Some theoretical speedups are shown in Figure 10.7 for different numbers of pro-
cessors p. Clearly the speedupwill not be significant enough to beworth the trou-
ble unlessmost of the code is run in parallel (this is where the 90%of the in-parallel
figure comes from). Even an infinite number of processors cannot increase the
speed of running the serial parts of the code, and so it runs at one processor speed.
In practice, this means many problems are limited to a small number of proces-
sors, and that only 10–20% of the computer’s peak performance is often all that is
obtained for realistic applications.

22910.10 Parallel Performance

p
=
1
6

p
=

in
fi
n

it
y

Amdahl’s Law

0

4

8

0 20% 40% 60% 80%

S
p

e
e

d
 u

p

p = 2

Percent Parallel

Figure 10.7 The theoretical maximum speedup of a program as a function of the fraction of
the program that potentially may be run in parallel. The different curves correspond to differ-
ent numbers of processors.

10.10.1
Communication Overhead

As discouraging as Amdahl’s law may seem, it actually overestimates speedup be-
cause it ignores the overhead for parallel computation. Here we look at commu-
nication overhead. Assume a completely parallel code so that its speedup is

Sp =
T1

Tp
=

T1

T1∕p
= p . (10.14)

The denominator is based on the assumption that it takes no time for the pro-
cessors to communicate. However, in reality it takes a finite time, called latency,
to get data out of memory and into the cache or onto the communication net-
work. In addition, a communication channel also has a finite bandwidth, that is,
a maximum rate at which data can be transferred, and this too will increase the
communication time as large amounts of data are transferred. When we include
communication time Tc, the speedup decreases to

Sp ≃
T1

T1∕p + Tc
< p (with communication time) . (10.15)

For the speedup to be unaffected by communication time, we need to have

T1
p

≫ Tc ⇒ p ≪
T1
Tc

. (10.16)

Thismeans that as you keep increasing the number of processors p, at some point
the time spent on computation T1∕p must equal the time Tc needed for com-

230 10 High-Performance Hardware and Parallel Computers

munication, and adding more processors leads to greater execution time as the
processors wait around more to communicate. This is another limit, then, on the
maximum number of processors that may be used on any one problem, as well
as on the effectiveness of increasing processor speed without a commensurate
increase in communication speed.
The continual and dramatic increase in the number of processors being used in

computations is leading to a changing view as to how to judge the speed of an al-
gorithm. Specifically, the slowest step in a process is usually the rate-determining
step, yet with the increasing availability of CPU power, the slowest step is more
often the access to or communication among processors. Such being the case,
while the number of computational steps is still important for determining an al-
gorithm’s speed, the number and amount of memory access and interprocessor
communication must also be mixed into the formula. This is currently an active
area of research in algorithm development.

10.11
Parallelization Strategies

A typical organization of a program containing both serial and parallel tasks is
given in Table 10.4. The user organizes the work into units called tasks, with each
task assigningwork (threads) to a processor. Themain task controls the overall ex-
ecution as well as the subtasks that run independent parts of the program (called
parallel subroutines, slaves, guests, or subtasks). These parallel subroutines can be
distinctive subprograms,multiple copies of the same subprogram, or even Python
for loops.
It is the programmer’s responsibility to establish that the breakup of a code into

parallel subroutines is mathematically and scientifically valid and is an equiva-
lent formulation of the original program. As a case in point, if the most inten-
sive part of a program is the evaluation of a large Hamiltonian matrix, you may
want to evaluate each row on a different processor. Consequently, the key to par-
allel programming is to identify the parts of the program that may benefit from
parallel execution. To do that the programmer should understand the program’s
data structures (discussed soon), know in what order the steps in the computa-
tion must be performed, and know how to coordinate the results generated by
different processors.
The programmer helps speedup the execution by keeping many processors si-

multaneously busy and by avoiding storage conflicts among different parallel sub-
programs. You do this load balancing by dividing your program into subtasks of
approximately equal numerical intensity that will run simultaneously on differ-
ent processors. The rule of thumb is to make the task with the largest granularity
(workload) dominant by forcing it to execute first and to keep all the processors
busy by having the number of tasks an integer multiple of the number of proces-
sors. This is not always possible.

23110.12 Practical Aspects of MIMDMessage Passing

Table 10.4 A typical organization of a program containing both serial and parallel tasks.

Main task program

Main routine

Serial subroutine a

Parallel sub 1 Parallel sub 2 Parallel sub 3

Summation task

The individual parallel threads can have shared or local data. The shared data
may be used by all themachines, while the local data are private to only one thread.
To avoid storage conflicts, design your program so that parallel subtasks use data
that are independent of the data in the main task and in other parallel tasks. This
means that these data should not be modified or even examined by different tasks
simultaneously. In organizing these multiple tasks, reduce communication over-
head costs by limiting communication and synchronization. These costs tend to
be high for fine-grain programming wheremuch coordination is necessary. How-
ever, do not eliminate communications that are necessary to ensure the scientific
or mathematical validity of the results; bad science can do harm!

10.12
Practical Aspects of MIMD Message Passing

It makes sense to run only the most numerically intensive codes on parallel ma-
chines. Frequently, these are very large programs assembled over a number of
years or decades by a number of people. It should come as no surprise, then, that
the programming languages for parallel machines are primarily Fortran, which
now has explicit structures for the compiler to parallelize, and C. (In the past, we
have not obtained good speedupwith Java andMPI, yet FastMPJ andMPJ Express
have fixed the problems.)

232 10 High-Performance Hardware and Parallel Computers

Effective parallel programming becomes more challenging as the number of
processors increases. Computer scientists suggest that it is best not to attempt to
modify a serial code but instead rewrite one from scratch using algorithms and
subroutine libraries best suited to parallel architecture. However, thismay involve
months or years of work, and surveys find that ∼70% of computational scientists
revise existing codes instead (Pancake, 1996).
Most parallel computations at present are performed on multiple instruction,

multiple-data computers via message passing using MPI. Next we outline some
practical concerns based on user experience (Dongarra et al., 2005; Pancake,
1996).

Parallelism carries a price tag There is a steep learning curve requiring inten-
sive effort. Failures may occur for a variety of reasons, especially because
parallel environments tend to change often and get “locked up” by a program-
ming error. In addition, with multiple computers and multiple operating sys-
tems involved, the familiar techniques for debugging may not be effective.

Preconditions for parallelism If your program is run thousands of times be-
tween changes, with execution time in days, and you must significantly in-
crease the resolution of the output or study more complex systems, then par-
allelism is worth considering. Otherwise, and to the extent of the difference,
parallelizing a code may not be worth the time investment.

The problem affects parallelism You must analyze your problem in terms of
how and when data are used, how much computation is required for each
use, and the type of problem architecture.

Perfectly parallel This is when the same application is run simultaneously on
different data sets, with the calculation for each data set independent (e.g.,
running multiple versions of a Monte Carlo simulation, each with different
seeds, or analyzing data from independent detectors). In this case, it would be
straightforward to parallelize with a respectable performance to be expected.

Fully synchronous The same operation applied in parallel to multiple parts of
the same data set, with some waiting necessary (e.g., determining positions
and velocities of particles simultaneously in a molecular dynamics simula-
tion). Significant effort is required, and unless you balance the computational
intensity, the speedup may not be worth the effort.

Loosely synchronous Different processors do small pieces of the computation
but with intermittent data sharing (e.g., diffusion of groundwater fromone lo-
cation to another). In this case, it would be difficult to parallelize and probably
not worth the effort.

Pipeline parallel Data from earlier steps processed by later steps, with some
overlapping of processing possible (e.g., processing data into images and then
into animations). Much work may be involved, and unless you balance the
computational intensity, the speedup may not be worth the effort.

23310.12 Practical Aspects of MIMDMessage Passing

10.12.1
High-Level View of Message Passing

Although it is true that parallel computing programs may become very compli-
cated, the basic ideas are quite simple. All you need is a regular programming
language like Python, C, or Fortran, plus four communication statements:3)

∙ send: One processor sends a message to the network.
∙ receive: One processor receives a message from the network.
∙ myid: An integer that uniquely identifies each processor.
∙ numnodes: An integer giving the total number of nodes in the system.

Once you havemade the decision to run your program on a computer cluster, you
will have to learn the specifics of a message-passing system such as MPI. Here we
give a broader view.When you write a message-passing program, you intersperse
calls to the message-passing library with your regular Python, Fortran, or C pro-
gram. The basic steps are as follows:

1. Submit your job from the command line or a job control system.
2. Have your job start additional processes.
3. Have these processes exchange data and coordinate their activities.
4. Collect these data and have the processes stop themselves.

Compute

Create

Create

Compute

Receive

Receive

Receive

Compute

Receive

Send

Master

compute

send

compute

send

compute

receive

send

compute

send

Slave 1

compute

send

compute

send

compute

receive

send

compute

send

Slave 2

T
im

e

Figure 10.8 A master process and two slave processes passing messages. Notice how in this
not-well-designedprogram there are more sends than receives, and consequently the results
may depend upon the order of execution, or the programmay even lock up.

3) Personal communication, Yuefan Deng.

234 10 High-Performance Hardware and Parallel Computers

We show this graphically in Figure 10.8 where at the top we see amaster process
create two slave processes and then assign work for them to do (arrows). The
processes then communicate with each other via message passing, output their
data to files, and finally terminate.

What can go wrong Figure 10.8 also illustrates some of the difficulties:

∙ The programmer is responsible for getting the processes to cooperate and for
dividing the work correctly.

∙ The programmer is responsible for ensuring that the processes have the correct
data to process and that the data are distributed equitably.

∙ The commands are at a lower level than those of a compiled language, and this
introduces more details for you to worry about.

∙ Because multiple computers and multiple operating systems are involved, the
user may not receive or understand the error messages produced.

∙ It is possible for messages to be sent or received not in the planned order.
∙ A race condition may occur in which the program results depend upon the

specific ordering of messages. There is no guarantee that slave 1 will get its
work performed before slave 2, even though slave 1 may have started working
earlier (Figure 10.8).

∙ Note in Figure 10.8 how different processors must wait for signals from other
processors; this is clearly a waste of time and has potential for deadlock.

∙ Processes may deadlock, that is, wait for a message that never arrives.

10.12.2
Message Passing Example and Exercise

Start with a simple serial program you have already written that is a good can-
didate for parallelization. Specifically, one that steps through parameter space in
order to generate its results is a good candidate because you can have parallel tasks
working on different regions of parameter space. Alternatively, aMonte Carlo cal-
culation that repeats the same step many times is also a good candidate because
you can run copies of the program on different processors, and then add up the
results at the end. For example, Listing 10.1 is a serial calculation of π by Monte
Carlo integration in the C language:

Listing 10.1 Serial calculation of π by Monte Carlo integration.

/ / p i . c : *Monte−Carlo i n t e g r a t i on to determine pi

#include <std io . h>
#include <s td l ib . h>

/ / i f you don ’ t have drand48 uncomment the f o l l o w ing two l i n e s
// #def ine drand48 1.0/RAND_MAX*rand
// #def ine srand48 srand

#def ine max 1000 // number o f stones to be thrown
#def ine seed 68111 // seed f o r number generator

23510.12 Practical Aspects of MIMDMessage Passing

main() {

in t i , pi = 0;
double x , y , area ;
FILE *output ; // save data in pond . dat
output = fopen ("pond . dat " , "w") ;
srand48 (seed) ; // seed the number generator
f o r (i = 1; i <= max; i++) {

x = drand48() *2 -1 ; // c r ea t e s f l o a t s between
y = drand48() *2 -1 ; // 1 and -1
i f ((x*x + y*y) <1) pi++; // stone h i t the pond
area = 4*(double) pi / i ; // ca l cu l a t e area
f p r i n t f (output , "%i \t%f \n" , i , area) ;

}
pr in t f (" data stored in pond . dat\n") ;
f c l o s e (output) ;

}

Modify your serial program so that different processors are used and perform
independently, and then have all their results combined. For example, Listing 10.2
is a parallel version of pi.c that uses themessage passing interface (MPI). Youmay
want to concentrate on the arithmetic commands and not the MPI ones at this
point.

Listing 10.2 MPI.c: Parallel calculation of π by Monte Carlo integration using MPI.

/ * MPI . c uses a monte car l o method to compute PI by Stone Throwing * /
/ * Based on http : / /www. dartmouth . edu/~ rc / c l a s s e s / so f t _dev /mpi . html * /
/ * Note : i f the sprng l i b r a r y i s not a v a i l a b l e , you may use rnd * /

#include <s td l ib . h>
#include <std io . h>
#include <math . h>
#include <s t r ing . h>
#include <std io . h>
#include <sprng . h>
#include <mpi . h>
#define USE_MPI
#define SEED 35791246

main (i n t argc , char * argv [])
{

i n t n i t e r =0;
double x , y ;
i n t i , j , count =0 ,mycount ; / * # of points in the 1 s t quadrant of unit

c i r c l e * /
double z ;
double p i ;
i n t myid , numprocs , proc ;
MPI_Status s t a t u s ;
i n t master =0;
i n t tag = 123 ;
i n t * s t ream_id ; / * stream id generated by SPRNGS * /

MPI_Init (&argc ,& argv) ;
MPI_Comm_size (MPI_COMM_WORLD,&numprocs) ;
MPI_Comm_rank (MPI_COMM_WORLD,&myid) ;

i f (argc <=1) {
f p r i n t f (s tde r r , " Usage : monte_pi_mpi number_of_iterations\n") ;
MPI_F ina l ize () ;
e x i t (−1) ;

}

236 10 High-Performance Hardware and Parallel Computers

s sc an f (argv [1] , "%d" ,& n i t e r) ; / * 1 s t argument i s the number of
i t e r a t i o n s * /

/ * i n i t i a l i z e random numbers * /
s t ream_id = in i t _ s p rng (myid , numprocs , SEED ,SPRNG_DEFAULT) ;
mycount=0;
f o r (i =0; i < n i t e r ; i ++) {

x = (double) sprng (st ream_id) ;
y = (double) sprng (st ream_id) ;
z = x * x+y * y ;
i f (z <=1) mycount++;

}
i f (myid ==0) { / * i f I am the master process gather r e s u l t s from

others * /
count = mycount ;
f o r (proc =1; proc <numprocs ; proc++) {

MPI_Recv(&mycount , 1 ,MPI_REAL, proc , tag ,MPI_COMM_WORLD,& s t a t u s) ;
count +=mycount ;

}
p i =(double) count / (n i t e r * numprocs) * 4 ;
p r i n t f ("\n # of t r i a l s= %d , estimate o f pi i s %g

\n" , n i t e r * numprocs , p i) ;
}
e l s e { / * f o r a l l the s l a v e proce s se s send r e s u l t s to the master * /

p r i n t f (" Processor %d sending r e s u l t s= %d to master
process\n" ,myid , mycount) ;

MPI_Send(&mycount , 1 ,MPI_REAL, master , tag ,MPI_COMM_WORLD) ;
}

MPI_F ina l ize () ; / * l e t MPI f i n i s h up * /

}

Although this small a problem is notworth your efforts in order to obtain a shorter
run time, it is worth investing your time to gain some experience in parallel com-
puting.

10.13
Scalability

A common discussion at HPC and Supercomputing conferences of the past heard
application scientists get up, after hearing about the latest machine with what
seemed like an incredible number of processors, and ask “But how can I use such
amachine onmyproblem,which takes hours to run, but is not trivially parallel like
your example?” The response from the computer scientist was often something
like “You just need to think up some new problems that are more appropriate to
the machines being built. Why use a supercomputer for a problem you can solve
on a modern laptop?” It seems that these anecdotal exchanges have now been
incorporated into the fabric of parallel computing under the title of scalability. In
the most general sense, scalability is defined as the ability to handle more work as
the size of the computer or application grows.
As we have already indicated, the primary challenge of parallel computing is

deciding how best to break up a problem into individual pieces that can each be

23710.13 Scalability

computed separately. In an ideal world, a problemwould scale in a linear fashion,
that is, the program would speedup by a factor of N when it runs on a machine
having N nodes. (Of course, as N → ∞ the proportionality cannot hold because
communication time must at some point dominate). In present day terminology,
this type of scaling is called strong scaling, and refers to a situation in which the
problem size remains fixed while the number of number of nodes (the machine
scale) increases. Clearly then, the goal when solving a problem that scales strongly
is to decrease the amount of time it takes to solve the problem by using a more
powerful computer. These are typically CPU-bound problems and are the hardest
ones to yield something close to a linear speedup.
In contrast to strong scaling in which the problem size remains fixed, in weak

scaling we have applications of the type our CS colleagues referred to earlier;
namely, ones in which we make the problem bigger and bigger as the number of
processors increases. So here, we would have linear or perfect scaling if we could
increase the size of the problem solved in proportion to the number N of nodes.
To illustrate the difference between strong and weak scaling, consider Fig-

ure 10.9 (based on a lecture by Thomas Sterling). We see that for an application
that scales perfectly strongly, the work carried out on each node decreases as the
scale of the machine increases, which of course means that the time it takes to
complete the problem decreases linearly. In contrast, we see that for an appli-
cation that scales perfectly weakly, the work carried out by each node remains
the same as the scale of the machine increases, which means that we are solving
progressively larger problems in the same time as it takes to solve smaller ones
on a smaller machine.
The concepts of weak and strong scaling are ideals that tend not to be achieved

in practice, with real world applications being a mix of the two. Furthermore, it
is the combination of application and computer architecture that determines the
type of scaling that occurs. For example, sharedmemory systems and distributed-

W
o

rk
 p

e
r

N
o

d
e

Number of Nodes (Machine Scale)

1 2 4 8

Weak Versus Strong Scaling

Figure 10.9 A graphical representation of weak vs. strong scaling. Weak scaling keeps each
node doing the same amount of work as the problem is made bigger. Strong scaling has each
node doing less work (running for less time) as the number of nodes is made bigger.

238 10 High-Performance Hardware and Parallel Computers

memory, message passing systems scale differently. Furthermore, a data parallel
application (one in which each node can work on its own separate data set) will
by its very nature scale weakly.
Before we go on and set you working on some examples of scaling, we should

introduce a note of caution. Realistic applications tend to have various levels of
complexity and so it may not be obvious just how tomeasure the increase in “size”
of a problem.As an instance, it is known that the solution of a set ofN linear equa-
tions via Gaussian elimination requires (N3) floating-point operations (flops).
This means that doubling the number of equations does not make the “problem”
twice as large, but rather eight times as large! Likewise, if we are solving partial
differential equations on a 3D spatial grid and a 1D time grid, then the problem
size would scale like N4. In this case, doubling the problem size would mean in-
creasing N by only 21∕4 ≃ 1.19.

10.13.1
Scalability Exercises

We have given above, and included in the Codes directory, a serial code pi.c that
computes π∕4 by Monte Carlo integration of a quarter of a unit circle. We have
also given the code MPIpi.c that computes π by the same algorithm using MPI to
compute the algorithm in parallel. Your exercise is to see howwell this application
scales. You can modify the codes we have given, or you can write your own.

1. Determine the CPU time required to calculate π with the serial calculation
using 1000 iterations (stone throws).Make sure that this is the actual run time
and does not include any system time. (You can get this type of information,
depending upon the operating system, by inserting timer calls in your pro-
gram.)

2. Get the MPI code running for the same number (1000) of iterations.
3. First do some running that constitutes a strong scaling test. This means keep-

ing the problem size constant, or in other words, keeping Niter = 1000. Start
by running the MPI code with only one processor doing the numerical com-
putation. A comparison of this to the serial calculation gives you some idea of
the overhead associated with MPI.

4. Again keeping Niter = 1000, run the MPI code for 2, 4, 8, and 16 computing
nodes. In any case, make sure to go up to enough nodes so that the system no
longer scales. Record the run time for each number of nodes.

5. Make a plot of run time vs. number of nodes from the data you have collected.
6. Strong scalability here would yield a straight line graph. Comment on your

results.
7. Nowdo some running that constitutes aweak scaling test. Thismeans increas-

ing the problem size simultaneously with the number of nodes being used. In
the present case, increasing the number of iterations, Niter.

23910.14 Data Parallelismand Domain Decomposition

8. Run the MPI code for 2, 4, 8, and 16 computing nodes, with proportionally
larger values for Niter in each case (2000, 4000, 8000, 16 000, etc.). In any case,
make sure to go up to enough nodes so that the system no longer scales.

9. Record the run time for each number of nodes andmake a plot of the run time
vs. number of computing nodes.

10. Weak scaling would imply that the run time remains constant as the problem
size and the number of compute nodes increase in proportion. Comment on
your results.

11. Is this problem more appropriate for weak or strong scaling?

10.14
Data Parallelism and Domain Decomposition

As you have probably realized by this point, there are two basic, but quite differ-
ent, approaches to creating a program that runs in parallel. In task parallelism,
you decompose your program by tasks, with differing tasks assigned to different
processors, and with great care taken to maintain load balance, that is, to keep
all processors equally busy. Clearly you must understand the internal workings of
your program in order to do this, and youmust also havemade an accurate profile
of your program so that you know howmuch time is being spent in various parts.
In data parallelism, you decompose your program based on the data being cre-

ated or acted upon, with differing data spaces (domains) assigned to different pro-
cessors. In data parallelism, there often must be data shared at the boundaries of
the data spaces, and therefore synchronization among the data spaces. Data par-
allelism is the most common approach and is well suited to message-passing ma-
chines in which each node has its own private data space, although this may lead
to a large amount of data transfer at times.
When planning how to decompose global data into subspaces suitable for par-

allel processing, it is important to divide the data into contiguous blocks in order
to minimize the time spent on moving data through the different stages of mem-
ory (page faults). Some compilers and operating systems help you in this regard by
exploiting spatial locality, that is, by assuming that if you are using a data element
at one location in data space, then it is likely that you may use some nearby ones
as well, and so they too are made readily available. Some compilers and operating
systems also exploit temporal locality, that is, by assuming that if you are using a
data element at one time, then there is an increased probability that you may use
it again in the near future, and so it too is kept handy. You can help optimize your
programs by taking advantage of these localities while programming.
As an example of domain decomposition, consider the solution of a partial dif-

ferential equation by a finite difference method. It is known from classical elec-
trodynamics that the electric potential U(x) in a charge-free region of 2D space

240 10 High-Performance Hardware and Parallel Computers

satisfies Laplace’s equation (fully discussed in Section 19.4):

𝜕2U(x , y)
𝜕x2

+
𝜕2U(x , y)

𝜕 y2
= 0 . (10.17)

We see that the potential depends simultaneously on x and y, which is whatmakes
it a partial differential equation. The electric charges, which are the source of the
field, enter indirectly by specifying the potential values on some boundaries or
charged objects.
As shown in Figure 10.10, we look for a solution on a lattice of (x , y) values sep-

arated by finite difference Δ in each dimension and specified by discrete locations
on the lattice:

x = x0 + iΔ , y = y0 + jΔ , i, j = 0,… ,Nmax−1 . (10.18)

When the finite difference expressions for the derivatives are substituted into
(10.17), and the equation is rearranged, we obtain the finite-difference algorithm
for the solution of Laplace’s equation:

Ui, j =
1
4
[Ui+1, j + Ui−1, j + Ui, j+1 + Ui, j−1] . (10.19)

This equation says that when we have a proper solution, it will be the average of
the potential at the four nearest neighbors (Figure 10.10). As an algorithm, (10.19)
does not provide a direct solution to Laplace’s equation but rather must be re-
peated many times to converge upon the solution. We start with an initial guess
for the potential, improve it by sweeping through all space, taking the average over
nearest neighbors at each node, and keep repeating the process until the solution
no longer changes to some level of precision or until failure is evident.When con-
verged, the initial guess is said to have relaxed into the solution.
In Listing 10.3, we have a serial code laplace.c that solves the Laplace equation

in two dimensions for a straight wire kept at 100V in a grounded box, using the
relaxation algorithm (10.19). There are five basic elements of the code:

1. Initialize the potential values on the lattice.
2. Provide an initial guess for the potential, in this case U = 0 except for the wire

at 100V.
3. Maintain the boundary values and the source term values of the potential at

all times.
4. Iterate the solution until convergence ((10.19) being satisfied to some level of

precision) is obtained.
5. Output the potential in a form appropriate for 3D plotting.

As you can see, the code is a simple pedagogical example with its essential struc-
ture being the array p[40][40] representing a (small) regular lattice. Industrial
strength applications might use much larger lattices as well as adaptive meshes
and hierarchical multigrid techniques.

24110.14 Data Parallelismand Domain Decomposition

i, j + 1

i – 1, j

i, j – 1

i, j i + 1, j

y

x

Figure 10.10 A representation of the lattice in
a 2D rectangular space upon which Laplace’s
equation is solved using a finite difference
approach. The lattice sites with white centers
correspond to the boundary of the physical
system, upon which boundary conditions
must be imposed for a unique solution. The

large circles in the middle of the lattice rep-
resent the algorithm used to solve Laplace’s
equation in which the potential at the point
(x , y) = (i, j)Δ is set to the average of the po-
tential values at the four nearest-neighbor
points.

When thinking of parallelizing this program, we note an algorithm being ap-
plied to a space of data points, in which case we can divide the domain into sub-
spaces and assign each subspace to a different processor. This is domain decom-
position or data parallelism. In essence, we have divided a large boundary-value
problem into an equivalent set of smaller boundary-value problems that eventu-
ally get fit back together. Often extra storage is allocated on each processor to hold
the data values that get communicated from neighboring processors. These stor-
age locations are referred to as ghost cells, ghost rows, ghost columns, halo cells, or
overlap areas.
Two points are essential in domain decomposition: (i) Load balancing is critical,

and is obtained here by having each domain contain the same number of lattice
points. (ii) Communication among the processors should be minimized because
this is a slow process. Clearly the processors must communicate to agree on the
potential values at the domain boundaries, except for those boundaries on the
edge of the box that remain grounded at 0V. But because there aremanymore lat-
tice sites that need computing than there are boundaries, communication should
not slow down the computation severely for large lattices.
To see an example of how this is carried out, the serial code poisson_1d.c solves

Laplace’s equation in 1D, and poisson_parallel_1d.c solves the same 1D equation in
parallel (codes courtesy ofMichel Vallieres). This code uses an accelerated version
of the iteration algorithm using the parameter Ω, a separate method for domain
decomposition, as well as ghost cells to communicate the boundaries.

242 10 High-Performance Hardware and Parallel Computers

Listing 10.3 laplace.c Serial solution of Laplace’s equation using a finite difference tech-
nique.

/ * l a p l a c e . c : So lve Laplace equat ion with f i n i t e d i f f e r e n c e s * /

#include <std io . h>
#define max 40 / * number of grid points * /
main ()
{

double x , p [max] [max] ;
i n t i , j , i t e r , y ;
FILE * output ; / * save data in l a p l a c e . dat * /
output = fopen (" l a p l a ce . dat " , "w") ;
f o r (i =0; i <max ; i ++) / * c l e a r the ar ray * /
{ f o r (j =0; j <max ; j ++) p [i] [j] = 0 ; }
f o r (i =0; i <max ; i ++) p [i] [0] = 100 . 0 ; / * p [i] [0] = 100 V * /
f o r (i t e r =0; i t e r <1000; i t e r ++) / * i t e r a t i o n s * /
{ f o r (i =1; i <(max−1) ; i ++) / * x−d i r e c t i on * /

{ f o r (j =1; j <(max−1) ; j ++) / * y−d i r e c t i on * /
{ p [i] [j] = 0 . 2 5 * (p [i +1][j]+p [i −1][j]+p [i] [j +1]+p [i] [j −1]) ; }

}
}
f o r (i =0; i <max ; i ++) / * wr i t e data gnuplot 3D format * /
{ f o r (j =0; j <max ; j ++)

{ f p r i n t f (output , "%f \n" , p [i] [j]) ; }
f p r i n t f (output , "\n") ; / * empty l i n e f o r gnuplot * /

}
p r i n t f (" data stored in l a p la ce . dat\n") ;
f c l o s e (output) ;

}

10.14.1
Domain Decomposition Exercises

1. Get the serial version of either laplace.c or laplace.f running.
2. Increase the lattice size to 1000 and determine the CPU time required for con-

vergence to six places. Make sure that this is the actual run time and does
not include any system time. (You can get this type of information, depending
upon the operating system, by inserting timer calls in your program.)

3. Decompose the domain into four subdomains and get an MPI version of the
code running on four compute nodes. [Recall, we give an example of how to
do this in the Codes directory with the serial code poisson_1d.c and its MPI
implementation, poisson_parallel_1d.c (courtesy of Michel Vallières).]

4. Convert the serial code to three dimensions. This makes the application more
realistic, but also more complicated. Describe the changes you have had to
make.

5. Decompose the 3D domain into four subdomains and get an MPI version of
the code running on four compute nodes. This can be quite a bit more com-
plicated than the 2D problem.

6. Conduct a weak scaling test for the 2D or 3D code.
7. Conduct a strong scaling test for the 2D or 3D code.

24310.15 Example: The IBM BlueGene Supercomputers

Figure 10.11 The building blocks of Blue Gene (from Gara et al. (2005)).

10.15
Example: The IBM Blue Gene Supercomputers

Whatever figures we give to describe the latest supercomputer will be obsolete
by the time you read them. Nevertheless, for the sake of completeness, and to set
the present scale, we do it anyway. At the time of this writing, one of the fastest
computers is the IBM Blue Gene/Qmember of the Blue Gene series. In its largest
version, its 96 racks contains 98 304 compute nodes with 1.6 million processor
cores and 1.6 PB of memory (Gara et al., 2005). In June 2012, it reached a peak
speed of 20.1 PFLOPS.
The name Blue Gene reflects the computer’s origin in gene research, although

Blue Genes are now general-purpose supercomputers. In many ways, these are
computers built by committee, with compromises made in order to balance cost,
cooling, computing speed, use of existing technologies, communication speed,
and so forth. As a case in point, the compute chip has 18 cores, with 16 for com-
puting, 1 for assisting the operating system with communication, and 1 as a re-
dundant spare in case one of the others was damaged. Having communication
on the chip reflects the importance of communication for distributed-memory
computing (there are both on- and off-chip distributed memories). And while
the CPU is fast with 204.8GFLOPS at 1.6GHz, there are faster ones made, but
they would generate so much heat that it would not be possible to obtain the ex-
treme scalability up to 98 304 compute nodes. So with the high-efficiency figure
of 2.1GFLOPS/watt, Blue Gene is considered a “green” computer.
We lookmore closely now at one of the original Blue Genes, for which we were

able to obtain illuminating figures (Gara et al., 2005). Consider the building-block
view in Figure 10.11. We see multiple cores on a chip, multiple chips on a card,
multiple cards on a board, multiple boards in a cabinet, and multiple cabinets in
an installation. Each processor runs a Linux operating system (imagine what the

244 10 High-Performance Hardware and Parallel Computers

Figure 10.12 The single-nodememory system (as presented by Gara et al. (2005)).

cost in both time and money would be for Windows!) and utilizes the hardware
by running a distributed memory MPI with C, C++, and Fortran90 compilers.
Blue Gene has three separate communication networks (Figure 10.13). At the

heart of the network is a 3D torus that connects all the nodes, for example, Fig-
ure 10.13 a shows a sample torus of 2× 2× 2 nodes. The links are made by special
link chips that also compute; they provide both direct neighbor–neighbor com-
munications and cut-through communication across the network. The result of
this sophisticated communications network is that there are approximately the
same effective bandwidth and latencies (response times) between all nodes. How-
ever, the bandwidth may be affected by interference among messages, with the
actual latency also depending on the number of hops to get from one node to
another.4) A rate of 1.4Gb/s is obtained for node-to-node communication. The
collective network in Figure 10.13b is used for collective communications among
processors, such as a broadcast. Finally, the control and gigabit ethernet network
(Figure 10.13c) is used for I/O to communicate with the switch (the hardware
communication center) and with ethernet devices.
The computing heart of Blue Gene is its integrated circuit and the associated

memory system (Figure 10.12). This is essentially an entire computer system on a
chip, with the exact specifications depending upon the model, and changing with
time.

4) The number of hops is the number of devices a given data packet passes through.

24510.16 Exascale Computing viaMultinode-MulticoreGPUs

Figure 10.13 (a) A 3D torus connecting 2 × 2 × 2 compute nodes. (b) The global collective
memory system. (c) The control and Gb-ethernet memory system (from Gara et al. (2005)).

10.16
Exascale Computing via Multinode-Multicore GPUs

The current architecture of top-end supercomputers (Figure 10.14) uses a very
large numbers of nodes, with each node containing a chip set that includes mul-
tiple cores as well as a graphical processing unit (GPU) attached to the chip set5).
In the near future, we expect to see laptop computers capable of teraflops (1012
floating-point operations per second), deskside computers capable of petaflops,

5) GPUs and their programming are discussed in Chapter 11.

246 10 High-Performance Hardware and Parallel Computers

Figure 10.14 A schematic of an exascale computer in which, in addition to each chip having
multiple cores, a graphical processing unit is attached to each chip (adapted from Dongarra
(2011)).

and supercomputers at the exascale, in terms of both flops and memory, probably
with millions of nodes.
Look again at the schematic in Figure 10.14. As in Blue Gene, there really are

large numbers of chip boards and large numbers of cabinets. Here we show just
one node and one cabinet and not the full number of cores. The dashed line in Fig-
ure 10.14 represents communications, and it is seen to permeate all components
of the computer. Indeed, communications have become such an essential part of
modern supercomputers, whichmay contain 100s of 1000s of CPUs, that the net-
work interface “card” may be directly on the chip board. Because a computer of
this sort contains sharedmemory at the node level and distributedmemory at the
cabinet or higher levels, programming for the requisite data transfer among the
multiple elements is a fundamental challenge, with significant new investments
likely to occur (Dongarra et al., 2014).

247

11
Applied HPC: Optimization, Tuning, and GPU Programming

More computing sins are committed in the name of efficiency (without neces-
sarily achieving it) than for any other single reason – including blind stupidity.

W.A. Wulf

We should forget about small efficiencies, say about 97% of the time:premature
optimization is the root of all evil.

Donald Knuth

The best is the enemy of the good.

Voltaire

This chapter continues the discussion of high-performance computing (HPC) be-
gan in the previous chapter.Herewe lead the reader through exercises that demon-
strates some techniques for writingprograms that are optimized forHPChardware,
and how the effects of optimization may be different in different computer lan-
guages. We then move on to tips for programming on a multicore computer. We
concludewith an exampleof programming in compute unified device architecture
(CUDA) on a graphics processing card, a subject beyond the general scope of this
text, but one of high current interest.

11.1
General Program Optimization

Rule 1 Do not do it.
Rule 2 (for experts only): Do not do it yet.
Rule 3 Do not optimize as you go: Write your program without regard to possi-

ble optimizations, concentrating instead on making sure that the code is
clean, correct, and understandable. If it is too big or too slow when you
have finished, then you can consider optimizing it.

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

248 11 Applied HPC:Optimization, Tuning, andGPU Programming

Rule 4 Remember the 80/20 rule: In many fields you can get 80% of the result
with 20% of the effort (also called the 90/10 rule – it depends on who
you talk to). Whenever you’re about to optimize code, use profiling to
find out where that 80% of execution time is going, so you know where
to concentrate your effort.

Rule 5 Always run “before” and “after” benchmarks:How else will you know that
your optimizations actually made a difference? If your optimized code
turns out to be only slightly faster or smaller than the original version,
undo your changes and go back to the original, clear code.

Rule 6 Use the right algorithms and data structures: Do not use an (n2) DFT
algorithm to do a Fourier transform of a 1000 elements when there is
an (n log n) FFT available. Similarly, do not store a thousand items in
an array that requires an (n) search when you could use an (log n)
binary tree or an (1) hash table (Hardwich, 1996).

The type of optimization often associated with high-performance or numerically
intensive computing is one in which sections of a program are rewritten and reor-
ganized in order to increase the program’s speed. The overall value of doing this,
especially as computers have become so fast and so available, is often a subject
of controversy between computer scientists and computational scientists. Both
camps agree that using the optimization options of compilers is a good idea. Yet
on the one hand, CS tends to think that optimization is best left to the compilers,
while computational scientists, who tend to run large codes with large amounts
of data in order to solve real-world problems, often believe that you cannot rely
on the compiler to do all the optimization.

11.1.1
Programming for Virtual Memory (Method)

While memory paging makes little appear big, you pay a price because your pro-
gram’s run time increases with each page fault. If your program does not fit into
RAM all at once, it will be slowed down significantly. If virtual memory is shared
among multiple programs that run simultaneously, they all cannot have the en-
tire RAMat once, and so therewill bememory access conflictswhichwill decrease
performance. The basic rules for programming for virtual memory are:

1. Do not waste your time worrying about reducing the amount of memory used
(the working set size) unless your program is large. In that case, take a global
view of your entire program and optimize those parts that contain the largest
arrays.

2. Avoid page faults by organizing your programs to successively perform their
calculations on subsets of data, each fitting completely into RAM.

3. Avoid simultaneous calculations in the same program to avoid competition for
memory and consequent page faults. Complete each major calculation before
starting another.

24911.1 General ProgramOptimization

4. Group data elements close together in memory blocks if they are going to be
used together in calculations.

11.1.2
Optimization Exercises

Many of the optimization techniques developed for Fortran and C are also rele-
vant for Python applications. Yet while Python is a good language for scientific
programming and is as universal and portable as Java, at present Python code
runs slower than Fortran, C or even Java codes. In part, this is a consequence of
the Fortran and C compilers having been around longer and thereby having been
better refined to get themost out of a computer’s hardware, and in part this is also
a consequence of Python not being designed for speed. Because modern comput-
ers are so fast, whether a program takes 1s or 3s usually does not matter much,
especially in comparison to the hours or days of your time that it might take to
modify a program for increased speed. However, you may want to convert the
code to C (whose command structure is similar to that of Python) if you are run-
ning a computation that takes hours or days to complete andwill be doing it many
times.
Especially when asked to, compilers may look at your entire code as a single

entity and rewrite it in an attempt to make it run faster. In particular, Fortran and
C compilers often speed up programs by being careful in how they load arrays into
memory. They also are careful in keeping the cache lines full so as not to keep the
CPU waiting or having it move on to some other chore. That being said, in our
experience compilers still cannot optimize a program as well as can a skilled and
careful programmer who understands the order and structure of the code.
There is no fundamental reason why a program written in Java or Python can-

not be compiled to produce a highly efficient code, and indeed such compilers
are being developed and becoming available. However, such code is optimized
for a particular computer architecture and so is not portable. In contrast, the byte
code (.class file in Java and .pyc file in Python) produced by the compiler is de-
signed to be interpreted or recompiled by the Java or Python Virtual Machine
(just another program). When you change from Unix to Windows, for example,
the Virtual Machine program changes, but the byte code is the same. This is the
essence of portability.
In order to improve the performance of Java and Python, many computers and

browsers run Just-in-Time (JIT) compilers. If a JIT is present, the Virtual Machine
feeds your byte code Prog.class or Prog.pyc to the JIT so that it can be recompiled
into native code explicitly tailored to the machine you are using. Although there
is an extra step involved here, the total time it takes to run your program is usually
10–30 times faster with a JIT as compared to line-by-line interpretation. Because
the JIT is an integral part of the Virtual Machine on each operating system, this
usually happens automatically.
In the experiments below, you will investigate techniques to optimize both For-

tran and Java or Python programs, and to compare the speeds of both languages

250 11 Applied HPC:Optimization, Tuning, andGPU Programming

for the same computation. If you run your program on a variety of machines you
should also be able to compare the speed of one computer to that of another. Note
that a knowledge of Fortran or C is not required for these exercises; if you keep
an open mind you should be able to look at the code and figure out what changes
may be needed.

11.1.2.1 Good and Bad Virtual Memory Use (Experiment)
To see the effect of using virtual memory, convert these simple pseudocode ex-
amples (Listings 11.1 and 11.2) into actual code in your favorite language, and
then run them on your computer. Use a command such as time, time.clock() or
timeit to measure the time used for each example. These examples call functions
force12 and force21. You should write these functions and make them have signifi-
cant memory requirements.

Listing 11.1 BAD program, too simultaneous.

f o r j = 1 , n ; { f o r i = 1 , n ; {
f12 (i , j) = force12 (pion (i) , pion (j)) / / F i l l f12
f21 (i , j) = force21 (pion (i) , pion (j)) / / F i l l f21
f t o t = f12 (i , j) + f21 (i , j) } } / / F i l l f t o t

You see (Listing 11.1) that each iteration of the for loop requires the data and
code for all the functions as well as access to all the elements of the matrices and
arrays. The working set size of this calculation is the sum of the sizes of the arrays
f12(N,N), f21(N,N), and pion(N) plus the sums of the sizes of the functions force12
and force21.
A better way to perform the same calculation is to break it into separate com-

ponents (Listing 11.2):

Listing 11.2 GOOD program, separate loops.

f o r j = 1 , n ;
{ f o r i = 1 , n ; f12 (i , j) = force12 (pion (i) , pion (j)) }

f o r j = 1 , n ;
{ f o r i = 1 , n ; f21 (i , j) = force21 (pion (i) , pion (j)) }

f o r j = 1 , n ;
{ f o r i = 1 , n ; f t o t = f12 (i , j) + f21 (i , j) }

Here, the separate calculations are independent and the working set size, that is,
the amount ofmemory used, is reduced. However, you do pay the additional over-
head costs associated with creating extra for loops. Because the working set size
of the first for loop is the sum of the sizes of the arrays f12(N, N) and pion(N), and of
the function force12, we have approximately half the previous size. The size of the
last for loop is the sum of the sizes for the two arrays. The working set size of the
entire program is larger than of the working set sizes for the different for loops.
As an example of the need to group data elements close together in memory or

common blocks if they are going to be used together in calculations, consider the
following code (Listing 11.3):

25111.2 OptimizedMatrix Programming withNumPy

Listing 11.3 BAD Program, discontinuous memory.

Common zed , y l t (9) , par t (9) , zpart1 (50000) , zpar t2 (50000) , med2 (9)
f o r j = 1 , n ;
y l t (j) = zed * part (j) /med2 (9) / / Discontinuous v a r i a b l e s

Here the variables zed, ylt, and part are used in the same calculations and are ad-
jacent in memory because the programmer grouped them together in Common
(global variables). Later, when the programmer realized that the array med2 was
needed, it was tacked onto the end of Common. All the data comprising the vari-
ables zed, ylt, and part fit onto one page, but the med2 variable is on a different
page because the large array zpart2(50000) separates it from the other variables. In
fact, the system may be forced to make the entire 4 kB page available in order to
fetch the 72 B of data in med2. While it is difficult for a Fortran or C programmer
to establish the placement of variables within page boundaries, you will improve
your chances by grouping data elements together (Listing 11.4):

Listing 11.4 GOOD program, continuous memory

Common zed , y l t (9) , par t (9) , med2 (9) , zpart1 (50000) , zpar t2 (50000)
f o r j = 1 , n ;

y l t (j) = zed * part (j) /med2 (J) / / Continuous

11.2
Optimized Matrix Programming with NumPy

In Chapter 6, we demonstrated several ways of handling matrices with Python. In
particular, we recommended using the array structure and theNumPy package. In
this section, we extend that discussion somewhat by demonstrating two ways in
whichNumPymay speed up a program. The first is by using NumPy arrays rather
than Python ones, and the second is by using Python slicing to reduce stride.

Listing 11.5 TuneNumPy.py compares the time it takes to evaluate a function of each el-
ement of an array using a for loop, as well as using a vectorized call with NumPy. To see the
effect of fluctuations, the comparison is repeated three times.

TuneNumpy . py : Comparison of NumPy op versus for loop

from datet ime import datet ime
import numpy as np

de f f (x) : # A function requiring some computation
re turn x **2−3* x + 4

x = np . arange (1 e5) # An array of 100 ,000 integers

f o r j in range (0 , 3) : # Repeat comparison three time

t1 = date t ime . now ()
y = [f (i) f o r i in x] # The for loop
t2 = date t ime . now ()
pr in t (’ For f o r loop , t2 - t1 =’ , t2−t1)

252 11 Applied HPC:Optimization, Tuning, andGPU Programming

t1 = date t ime . now ()
y = f (x) # Vectorized eva luat ion
t2 = date t ime . now ()
pr in t (’ For vector function , t2 - t1 =’ , t2−t1)

A powerful feature of NumPy is its high-level vectorization. This is the process
in which the single call of a function operates not on a variable but on an array
object as a whole. In the latter case, NumPy automatically broadcasts the oper-
ation across all elements of the array with efficient use of memory. As we shall
see, the resulting speed up can be more than an order of magnitude! While this
may sound complicated, it really is quite simple because NumPy does this for you
automatically.
For example, in Listing 11.5 we present the codeTuneNumPy.py. It compares the

speed of a calculation using a for loop to evaluate a function for each of 100 000
elements in an array, vs. the speed using NumPy’s vectorized evaluation of that
function for an array object (Perez et al., 2010). And to see the effects of fluctu-
ations as a result of things like background processes, we repeat the comparison
three times. We obtained the following results:

For f o r loop , t2−t1 = 0 : 00 : 00 . 384000
For v ec to r funct ion , t2−t1 = 0 : 00 : 00 . 009000
For f o r loop , t2−t1 = 0 : 00 : 00 . 383000
For v ec to r funct ion , t2−t1 = 0 : 00 : 00 . 009000
For f o r loop , t2−t1 = 0 : 00 : 00 . 387000
For v ec to r funct ion , t2−t1 = 0 : 00 : 00 . 008000

Though a simple calculation, these results show that vectorization speeds the cal-
culation up by a factor of nearly 50; really!
Now, recall from Chapter 10 our discussion of stride (the amount of memory

skipped in order to get to the next element needed in a calculation). It is important
to have your program minimize stride in order not waste time jumping through
memory, as well as not to load unneeded data into memory. For example, for a
(1000, 1000) array, there is a passage of 1 word to get to the next column, but
of 1000 words to get to the next row. Clearly better to do a column-by-column
calculation than a row-by-row one.
We start our example by setting up a 3 × 3 array of integers using NumPy’s

arange to create a 1D array. We then reshape it into a 3 × 3 array and determine
the strides of the matrix for rows and columns:

>>> from numpy import *
2>>> A = arange (0 , 90 , 10)

>>> A
4ar ray ([0 , 10 , 20 , 30 , 40 , 50 , 60 , 70 , 80])

>>> A = A. reshape ((3 , 3))
6>>> A

ar ray ([[0 , 10 , 20] ,
8[30 , 40 , 50] ,

[60 , 70 , 8 0]])
10>>> A. s t r i d e s

(12 , 4)

25311.2 OptimizedMatrix Programming withNumPy

Line 11 tells us that it takes 12 bytes (three values) to get to the same position in
the next row, but only 4 bytes (one value) to get to the same position in the next
column. Clearly cheaper to go from column to column. Now, we show you an easy
way to do that.
Recall Python’s slice operator that extracts just the desired part of a list (like

taking a “slice” through the center of a jelly doughnut):

ListName[StartIndex:StopBeforeIndex:Step] .

The convention here is that if no argument is given, then the slice starts at 0 and
stops at the end of the list. For example:

1>>> A = arange (0 , 90 , 10) . reshape ((3 , 3))
>>> A

3a r ray ([[0 , 10 , 20] ,
[30 , 40 , 50] ,

5[60 , 70 , 8 0]])
>>> A [: 2 , :] # Fir s t two rows (s t a r t at 2 , go to end)

7a r r ay ([[0 , 10 , 20] ,
[30 , 40 , 5 0]])

9>>> A[: , 1 : 3] # Columns 1−3 (s t a r t at 1 , end at 4)
ar ray ([[1 0 , 20] ,

11[40 , 50] ,
[70 , 8 0]])

13>>> A [: : 2 , :] # Every second row
a r r ay ([[0 , 10 , 20] ,

15[60 , 70 , 8 0]])

Once sliced, Python does not have to jump through memory to work with these
elements, or even set up separate arrays for them. This is called view-based in-
dexing, with the indexed notation returning a new array object that points to the
address of the original data rather than store the values of the new array (think
“pointers” in C). This does lead to improved speed, but you must remember that
if you alter the new array, you are also altering the original array to which it points
(think “pointers” in C).
For instance, you can optimize a finite difference calculation of forward- and

central-difference derivatives quite elegantly (Perez et al., 2010):

1>>> x = arange (0 , 20 , 2)
>>> x

3a r ray ([0 , 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18])
>>> y = x * *2

5>>> y
ar ray ([0 , 4 , 16 , 36 , 64 , 100 , 144 , 196 , 256 , 324] , dtype=in t32)

7>>> dy_dx = ((y [1 :] − y [: 1]) / (x [1 :] − x [: −1])) # Forward dif ference
>>> dy_dx

9a r r ay ([2 . , 8 . , 1 8 . , 3 2 . , 5 0 . , 7 2 . , 9 8 . , 128 . , 1 6 2 .])
>>> dy_dx_c = ((y [2 :] − y [: −2]) / (x [2 :] − x [: −2])) # Central d if ference

11>>> dy_dx_c
ar ray ([4 . , 8 . , 1 2 . , 1 6 . , 2 0 . , 2 4 . , 2 8 . , 3 2 .])

(We note that the values of the derivatives look quite different, yet the forward
difference is evaluated at the start of the interval and the central difference at the
center.)

254 11 Applied HPC:Optimization, Tuning, andGPU Programming

11.2.1
NumPy Optimization Exercises

1. We have just demonstrated how NumPy’s vectorized function evaluation can
speed up a calculation by a factor of 50 via broadcast of an operation over
an array rather than performing that operation on each individual element in
the array. Determine the speedup for the matrix multiplication [A][B] where
the matrices are at least 105 in size and contain floating-point numbers. Com-
pare the direct multiplication to application of the elementary rule for each
element:

[AB]i j =
∑
k

aik bk j . (11.1)

2. We have just demonstrated how Python’s slice operator can be used to reduce
the stride of a calculation of derivatives. Determine the speedup obtained in
evaluating the forward-difference and central-difference derivatives over an
array of at least 105 floating-point numbers using stripping to reduce stride.
Compare to the same calculation without any stripping.

11.3
Empirical Performance of Hardware

In this section, you conduct an experiment in which you run a complete program
in several languages and on asmany computers as are available to you. In this way,
youwill explore howa computer’s architecture and software affect a program’s per-
formance.

The first step in optimization is to try asking the compiler to optimize your pro-
gram. You control how completely the compiler tries to do this by adding opti-
mization options to the compile command. For example, in Fortran (where this
works better than in Python):

> f90 –O tune.f90

Here –O turns on optimization (O is the capital letter “oh,” not zero). The actual
optimization that is turned on differs from compiler to compiler. Fortran and C
compilers have a bevy of such options and directives that let you truly customize
the resulting compiled code. Sometimes optimization options make the code run
faster, sometimes not, and sometimes the faster-running code gives the wrong
answers (but does so quickly).
Because computational scientists may spend a good fraction of their time run-

ning compiled codes, the compiler options tend to become quite specialized. As
a case in point, most compilers provide a number of levels of optimization for
the compiler to attempt (there are no guarantees with these things). Although

25511.3 Empirical Performance of Hardware

the speedup obtained depends upon the details of the program, higher levels may
give greater speedup. However, we have had the experience of higher levels of op-
timization sometimes giving wrong answers (presumably this may be related to
our programs not following the rules of grammar perfectly).
Some typical Fortran compiler options include the following:

–O Use the default optimization level (–O3)
–O1 Provide minimum statement-level optimizations
–O2 Enable basic block-level optimizations
–O3 Add loop unrolling and global optimizations
–O4 Add automatic inlining of routines from the same source file
–O5 Attempt aggressive optimizations (with profile feedback).

The gnu compilers gcc, g77, and g90 accept –O options as well as

–malign–double Align doubles on 64-bit boundaries
–ffloat–store For codes using IEEE-854 extended precision
–fforce–mem, –fforce–addr Improves loop optimization
–fno–inline Do not compile statement functions inline
–nffast–math Try non-IEEE handling of floats
–funsafe–math–optimizations Speeds up float operations; incorrect result possible
–fno–trapping–math Assume no floating-point traps generated
–fstrength–reduce Makes some loops faster
–frerun–cse–after–loop
–fexpensive–optimizations
–fdelayed–branch
–fschedule–insns
–fschedule–insns2
–fcaller–saves
–funroll–loops Unrolls iterative DO loops
–funroll–all–loops Unrolls DO WHILE loops

11.3.1
Racing Python vs. Fortran/C

The various versions of the program tune that are given in the Codes/HPC direc-
tory solve the matrix eigenvalue problem

Hc = Ec (11.2)

for the eigenvalues E and eigenvectors c of a Hamiltonian matrix H. Here the
individual Hamiltonian matrix elements are assigned the values

Hi, j =

{
i, for i = j ,
0.3|i− j|, for i ≠ j ,

(11.3)

256 11 Applied HPC:Optimization, Tuning, andGPU Programming

=

⎡⎢⎢⎢⎢⎣
1 0.3 0.14 0.027 …
0.3 2 0.3 0.9 …
0.14 0.3 3 0.3 …
⋱

⎤⎥⎥⎥⎥⎦
. (11.4)

Listing 11.6 tune.f90 is meant to be numer-
ically intensive enough to show the results
of various types of optimizations, but you
may have to increase sizes in it to make it

more intensive. The program solves the eigen-
value problem iteratively for a nearly diagonal
Hamiltonian matrix using a variation of the
power method.

! tune . f90 : matrix a l g eb ra program to be tuned f o r performance

Program tune

parameter (ldim = 2050)
Imp l i c i t Double p rec i s ion (a − h , o − z)
dimension ham(ldim , ldim) , coe f (ldim) , sigma (ldim)

! s e t up H and s t a r t i n g v ec to r
Do i = 1 , ldim

Do j = 1 , ldim
I f (abs (j − i) > 10) then
ham(j , i) = 0 .

e l s e
ham(j , i) = 0 . 3 * * Abs (j − i)

EndIf
End Do
ham(i , i) = i
coe f (i) = 0 .

End Do
coef (1) = 1 .

! s t a r t i t e r a t i n g
e r r = 1 .
i t e r = 0

20 I f (i t e r < 15 . and . e r r >1. e−6) then
i t e r = i t e r + 1

! compute current energy & normalize
ener = 0 .
ov lp = 0 .
Do i = 1 , ldim

ov lp = ov lp + coef (i) * coe f (i)
sigma (i) = 0 .
Do j = 1 , ldim

sigma (i) = sigma (i) + coe f (j) *ham(j , i)
End Do
ener = ener + coef (i) * sigma (i)

End Do
ener = ener / ov lp
Do I = 1 , ldim

coef (i) = coef (i) / Sqr t (ov lp)
sigma (i) = sigma (i) / Sqrt (ov lp)

End Do
! compute update and e r ro r norm

er r = 0 .
Do i = 1 , ldim

I f (i == 1) goto 22
step = (sigma (i) − ener * coe f (i)) / (ener − ham(i , i))
coe f (i) = coef (i) + step
e r r = e r r + step * *2

22 Continue
23 End Do

er r = sq r t (e r r)
w r i t e (* , ’ (1x , i2 , 7 f10 .5) ’) i t e r , ener , err , coe f (1)

25711.3 Empirical Performance of Hardware

goto 20
Endi f

Stop
End Program tune

Because theHamiltonian is almost diagonal, the eigenvalues should be close to the
values of the diagonal elements, and the eigenvectors shouldbe close to a set ofN-
dimensional unit vectors. For example, let us say thatH has dimensions of N ×N
with N = 2000. The number of elements in the matrix is then 2000 × 2000 =
4 000 000, and so it will take 4million × 8 B = 32MB to store this many double
precision numbers. Becausemodern PCs have 4GB or more of RAM, this small a
matrix shouldnot havememory issues.Accordingly, determine the size of RAMon
your computer and increase the dimension of the H matrix until it surpasses that
size. (OnWindows, this will be indicated as one of the “Properties” of “Computer”
or in the information about “System” in the Control Panel.)
We find the solution to (11.2) via a variation of the power or Davidson method.

We start with an arbitrary first guess for the eigenvector c and use it to calculate
the energy corresponding to this eigenvector,1)

c0 ≃

⎛⎜⎜⎜⎜⎝
1
0
⋮

0

⎞⎟⎟⎟⎟⎠
, E ≃

c†0Hc0
c†0c0

, (11.5)

where c†0 is the row vector adjoint of c0. BecauseH is nearly diagonal with diagonal
elements that increase as we move along the diagonal, this guess should be close
to the eigenvector with the smallest eigenvalue. The heart of the algorithm is the
guess that an improved eigenvector has the kth component

c1|k ≃ c0|k + [H − EI]c0|k
E −Hk ,k

, (11.6)

where k ranges over the length of the eigenvector. If repeated, this method con-
verges to the eigenvectorwith the smallest eigenvalue. It will be the smallest eigen-
value because it gets the largestweight (smallest denominator) in (11.6) each time.
For the present case, six places of precision in the eigenvalue are usually obtained
after 11 iterations. Here are the steps to follow:

1. Vary the value of err in tune that controls precision and note how it affects the
number of iterations required.

2. Try some variations on the initial guess for the eigenvector (11.6) and see if
you can get the algorithm to converge to some of the other eigenvalues.

3. Keep a table of your execution times vs. technique.
4. Compile and execute tune.f90 and record the run time (Listing 11.6). On Unix

systems, the compiled program will be placed in the file a.out. From a Unix

1) Note that the codes refer to the eigenvector c0 as coef.

258 11 Applied HPC:Optimization, Tuning, andGPU Programming

shell, the compilation, timing, and execution can all be carried out with the
commands

> F90 tune . f90 # Fortran compilation
> cc −−lm tune . c # C compilation , (or gcc instead of cc)
> time a . out # Execution

Here the compiled Fortran program is given the (default) name of a.out, and
the time command gives you the execution (user) time and system time in sec-
onds to execute a.out.

5. As indicated in Section 11.3, you can ask the compiler to produce a version
of your program optimized for speed by including the appropriate compiler
option:

> f90 –O tune.f90

Execute and time the optimized code, checking that it still gives the same an-
swer, and note any speedup in your journal.

6. Try out optimization options up to the highest levels and note the run time
and accuracy obtained. Usually –O3 is pretty good, especially for as simple a
program as tune with only a main method. With only one program unit, we
would not expect –O4 or –O5 to be an improvement over –O3. However, we do
expect –O3, with its loop unrolling, to be an improvement over –O2.

7. The program tune4 does some loop unrolling (we will explore that soon). To
see the best we can do with Fortran, record the time for the most optimized
version of tune4.f95.

8. The program Tune.py in Listing 11.7 is the Python equivalent of the Fortran
program tune.f90.

9. To get an idea of what Tune.py does (and give you a feel for how hard life is
for the poor computer), assume ldim =2 and work through one iteration of
Tune by hand. Assume that the iteration loop has converged, follow the code
to completion, and write down the values assigned to the variables.

10. Compile and execute Tune.py. You do not have to issue the time command
because we built a timer into the Python program. Check that you still get the
same answer as you did with Fortran and note how much longer it takes with
Python. You might be surprised how much slower Python is than Fortran.

11. We now want to perform a little experiment in which we see what happens to
performance as we fill up the computer’s memory. In order for this experiment
to be reliable, it is best for you not to be sharing the computer with any other
users. On Unix systems, the who –a command shows you the other users (we
leave it up to you to figure out how to negotiate with them).

12. To get some idea of what aspect of our little program is making it so slow,
compile and run Tune.py for the series of matrix sizes ldim = 10, 100, 250, 500,
750, 1025, 2500, and 3000. You may get an error message that Python is out
of memory at 3000. This is because you have not turned on the use of virtual
memory.

25911.3 Empirical Performance of Hardware

Listing 11.7 Tune.py is meant to be nu-
merically intensive enough to show the re-
sults of various types of optimizations, but
you may need to increase sizes to make

it more intensive. The program solves the
eigenvalue problem iteratively for a nearly
diagonal Hamiltonian matrix using a
variation of the power method.

Tune . py Basic tuning program showing memory a l loca t ion

import datet ime ; from numpy import zeros ; from math import (sqrt ,
pow)

Ldim = 251 ; i t e r = 0 ; step = 0 .
d iag = zeros ((Ldim , Ldim) , f l o a t) ; coe f = zeros ((Ldim) , f l o a t)
sigma = zeros ((Ldim) , f l o a t) ; ham = zeros ((Ldim , Ldim) ,

f l o a t)
t0 = datet ime . date t ime . now () # I n i t i a l i z e

time
f o r i in range (1 , Ldim) : # Set up

Hamiltonian
f o r j in range (1 , Ldim) :

i f (abs (j − i) >10) : ham[j , i] = 0 .
e l s e : ham[j , i] = pow (0 . 3 , abs (j − i))

ham[i , i] = i ; coe f [i] = 0 . ;
coe f [1] = 1 . ; e r r = 1 . ; i t e r = 0 ;
pr in t (" i t e r ener e r r ")
whi le (i t e r < 15 and e r r > 1 . e−6) : # Compute current E &

normalize
i t e r = i t e r + 1 ; ener = 0 . ; ov lp = 0 . ;
f o r i in range (1 , Ldim) :

ov lp = ov lp + coef [i] * coe f [i]
sigma [i] = 0 .
f o r j in range (1 , Ldim) : sigma [i] = sigma [i] +

coef [j] * ham[j] [i]
ener = ener + coef [i] * sigma [i]

ener = ener / ov lp
f o r i in range (1 , Ldim) :

coe f [i] = coef [i] / sq r t (ov lp)
sigma [i] = sigma [i] / sq r t (ov lp)

e r r = 0 . ;
f o r i in range (2 , Ldim) : #

Update
s tep = (sigma [i] − ener * coe f [i]) / (ener − ham[i , i])
coe f [i] = coef [i] + step
e r r = e r r + step * step

e r r = sq r t (e r r)
pr in t " %2d %9.7 f %9.7 f "%(i t e r , ener , e r r)

d e l t a _ t = date t ime . date t ime . now () − t0 # Elapsed
time

pr in t " time = " , d e l t a _ t

13. Make a graph of run time vs.matrix size. It should be similar to Figure 11.1, al-
though if there ismore thanoneuser on your computerwhile you run, youmay
get erratic results. Note that as ourmatrix becomes larger than∼ 1000× 1000
in size, the curve sharply increases in slope with execution time, in our case
increasing like the third power of the dimension. Because the number of ele-
ments to compute increases as the second power of the dimension, something
else is happening here. It is a good guess that the additional slowdown is as a
result of page faults in accessing memory. In particular, accessing 2D arrays,
with their elements scattered all through memory, can be very slow.

260 11 Applied HPC:Optimization, Tuning, andGPU Programming

T
im

e
 (
s
)

Java, Solaris

Execution Time vs Matrix Size

Matrix Dimension

10

Fortran, Solaris

Matrix Dimension

1

1

0.01

10

10

100

1000

10 000

100

0.1

0.1

100 1000 10 000100 1000

Figure 11.1 Running time vs. dimension for an eigenvalue search using Tune.java and
tune.f90.

Listing 11.8 Tune4.py does some loop unrolling by explicitly writing out two steps of a
for loop (steps of 2). This results in better memory access and faster execution.

Tune4 . py Model tuning program

import datet ime
from numpy import zeros
from math import (sqrt , pow , p i)
from sy s import v e r s ion
i f i n t (v e r s ion [0]) >2: #raw_input deprecated in Python 3

raw_input=input
Ldim = 200 ; i t e r 1 = 0 ; s tep = 0 .
ham = zeros ((Ldim , Ldim) , f l o a t) ; d iag = zeros ((Ldim) , f l o a t)
coe f = zeros ((Ldim) , f l o a t) ; sigma = zeros ((Ldim) , f l o a t)
t0 = datet ime . date t ime . now () # I n i t i a l i z e time

f o r i in range (1 , Ldim) : # Set up Hamiltonian
f o r j in range (1 , Ldim) :

i f abs (j − i) >10: ham[j , i] = 0 .
e l s e : ham[j , i] = pow (0 . 3 , abs (j − i))

f o r i in range (1 , Ldim) :
ham[i , i] = i
coe f [i] = 0 .
d iag [i] = ham[i , i]

coe f [1] = 1 . ; e r r = 1 . ; i t e r = 0 ;
pr in t (" i t e r ener e r r ")

whi le (i t e r 1 < 15 and e r r > 1 . e−6) : # Compute E & normalize
i t e r 1 = i t e r 1 + 1
ener = 0 .
ovlp1 = 0 .
ovlp2 = 0 .
f o r i in range (1 , Ldim − 1 , 2) :

ovlp1 = ovlp1 + coef [i] * coe f [i]
ovlp2 = ovlp2 + coef [i + 1] * coe f [i + 1]
t1 = 0 .
t2 = 0 .
f o r j in range (1 , Ldim) :

t1 = t1 + coef [j] * ham[j , i]
t2 = t2 + coef [j] * ham[j , i + 1]

26111.3 Empirical Performance of Hardware

sigma [i] = t1
sigma [i + 1] = t2
ener = ener + coef [i] * t1 + coef [i + 1] * t2

ov lp = ovlp1 + ovlp2
ener = ener / ov lp
f a c t = 1 . / sq r t (ov lp)
coe f [1] = f a c t * coe f [1]
e r r = 0 . # Update & error norm
f o r i in range (2 , Ldim) :

t = f a c t * coe f [i]
u = f a c t * sigma [i] − ener * t
s tep = u / (ener − diag [i])
coe f [i] = t + step
e r r = e r r + step * step

e r r = sq r t (e r r)
pr in t (" %2d %15.13 f %15.13 f "%(i t e r1 , ener , e r r))

d e l t a _ t = date t ime . date t ime . now () − t0 # Elapsed time
pr in t (" time = " , d e l t a _ t)

Listing 11.9 tune4.f95 does some loop unrolling by explicitly writing out two steps of a
Do loop (steps of 2). This results in better memory access and faster execution.

! tune4 . f95 : matrix a l g eb ra with RISC tuning !

Program tune4
PARAMETER (ldim = 2050)
Imp l i c i t Double P rec i s ion (a−h , o−z)
Dimension ham(ldim , ldim) , coe f (ldim) , sigma (ldim) , d iag (ldim)

! s e t up Hamiltonian and s t a r t i n g v ec to r
Do i = 1 , ldim

Do j = 1 , ldim
I f (Abs (j− i) > 10) Then

ham(j , i) = 0 .0
E l s e

ham(j , i) = 0 . 3 * * Abs (j− i)
EndIf

End Do
End Do

! s t a r t i t e r a t i n g towards the so lu t ion
Do i = 1 , ldim

ham(i , i) = i
coe f (i) = 0 .0
diag (i) = ham(i , i)

End Do
coef (1) = 1 .0
e r r = 1 .0
i t e r = 0

20 I f (i t e r <15 . and . err >1.0 e−6) Then
i t e r = i t e r +1

ener = 0 .0
ovlp1 = 0 .0
ovlp2 = 0 .0
Do i = 1 , ldim −1 ,2

ovlp1 = ovlp1+coef (i) * coe f (i)
ovlp2 = ovlp2+coef (i +1) * coe f (i +1)
t1 = 0 .0
t2 = 0 .0
Do j = 1 , ldim

t1 = t1 + coef (j) *ham(j , i)
t2 = t2 + coef (j) *ham(j , i +1)

End Do
sigma (i) = t1
sigma (i +1) = t2

262 11 Applied HPC:Optimization, Tuning, andGPU Programming

ener = ener + coef (i) * t1 + coef (i) * t2
End Do
ov lp = ovlp1 + ovlp2
ener = ener / ov lp
f a c t = 1 . 0 / Sqrt (ov lp)
coe f (1) = f a c t * coe f (1)
e r r = 0 .0
Do i = 2 , ldim

t = f a c t * coe f (i)
u = f a c t * sigma (i) − ener * t
s tep = u / (ener − diag (i))
coe f (i) = t + step
e r r = e r r + step * step

End Do
er r = Sqrt (e r r)
Write (* , ’ (1x , i2 ,7 f10 .5) ’) i t e r , ener , err , coe f (1)
GoTo 20
EndIf
Stop
End Program tune4

14. Repeat the previous experiment with tune.f90 that gauges the effect of increas-
ing the ham matrix size, only now do it for ldim = 10, 100, 250, 500, 1025, 3000,
4000, 6000, . . .You should get a graph like ours. Although our implementation
of Fortran has automatic virtual memory, its use will be exceedingly slow, es-
pecially for this problem (possibly a 50-fold increase in time!). So if you submit
your program and you get nothing on the screen (though you can hear the disk
spin or see it flash busy), then you are probably in the virtual memory regime.
If you can, let the program run for one or two iterations, kill it, and then scale
your run time to the time it would have taken for a full computation.

15. To test our hypothesis that the access of the elements in our 2D array ham[i,j]
is slowing down the program, we have modified Tune.py into Tune4.py in List-
ing 11.8 (and similar modification with the Fortran versions).

16. Look at Tune4 and note where the nested for loop over i and j now takes step
of Δi = 2 rather the unit steps in Tune.py. If things work as expected, the better
memory access of Tune4.py should cut the run time nearly in half. Compile and
execute Tune4.py. Record the answer in your table.

17. In order to cut the number of calls to the 2D array in half, we employed a
technique known as loop unrolling in which we explicitly wrote out some of
the lines of code that otherwise would be executed implicitly as the for loop
went through all the values for its counters. This is not as clear a piece of code
as before, but it evidently permits the compiler to produce a faster executable.
To check that Tune and Tune4 actually do the same thing, assume ldim = 4 and
run through one iteration of Tune4 by hand. Hand in your manual trial.

11.4
Programming for the Data Cache (Method)

Data caches are small, very fastmemory banks used as temporary storage between
the ultrafast CPU registers and the fast mainmemory. They have grown in impor-

26311.4 Programming for the Data Cache (Method)

Cache

Virtual Memory

256 lines of 128 B (32 kB)

Figure 11.2 The cache manager’s view of RAM. Each 128-B cache line is read into one of four
lines in cache.

tance as high-performance computers have become more prevalent. For systems
that use a data cache, this may well be the single most important programming
consideration; continually referencing data that are not in the cache (cachemisses)
may lead to an order-of-magnitude increase in CPU time.
As indicated in Figures 10.3 and 11.2, the data cache holds a copy of some of the

data in memory. The basics are the same for all caches, but the sizes are manu-
facturer dependent.When the CPU tries to address a memory location, the cache
manager checks to see if the data are in the cache. If they are not, the manager
reads the data frommemory into the cache, and then the CPU deals with the data
directly in the cache. The cache manager’s view of RAM is shown in Figure 11.2.
When considering how amatrix operation usesmemory, it is important to con-

sider the stride of that operation, that is, the number of array elements that are
stepped through as the operation repeats. For instance, summing the diagonal
elements of a matrix to form the trace

TrA =
N∑
i=1

a(i, i) (11.7)

involves a large stride because the diagonal elements are stored far apart for large
N. However, the sum

c(i) = x(i) + x(i + 1) (11.8)

has stride 1 because adjacent elements of x are involved. Following is the basic
rule in programming for a cache:

∙ Keep the stride low, preferably at 1, which in practice means:
– Vary the leftmost index first on Fortran arrays.
– Vary the rightmost index first on Python and C arrays.

264 11 Applied HPC:Optimization, Tuning, andGPU Programming

11.4.1
Exercise 1: Cache Misses

Wehave said a number of times that your programwill be slowed down if the data
it needs are in virtual memory and not in RAM. Likewise, your program will also
be slowed down if the data required by the CPU are not in the cache. For high-
performance computing, you shouldwrite programs that keep asmuch of the data
being processed as possible in the cache. To do this, you should recall that Fortran
matrices are stored in successive memory locations with the row index varying
most rapidly (column-major order), while Python and C matrices are stored in
successive memory locations with the column index varying most rapidly (row-
major order). While it is difficult to isolate the effects of the cache from other
elements of the computer’s architecture, you should now estimate its importance
by comparing the time it takes to step through the matrix elements row by row to
the time it takes to step through the matrix elements column by column.
Run on machines available to you a version of each of the two simple codes

given in Listings 11.10 and 11.11. Check that although each has the same number
of arithmetic operations, one takes significantly more time to execute because
it makes large jumps through memory, with some of the memory locations ad-
dressed not yet read into the cache:

Listing 11.10 Sequential column and row references.

f o r j = 1 , 999999;
x (j) = m(1 , j) / / S equent i a l column re f e r ence

Listing 11.11 Sequential column and row references.

f o r j = 1 , 999999;
x (j) = m(j , 1) / / S equen t i a l row re f e r ence

11.4.2
Exercise 2: Cache Flow

Below in Listings 11.12 and 11.13, we give two simple code fragments that you
should place into full programs in whatever computer language you are using.
Test the importance of cache flow on yourmachine by comparing the time it takes
to run these two programs. Run for increasing column size idim and compare the
times for loop A vs. those for loop B. A computer with very small caches may be
most sensitive to stride.

26511.4 Programming for the Data Cache (Method)

Listing 11.12 Loop A: GOOD f90 (min stride), BAD Python/C (max stride).

Dimension Vec (idim , jdim) / / S t r i d e 1 f e t ch (f90)
f o r j = 1 , jdim ; { f o r i =1 , idim ; Ans = Ans +

Vec (i , j) *Vec (i , j) }

Listing 11.13 Loop B: BAD f90 (max stride), GOOD Python/C (min stride).

Dimension Vec (idim , jdim) / / S t r i d e jdim fe t ch (f90)
f o r i = 1 , idim ; { f o r j =1 , jdim ; Ans = Ans + Vec (i , j) *Vec (i , j) }

Loop A steps through the matrix Vec in column order. Loop B steps through in
row order. By changing the size of the columns (the leftmost Python index), we
change the step size (stride) taken through memory. Both loops take us through
all the elements of the matrix, but the stride is different. By increasing the stride
in any language, we use fewer elements already present in the cache, require ad-
ditional swapping and loading of the cache, and thereby slow down the whole
process.

11.4.3
Exercise 3: Large-Matrix Multiplication

As you increase the dimensions of the arrays in your program, memory use in-
creases geometrically, and at some point you should be concerned about efficient
memory use. The penultimate example of memory usage is large-matrix multi-
plication:

[C] = [A] × [B] , (11.9)

ci j =
N∑
k=1

aik × bk j . (11.10)

Listing 11.14 BAD f90 (max stride), GOOD Python/C (min stride).

f o r i = 1 , N; { / / Row
f o r j = 1 , N; { / / Column

c (i , j) = 0 .0 / / I n i t i a l i z e
f o r k = 1 , N; {

c (i , j) = c (i , j) + a (i , k) *b (k , j) } } } / / Accumulate

This involves all the concerns with different kinds of memory. The natural way to
code (11.9) follows from the definition of matrix multiplication (11.10), that is, as
a sum over a row ofA times a column ofB. Try out the two codes in Listings 11.14
and 11.15 on your computer. In Fortran, the first code uses matrix B with stride
1, but matrix Cwith stride N . This is corrected in the second code by performing
the initialization in another loop. In Python and C, the problems are reversed. On
one of our machines, we found a factor of 100 difference in CPU times despite the
fact that the number of operations is the same!

266 11 Applied HPC:Optimization, Tuning, andGPU Programming

Listing 11.15 GOOD f90 (min stride), BAD Python/C (max stride).

f o r j = 1 , N; { / / I n i t i a l i z a t i o n
f o r i = 1 , N; {

c (i , j) = 0 .0 }
f o r k = 1 , N; {

f o r i = 1 , N; { c (i , j) = c (i , j) + a (i , k) *b (k , j) } } }

11.5
Graphical Processing Units for High Performance Computing

In Section 10.16, we discussed how the trend toward exascale computing ap-
pears to be one using multinode-multicore-GPU computers, as illustrated in Fig-
ure 10.14. The GPU component in this figure extends a supercomputer’s archi-
tecture beyond that of computers such as IBM Blue Gene. The GPUs in these
future supercomputers are electronic devices designed to accelerate the creation
of visual images. AGPU’s efficiency arises from its ability to create many different
parts of an image in parallel, an important ability because there are millions of
pixels to display simultaneously. Indeed, these units can process 100s of millions
of polygons in a second. BecauseGPUs are designed to assist the video processing
on commodity devices such as personal computers, game machines, and mobile
phones, they have become inexpensive, high performance, parallel computers in
their own right. Yet becauseGPUs are designed to assist in video processing, their
architecture and their programming are different from that of the general purpose
CPUs usually used for scientific applications, and it takes some work to use them
for scientific computing.
Programming of GPUs requires specialized tools specific to the GPU architec-

ture being used, and while we do discuss them in Section 11.6.2, their low-level
details places it beyond the normal level of this book. What is often called “com-
pute unified device architecture (CUDA) programming” refers to programming
for the architecture developed by theNvidia corporation, and is probably themost
popular approach to GPU programming at present (Zeller, 2008). However, some
of the complications are being reduced via extensions and wrappers developed
for popular programming languages such as C, Fortran, Python, Java, and Perl.
However, the general principles involved are just an extension of those used al-
ready discussed, and after we have you work through some examples of those
general principles, in Section 11.6 we give some practical tips for programming
multinode-multicore-GPU computers.
In Chapter 10, we discussed some high-level aspects regarding parallel comput-

ing. In this section, we discuss some practical tips for multicore, GPU Program-
ming. In the next section, we provide some actual examples of GPUprogramming
using Nvidia’sCUDA language, with access to it fromwithin Python programs via
the use of PyCUDA (Klöckner, 2014). But do not think this is nothing more than
adding in another package to Python. That section is marked as optional because
using CUDA goes beyond the usual level of this text, and because, in our expe-

26711.6 Practical Tips for Multicore and GPU Programming⊙

rience, it can be difficult for a regular scientist to get CUDA running on their
personal computer without help. As is too often the case with parallel computing,
one does have to get one’s hands dirty with lower level commands. Our presenta-
tion should give the reader some general understanding of CUDA. To read more
on the subject, we recommend the CUDA tutorial (Zeller, 2008), as well as (Kirk
and Wen-Mei, 2013; Sanders and Kandrot, 2011; Faber, 2010).

11.5.1
The GPU Card

GPUs are hardware components that are designed to accelerate the storage, ma-
nipulation, and display of visual images. GPUs tend to have more core chips
and more arithmetic data processing units than do multicore central processing
units (CPUs), and so are essentially fast, but limited, parallel computers. Because
GPUs have become commodity items on most PCs (think gaming), they hold
the promise of being a high powered, yet inexpensive, parallel computing envi-
ronment. At present an increasing number of scientific applications are being
adapted to GPUs, with the CPU being used for the sequential part of a program
and the GPU for the parallel part.
Themost popular GPU programming language is CUDA. CUDA is both a plat-

form and a programmingmodel created byNvidia for parallel computing on their
GPU. The model defines:

1. threads, clocks, and grids,
2. a memory system with registers, local, shared and global memories, and
3. an execution environment with scheduling of threads and blocks of threads.

Figure 11.3 shows a schematic of a typical Nvidia card containing four streaming
multiprocessors (SMs), each with eight streaming processors (SPs), two special
function units (SFUs), and 16 kB of shared memory. The SFUs are used for the
evaluation of the, otherwise, time-consuming transcendental functions such as
sin, cosine, reciprocal, and square root. Each group of dual SMs form a texture
processing cluster (TPC) that is used for pixel shading or general-purpose graph-
ical processing. Also represented in the figure is the transfer of data among the
three types ofmemory structures on theGPUand those on the host (Figure 11.3a).
Having memory on the chip is much faster than accessing remote memory struc-
tures.

11.6
Practical Tips for Multicore and GPU Programming ⊙

We have already described some basic elements of exascale computing in Sec-
tion 10.16. Some practical tips for programming multinode-multicore-GPU com-
puters follow along the same lines as we have been discussing, but with an even

268 11 Applied HPC:Optimization, Tuning, andGPU Programming

(a) (b)

Figure 11.3 A schematic of a GPU (b) and its interactions with a CPU (a). The GPU is seen to
have streaming multiprocessors, special function units and several levels of memory. Also
shown is the communication betweenmemory levels and with the host CPU.

greater emphasis on minimizing communication costs.2) Contrary to the tradi-
tional view on optimization, this means that the “faster” of two algorithms may
be the one that takes more steps, but requires less communications. Because the
effort in programming the GPU directly can be quite high, many application pro-
grammers prefer to let compiler extensions and wrappers deal with the GPU. But
if you must, here is how.
Exascale computers and computing are expected to be “disruptive technologies”

in that they lead to drastic changes frompreviousmodels for computers and com-
puting. This is in contrast to themore evolving technology of continually increas-
ing the clock speed of the CPU, which was the practice until the power consump-
tion and associated heat production imposed a roadblock.Accordingly, we should
expect that software and algorithms will be changing (and we will have to rewrite
our applications), much as it did when supercomputers changed from large vec-
tormachineswith proprietaryCPUs to cluster computers using commodity CPUs
and message passing. Here are some of the major points to consider:

Exacascale data movement is expensive The time for a floating-point opera-
tion and for a data transfer can be similar, although if the transfer is not local,
as Figures 10.13 and 10.14 show happens quite often, then communication
will be the rate-limiting step.

Exacascale flops are cheap and abundant GPUs and local multicore chips
provide many, very fast flops for us to use, and we can expect even more
of these elements to be included in future computers. So do not worry about
flops as much as communication.

Synchronization-reducing algorithms are essential Having many processors
stop in order to synchronize with each other, while essential in ensuring that

2) Much of the material in this section comes from talks by John Dongarra (Dongarra, 2011).

26911.6 Practical Tips for Multicore and GPU Programming⊙

the proper calculation is being performed, can slow down processing to a halt
(literally). It is better to find or derive an algorithm that reduces the need for
synchronization.

Break the fork-join model This model for parallel computing takes a queue of
incoming jobs, divides them into subjobs for service on a variety of servers,
and then combines them to produce the final result. Clearly, this type ofmodel
can lead to completed subjobs on various parts of the computer thatmustwait
for other subjobs to complete before recombination. A big waste of resources.

Communication-reducing algorithms As already discussed, it is best to use
methods that lessen the need for communication among processors, even if
more flops are needed.

Use mixed precision methods Most GPUs do not have native double precision
floating-point numbers (or even full single precision) and correspondingly
slow down by a factor-of-two or more when made to perform double preci-
sion calculation, or whenmade tomove double-precision data. The preferred
approach then is to use single precision. One way to do this is to utilize the
perturbation theory in which the calculation focuses on the small (single pre-
cision) correction to a known, or separately calculated, large (double preci-
sion) basic solution. The rule-of-thumb then is to use the lowest precision
required to achieve the required accuracy.

Push for and use autotuning The computer manufactures have advanced the
hardware to incredible speeds, but have not produced concordant advances
in the software that scientists need to utilize in order to make good use of
these machines. It often takes years for people to rewrite a large program
for these new machines, and that is a tremendous investment that not many
scientists can afford.We need smarter software to deal with such complicated
machines, and tools that permit us to optimize experimentally our programs
for these machines.

Fault resilient algorithms Computers containing millions or billions of com-
ponents do make mistakes at times. It does not make sense to have to start a
calculation over, or hold a calculation up, when some minor failure such as a
bit flip occurs. The algorithms should be able to recover from these types of
failures.

Reproducibility of results Science is at its heart the search for scientific truth,
and there should be only one answer when solving a problemwhose solution
is mathematically unique. However, approximations in the name of speed are
sometimes made and this can lead to results whose exact reproducibility can-
not be guaranteed. (Of course exact reproducibility is not to be expected for
Monte Carlo calculations involving chance.)

Data layout is critical As we discussed with Figures 10.3, 11.2, and 11.4, much
of HPC deals with matrices and their arrangements in memory. With par-
allel computing, we must arrange the data into tiles such that each data tile
is contiguous in memory. Then, the tiles can be processed in a fine-grained
computation. As we have seen in the exercises, the best size for the tiles de-
pends upon the size of the caches being used, and these are generally small.

270 11 Applied HPC:Optimization, Tuning, andGPU Programming

Figure 11.4 A schematic of how the contiguous elements of a matrix must be tiled for parallel
processing (from Dongarra, 2011).

11.6.1
CUDA Memory Usage

CUDA commands are extensions of the C programming language and are used to
control the interaction between the GPU’s components. CUDA supports several
data types such as dim2, dim3, and 2D textures, for 2D, 3D, and 2D shaded ob-
jects, respectively. PyCUDA (Klöckner, 2014), in turn, provides access to CUDA
from Python programs as well as providing some additional extensions of C. Key
concepts when programming with CUDA are following:

Kernel A part or parts of a program that are executed in parallel by the GPU
using threads. The kernel is called from the host and executed on the device
(another term for the GPU).

Thread The basic element of data to be processed on the GPU. Sometimes de-
fined as an execution of a kernel with a given index, or the abstraction of a
function call acting on data. The numbers of threads that are able to run con-
currently on a GPU depends upon the specific hardware being used.

Index All threads see the same kernel, but each kernel is executed with a differ-
ent parameter or subscript, called an index.

As a working example, consider the summation of the arrays a and b by a kernel
with the result assigned to the array c:

ci = ai + bi . (11.11)

If these were calculated using a sequential programming model, then we might
use a for loop to sum over the index i. However, this is not necessary in CUDA
where each thread sees the same kernel, but there is a different ID assigned to
each thread. Accordingly, one thread associated with an ID would see

c0 = a0 + b0 , (11.12)

27111.6 Practical Tips for Multicore and GPU Programming⊙

while another thread assigned to a different ID might see

c1 = a1 + b1 , (11.13)

and so forth. In this way, the summation is performed in parallel by the GPU. You
can think of this model as analogous to an orchestra in which all violins plays the
same partwith the conductor setting the timing (the clock cycles in the computer).
Each violinist has the same sheet music (the kernel) yet plays his/her own violin
(the threads).
As we have already seen in Figure 11.3, CUDA’s GPU architecture contains scal-

able arrays of multithreaded SMs. Each SM contains eight SPs, also called CUDA
cores, and these are the parts of the GPU that run the kernels. The SPs are exe-
cution cores like CPUs, but simpler. They typically can performmore operations
in a clock cycle than the CPU, and being dedicated just to data processing, con-
stitute the arithmetic logic units of the GPU. The speed of dedicated SMs, along
with their working in parallel, leads to the significant processing power of GPUs,
even when compared to a multicore CPU computer.
In the CUDA approach, the threads are assigned in blocks that can accommo-

date fromone to thousands of threads. For example, theCUDAGeForceGT540M
can handle 1024 threads per block, and has 96 cores. As we have said, each thread
runs the same program, which make this a single program multiple data com-
puter. The threads of a block are partitioned into warps (set of lengthwise yarns
in weaving), with each warp containing 32 threads. The blocks can be 1D, 2D, or
3D, and are organized into grids. The grids, in turn, can be 1D or 2D.
When a grid is created or launched, the blocks are assigned to the SMs in an

arbitrary order, with each block partitioned into warps, and each thread going to
a different streaming processor. If more blocks are assigned to an SM than it can
process at once, the excess blocks are scheduled for a later time. For example, the
GT200 architecture can process 8 blocks or 1024 threads per SM, and contain 30
SMs. This means that the 8× 30 = 240 CUDA cores (SPs) can process 30× 1024=
30 720 threads in parallel. Compare that to a 16 core CPU!

11.6.2
CUDA Programming ⊙

The installation of CUDA development tools follows a number of steps:

1. Establish that the video card on your system has a GPU with Nvidia CUDA.
Just having an Nvidia card might not do because not all Nvidia cards have a
CUDA architecture.

2. Verify that your operating system can support CUDA and PyCuda (Linux
seems to be the preferred system).

3. On Linux, verify that your system has gcc installed. On Windows, you will
need the Microsoft Visual Studio compiler.

4. Download the Nvidia CUDA Toolkit.
5. Install the Nvidia CUDA Toolkit.

272 11 Applied HPC:Optimization, Tuning, andGPU Programming

6. Test that the installed software runs and can communicate with the CPU.
7. Establish that your Python environment contains PyCuda. If not, install it.

Let us now return to our problemof summing two arrays and storing the result,
a[i]+b[i]=c[i]. The steps needed to solve this problem using a host (CPU) and a
device (GPU) are:

1. Declare single precision arrays in the host and initialize the arrays.
2. Reserve space in the device memory to accommodate the arrays.
3. Transfer the arrays from the host to the device.
4. Define a kernel on the host to sum the arrays, with the execution of the kernel

to be performed on the device.
5. Perform the sum on the device, transfer the result to the host and print it out.
6. Finally, free up the memory space on the device.

Listing 11.16 The PyCUDA program SumArraysCuda.py uses the GPU to do the array sum a +
b = c.

1# SumArraysCuda . py : sums arrays a + b = c

3import pycuda . a u t o i n i t
import pycuda . d r i v e r as drv

5import numpy
from pycuda . compiler import SourceModule

7
The kernel in C

9mod = SourceModule ("""
__global__ void sum_ab(f l o a t *c , f l o a t *a , f l o a t *b)

11{ const in t i = threadIdx . x ;
c [i] = a [i] + b [i] ; }

13""")
sum_ab = mod . ge t _ func t ion ("sum_ab")

15N = 32
a = numpy . a r ray (range (N)) . a s t ype (numpy . f l o a t 3 2)

17b = numpy . a r ray (range (N)) . a s t ype (numpy . f l o a t 3 2)
f o r i in range (0 , N) :

19a [i] = 2 . 0 * i
b [i] = 1 . 0 * i

21c = numpy . z e r o s _ l i k e (a) # i n t i a l i z e c
a_dev = drv . mem_alloc (a . nbytes) # reserve memory in device

23b_dev = drv . mem_alloc (b . nbytes)
c_dev = drv . mem_alloc (c . nbytes)

25drv . memcpy_htod (a_dev , a) # copy a to device
drv . memcpy_htod (b_dev , b) # copy b to device

27sum_ab (c_dev , a_dev , b_dev , b lock =(32 ,1 ,1) , g r id =(1 ,1))
pr in t ("a " + \n + a + \n + "b"+ \n + b)

29drv . memcpy_dtoh (c , c_dev) # copy c from device
pr in t (" c " +\n + c)

Listing 11.16 presents a PyCUDA program SummArraysCuda.py that performs
our array summation on the GPU. The program is seen to start on line 3 with the
import pycuda.autoinit command that initializes CUDA to accept the kernel. Line
4, import pycuda.driver as drv, is needed for Pycuda to be able to find the available
GPU. Line 7, from pycuda.compiler import SourceModule prepares the Nvidia kernel
compiler nvcc. The SourceModule, which nvcc compiles, is given in CUDA C on
lines 10–14.

27311.6 Practical Tips for Multicore and GPU Programming⊙

As indicated before, even though we are summing indexed arrays, there is no
explicit for loop running over an index i. This is because CUDA and the hardware
know about arrays and so take care of the indices automatically. This works by
having all threads seeing the same kernel, and also by having each thread process
a different value of i. Specifically, notice the command const int i = threadIdx.x
on line 11 in the source module. The suffix .x indicates that we have a one di-
mensional collections of threads. If we had a 2D or 3D collection, you would also
need to include threadIdx.y and threadIdx.z commands. Also notice in this same
SourceModule the prefix __global__ on line 11. This indicates that the execution
of the following summation is to be spread among the processors on the device.
In contrast to Python, where arrays are double precision floating-point num-

bers, in CUDA arrays are single precision. Accordingly, on lines 17 and 18 of List-
ing 11.16, we specify the type of arrays with the command

a = numpy.array(range(N)).astype(numpy.float32) .

The prefix numpy indicates where the array data type is defined, while the suffix
indicates that the array is single precision (32 bits). Next on lines 22–24 are the
drv.mem_alloc(a.nbytes) statements needed to reserve memory on the device for
the arrays. With a already defined, a.nbytes translates into the number of bytes in
the array. After that, the drv.memcp_htod() commands are used to copy a and b
to the device. The sum is performed with the sum_ab() command, and then the
result is sent back to the host for printing.
Several of these steps can be compressed by using some PyCUDA-specific com-

mands. Specifically, the memory allocation, the performance of the summation
and the transmission of the results on lines 22–28 can be replaced by the state-
ments

sum_ab (
drv . Out (c) , drv . In (a) , drv . In (b) ,
b lock=(N, 1 , 1) , g r id =(1 ,1)) # a , b sent to device , c to host

with the rest of the program remaining the same. The statement grid=(1,1) de-
scribes the dimension of the grid in blocks as 1 in x and 1 in y, which is the same
as saying that the grid is composed of one block. The block(N,1,1) command indi-
cates that there are N (= 32) threads, with the 1,1 indicating that the threads are
only in the x direction.

Listing 11.17 The PyCUDA program SumArraysCuda2.py uses the GPU to do the array sum
a + b = c, using four blocks with a (4,1) grid.

1# SumArraysCuda2 . py : sums arrays a + b = c using a d i f fe rent block
structure

import pycuda . a u t o i n i t
3import pycuda . d r i v e r as drv

import numpy
5from pycuda . compiler import SourceModule

7# kernel in C language
mod = SourceModule ("""

9__global__ void sum_ab(f l o a t *c , f l o a t *a , f l o a t *b)

274 11 Applied HPC:Optimization, Tuning, andGPU Programming

Figure 11.5 (a) A 1 × 1 grid with a 1D block containing 32 threads, and the corresponding
threadIdx.x that goes from 0 to 31. (b) A 1D 4 × 1 grid, that has 4 blocks with 8 threads each.

{ const in t i = threadIdx . x+blockDim . x* blockIdx . x ;
11c [i] = a [i] + b [i] ;

}
13""")

15sum_ab = mod . ge t _ func t ion ("sum_ab")
N=32

17a = numpy . a r ray (range (N)) . a s t ype (numpy . f l o a t 3 2)
b = numpy . a r ray (range (N)) . a s t ype (numpy . f l o a t 3 2)

19f o r i in range (0 ,N) :
a [i] = 2 . 0 * i # ass ign a

21b [i] = 1 . 0 * i # ass ign b
c = numpy . z e r o s _ l i k e (a) # sum on device

23sum_ab (drv . Out (c) , drv . In (a) , drv . In (b) , b lock =(8 , 1 , 1) , g r id =(4 ,1))
pr in t ("a " + \n + a + \n+ "b" + \n + " c " + \n + c)

Our example is so simple that we have organized it into just a single 1D block
of 32 threads in a 1 × 1 grid (Figure 11.5a). However, in more complicated prob-
lems, it often makes sense to distribute the threads over a number of differ-
ent block, with each block performing a different operation. For example, the
program SumArraysCuda2.py in Listing 11.17 performs the same sum with the
four-block structure illustrated in Figure 11.5b. The difference in the program
here is the statement on line 23, block=(8,1,1), grid=(4,1) that specifies a grid
of four blocks in 1D x, with each 1D block having eight threads. To use this
structure of the program, on line 10 we have the command const int i = threa-
dIdx.x+blockDim.x*blockIdx.x;. Here blockDim.x is the dimension of each block in
threads (8 in this case numbered 0, 1,. . . ,7), with blockIdx.x indicating the block
numbering. The threads in each block have treadIdx.x from 0 to 7 and the corre-
sponding IDs of the blocks are blockIdx.x = 0, 1, 2, and 3.

275

12
Fourier Analysis: Signals and Filters

We start this chapter with a discussion of Fourier series and Fourier transforms, the
standard tools for decomposing periodic and nonperiodic motions, respectively.
We find that, as implemented for numerical computation, both the series and the
transform become the same discrete Fourier transform (DFT) algorithm, which has
abeautiful simplicity in its realization as aprogram.We then showhowFourier tools
can be used to reduce noise in measured or simulated signals. We end the chapter
with a discussion of the fast Fourier transform (FFT), a technique so efficient that it
permits nearly instantaneous evaluations of DFTs on various devices.

12.1
Fourier Analysis of Nonlinear Oscillations

Consider a particle oscillating either in the nonharmonic potential of (8.5):

V (x) = 1
p
k|x|p , p ≠ 2 , (12.1)

or in the perturbed harmonic oscillator potential (8.2),

V (x) = 1
2
kx2

(
1 − 2

3
αx

)
. (12.2)

While free oscillations in these potentials are always periodic, they are not sinu-
soidal. Your problem is to take the solution of one of these nonlinear oscillators
and expand it in a Fourier basis:

x(t) = A0 sin(ωt + φ0) . (12.3)

For example, if your oscillator is sufficiently nonlinear to behave like the sawtooth
function (Figure 12.1a), then the Fourier spectrum you obtain should be similar
to that shown in Figure 12.1b.
In general, when we undertake such a spectral analysis we want to analyze the

steady-state behavior of a system. This means that we have waited for the initial

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

276 12 Fourier Analysis: Signals and Filters

t

-1

0

1

0 20
–1

0

1

y
(t

)

y
(ω

)

ω(a) (b)

Figure 12.1 (a) A sawtooth function that repeats infinitely in time. (b) The Fourier spectrum of
frequencies contained in this function (natural units). Also see Figure 1.9 in which we show the
result of summing a finite number of terms of this series.

transient behavior to die out. It is easy to identify just what the initial transient is
for linear systems, but may be less so for nonlinear systems in which the “steady
state” jumps among a number of configurations. In the latter case, we would have
different Fourier spectra at different times.

12.2
Fourier Series (Math)

Part of our interest in nonlinear oscillations arises from their lack of study in tra-
ditional physics courses where linear oscillations, despite the fact that they are
just a first approximation, are most often studied. If the force on a particle is al-
ways toward its equilibriumposition (a restoring force), then the resultingmotion
will be periodic, but not necessarily harmonic. A good example is the motion in a
highly anharmonic potential with p ≃ 10 in (12.1) that produces an x(t) looking
like a series of pyramids; this motion is periodic but not harmonic.
In a sense, our approach is the inverse of the traditional one in which the funda-

mental oscillation is determined analytically and the higher frequency overtones
are determined by perturbation theory (Landau and Lifshitz, 1976).We start with
the full (numerical) periodic solution and then decompose it into what may be
called harmonics. When we speak of fundamentals, overtones, and harmonics,
we speak of solutions to the linear boundary-value problem, for example, of waves
on a plucked violin string. In the latter case, and when given the correct condi-
tions (enough musical skill), it is possible to excite individual harmonics or sums
of them in the series

y(t) = b0 sinω0t + b1 sin 2ω0t +⋯ . (12.4)

Anharmonic oscillators vibrate at a single frequency (whichmay vary with ampli-
tude) but not with a sinusoidal waveform. Although it is mathematically proper
to expand nonlinear oscillations in a Fourier series, this does not imply that the
individual harmonics can be excited (played).

27712.2 Fourier Series (Math)

Youmay recall from classicalmechanics that the general solution for a vibrating
system can be expressed as the sum of the normal modes of that system. These
expansions are possible only if we have linear operators and, subsequently, the
principle of superposition: If y1(t) and y2(t) are solutions of some linear equation,
then α1 y1(t)+α2 y2(t) is also a solution. The principle of linear superposition does
not hold when we solve nonlinear problems. Nevertheless, it is always possible
to expand a periodic solution of a nonlinear problem in terms of trigonometric
functions with frequencies that are integer multiples of the true frequency of the
nonlinear oscillator.1) This is a consequence of Fourier’s theorem being applicable
to any single-valued periodic functionwith only a finite number of discontinuities.
We assume we know the period T , that is,

y(t + T) = y(t) . (12.5)

This tells us the true frequency ω:

ω ≡ ω1 =
2π
T

. (12.6)

A periodic function (usually designated as the signal) can be expanded as a series
of harmonic functions with frequencies that are multiples of the true frequency:

y(t) =
a0
2

+
∞∑
n=1

(an cos nωt + bn sin nωt) . (12.7)

This equation represents the signal y(t) as the simultaneous sum of pure tones
of frequency nω. The coefficients an and bn measure the amount of cos nωt
and sin nωt present in y(t), respectively. The intensity or power at each frequency
is proportional to a2n + b2n .
The Fourier series (12.7) is a “best fit” in the least-squares sense of Chapter 7,

because it minimizes
∑

i[y(ti) − yi]2, where i denotes different measurements of
the signal. This means that the series converges to the average behavior of the
function, but misses the function at discontinuities (at which points it converges
to the mean) or at sharp corners (where it overshoots). A general function y(t)
may contain an infinite number of Fourier components, although low-accuracy
reproduction is usually possible with a small number of harmonics.
The coefficients an and bn in (12.7) are determined by the standard techniques

for orthogonal function expansion. To find the coefficients, multiply both sides
of (12.7) by cos nωt or sin nωt, integrate over one period, and project a single an
or bn : (

an

bn

)
= 2

T

T

∫
0

dt
(
cos nωt
sin nωt

)
y(t) , ω

def
= 2π

T
. (12.8)

1) We remind the reader that every periodic system by definition has a period T and consequently
a true frequency ω. Nonetheless, this does not imply that the system behaves like sin ωt. Only
harmonic oscillators do that.

278 12 Fourier Analysis: Signals and Filters

As seen in the bn coefficients (Figure 12.1b), these coefficients usually decrease
in magnitude as the frequency increases, and can enter with a negative sign, the
negative sign indicating the relative phase.
Awareness of the symmetry of the function y(t)may eliminate the need to eval-

uate all the expansion coefficients. For example,

∙ a0 is twice the average value of y:

a0 = 2 ⟨y(t)⟩ . (12.9)

∙ For an odd function, that is, one forwhich y(−t) = −y(t), all an coefficients≡ 0,
and only half of the integration range is needed to determine bn :

bn = 4
T

T∕2

∫
0

dt y(t) sin nωt . (12.10)

However, if there is no input signal for t < 0, we do not have a truly odd func-
tion, and so small values of an may occur.

∙ For an even function, that is, one for which y(−t) = y(t), all bn coefficient ≡ 0,
and only half the integration range is needed to determine an :

an = 4
T

T∕2

∫
0

dt y(t) cos nωt . (12.11)

12.2.1
Examples: Sawtooth and Half-Wave Functions

The sawtooth function (Figure 12.1) is described mathematically as

y(t) =

{ t
T∕2

, for 0 ≤ t ≤ T
2
,

t−T
T∕2

, for T
2
≤ t ≤ T .

(12.12)

It is clearly periodic, nonharmonic, and discontinuous. Yet it is also odd and so
can be represented more simply by shifting the signal to the left:

y(t) = t
T∕2

, −T
2

≤ t ≤ T
2

. (12.13)

Although the general shape of this function can be reproduced with only a few
terms of the Fourier components, many components are needed to reproduce
the sharp corners. Because the function is odd, the Fourier series is a sine series
and (12.8) determines the bn values:

bn = 2
T

+T∕2

∫
−T∕2

dt sin nωt t
T∕2

= 2
nπ

(−1)n+1 , (12.14)

27911.4 Fourier Transforms (Theory)

⇒ y(t) = 2
π

[
sinωt − 1

2
sin 2ωt + 1

3
sin 3ωt −⋯

]
. (12.15)

The half-wave function

y(t) =

{
sinωt , for 0 < t < T

2
,

0, for T
2
< t < T ,

(12.16)

is periodic, nonharmonic (the upper half of a sine wave), and continuous, but with
discontinuous derivatives. Because it lacks the sharp corners of the sawtooth func-
tion, it is easier to reproduce with a finite Fourier series. Equation 12.8 determines

an =

{ −2
π(n2−1)

, n even or 0 ,
0, n odd ,

bn =

{
1
2
, n = 1 ,

0, n ≠ 1 ,

⇒ y(t) = 1
2
sinωt + 1

π
− 2

3π
cos 2ωt − 2

15π
cos 4ωt +… (12.17)

12.3
Exercise: Summation of Fourier Series

Hint: The program FourierMatplot.py written by Oscar Restrepo performs a
Fourier analysis of a sawtooth function and produces the visualization shown in
Figure 1.9b. You may want to use this program to help with this exercise.

1. Sawtooth function: Sum the Fourier series for the sawtooth function up to or-
der n = 2, 4, 10, 20, and plot the results over two periods.
a) Check that in each case, the series gives the mean value of the function at

the points of discontinuity.
b) Check that in each case the series overshoots by about 9% the value of the

function on either side of the discontinuity (the Gibbs phenomenon).
2. Half-wave function: Sum the Fourier series for the half-wave function up to or-

der n = 2, 4, 10, 50 and plot the results over two periods. (The series converges
quite well, doesn’t it?)

12.4
Fourier Transforms (Theory)

Although a Fourier series is the right tool for approximating or analyzing peri-
odic functions, the Fourier transform or integral is the right tool for nonperiodic
functions. We convert from series to transform by imagining a system described
by a continuum of “fundamental” frequencies. We thereby deal with wave pack-
ets containing continuous rather than discrete frequencies.2) While the difference

2) We follow convention and consider time t the function’s variable and frequency ω the
transform’s variable. Nonetheless, these can be reversed or other variables such as position x
and wave vector k may also be used.

280 12 Fourier Analysis: Signals and Filters

between series and transform methods may appear clear mathematically, when
we approximate the Fourier integral as a finite sum, the two become equivalent.
By analogy with (12.7), we now imagine our function or signal y(t) expressed

in terms of a continuous series of harmonics (inverse Fourier transform):

y(t) =
+∞

∫
−∞

dωY (ω) eiωt√
2π

, (12.18)

where for compactness we use a complex exponential function.3) The expansion
amplitude Y (ω) is analogous to the Fourier coefficients (an , bn), and is called the
Fourier transform of y(t). The integral (12.18) is the inverse transform because
it converts the transform to the signal. The Fourier transform converts the sig-
nal y(t) to its transform Y (ω):

Y (ω) =
+∞

∫
−∞

dt e
−iωt√
2π

y(t) . (12.19)

The 1∕
√
2π factor in both these integrals is a common normalization in quantum

mechanics, but maybe not in engineering where only a single 1∕2π factor is used.
Likewise, the signs in the exponents are also conventions that do not matter as
long as you maintain consistency.
If y(t) is the measured response of a system (signal) as a function of time,

then Y (ω) is the spectral function that measures the amount of frequency ω
present in the signal. In many cases, it turns out that Y (ω) is a complex function
with both positive and negative values, and with powers-of-ten variation in mag-
nitude. Accordingly, it is customary to eliminate some of the complexity of Y (ω)
by making a semilog plot of the squared modulus |Y (ω)|2 vs. ω. This is called
a power spectrum and provides an immediate view of the amount of power or
strength in each component.
If the Fourier transformand its inverse are consistentwith each other, we should

be able to substitute (12.18) into (12.19) and obtain an identity:

Y (ω) =
+∞

∫
−∞

dt e
−iωt√
2π

+∞

∫
−∞

dω′ eiω
′t√
2π

Y (ω′) (12.20)

=
+∞

∫
−∞

dω′

⎧⎪⎨⎪⎩
+∞

∫
−∞

dt e
i(ω′−ω)t

2π

⎫⎪⎬⎪⎭ Y (ω′) . (12.21)

3) Recall that exp(iωt) = cos ωt + i sin ωt, and with the law of linear superposition this means that
the real part of y gives the cosine series, and the imaginary part the sine series.

28112.5 The Discrete Fourier Transform

For this to be an identity, the term in braces must be the Dirac delta function:
+∞

∫
−∞

dtei(ω′−ω)t = 2πδ(ω′ − ω) . (12.22)

While the delta function is one of the most common and useful functions in the-
oretical physics, it is not well behaved in a mathematical sense and misbehaves
terribly in a computational sense. While it is possible to create numerical approx-
imations to δ(ω′ − ω), they may well be borderline pathological. It is certainly
better for you to do the delta function part of an integration analytically and leave
the nonsingular leftovers to the computer.

12.5
The Discrete Fourier Transform

If y(t) or Y (ω) is known analytically or numerically, integrals (12.18) and (12.19)
can be evaluated using the integration techniques studied earlier. In practice, the
signal y(t) is measured at just a finite number N of times t, and these are all we
have as input to approximate the transform. The resultant discrete Fourier trans-
form is an approximation both because the signal is not known for all times, and
because we must integrate numerically (Briggs and Henson, 1995). Once we have
a discrete set of (approximate) transform values, they can be used to reconstruct
the signal for any value of the time. In this way, the DFT can be thought of as a
technique for interpolating, compressing, and extrapolating the signal.
We assume that the signal y(t) is sampled at (N + 1) discrete times (N time

intervals), with a constant spacing Δt = h between times:

yk
def
= y(tk) , k = 0, 1, 2,… ,N , (12.23)

tk
def
= kh , h = Δt . (12.24)

In other words, we measure the signal y(t) once every hth of a second for a total
time of T . This correspondingly define the signal’s period T and the sampling
rate s:

T
def
=Nh , s = N

T
= 1

h
. (12.25)

Regardless of the true periodicity of the signal, when we choose a period T over
which to sample the signal, the mathematics will inevitably produce a y(t) that is
periodic with period T ,

y(t + T) = y(t) . (12.26)

We recognize this periodicity, and ensure that there are onlyN independentmea-
surements used in the transform, by defining the first and last y’s to be equal:

y0 = yN . (12.27)

282 12 Fourier Analysis: Signals and Filters

If we are analyzing a truly periodic function, then the N points should span one
complete period, but not more. This guarantees their independence. Unless we
make further assumptions, the N independent data y(tk) can determine no more
than N independent transform values Y (ωk), k = 0,… ,N .
The time interval T (which should be the period for periodic functions) is the

largest time over which we measure the variation of y(t). Consequently, it deter-
mines the lowest frequency contained in our Fourier representation of y(t),

ω1 =
2π
T

. (12.28)

The full range of frequencies in the spectrum ωn are determined by the number
of samples taken, and by the total sampling time T = Nh as

ωn = nω1 = n 2π
Nh

, n = 0, 1,… ,N . (12.29)

Here ω0 = 0 corresponds to the zero-frequency or DC component of the trans-
form, that is, the part of the signal that does not oscillate.
The discrete Fourier transform (DFT) algorithm follows from two approxima-

tions. First we evaluate the integral in (12.19) from time 0 to time T , over which
the signal is measured, and not from −∞ to +∞. Second, the trapezoid rule is
used for the integration4):

Y (ωn)
def
=

+∞

∫
−∞

dt e
−iωnt√
2π

y(t) ≃
T

∫
0

dt e
−iωnt√
2π

y(t) , (12.30)

≃
N∑
k=1

hy(tk)
e−iωntk√

2π
= h

N∑
k=1

yk
e−2πikn∕N√

2π
. (12.31)

To keep the final notation more symmetric, the step size h is factored from the
transform Y and a discrete function Yn is defined as

Yn
def
= 1
h
Y (ωn) =

N∑
k=1

yk
e−2πikn∕N√

2π
, n = 0, 1… ,N . (12.32)

With this same care in accounting, and with dω → 2π∕Nh, we invert the Yn ’s:

y(t)
def
=

+∞

∫
−∞

dω eiωt√
2π

Y (ω) (12.33)

⇒ y(t) ≃
N∑
n=1

2π
Nh

eiωnt√
2π

Y (ωn) . (12.34)

4) The alert reader may be wondering what has happened to the h∕2 with which the trapezoid rule
weights the initial and final points. Actually, they are there, but because we have set y0 ≡ yN ,
two h∕2 terms have been added to produce one h term.

28312.5 The Discrete Fourier Transform

Once we know the N values of the transform, we can use (12.34) to evaluate y(t)
for any time t. There is nothing illegal about evaluating Yn and yk for arbitrarily
large values of n and k, yet there is also nothing to be gained either. Because the
trigonometric functions are periodic, we just get the old answers:

y(tk+N) = y((k + N)h) = y(tk) , (12.35)

Y (ωn+N) = Y ((n + N)ω1) = Y (ωn) . (12.36)

Another way of stating this is to observe that none of the equations change if we
replace ωnt by ωnt + 2πn. There are still just N independent output numbers
for N independent inputs, and so the transform and the reconstituted signal are
periodic.
We see from (12.29) that the larger we make the time T = Nh over which we

sample the function, the smaller will be the frequency steps or resolution.5) Ac-
cordingly, if you want a smooth frequency spectrum, you need to have a small
frequency step 2π∕T , which means a longer observation time T . While the best
approach would be to measure the input signal for all times, in practice a mea-
sured signal y(t) is often extended in time (“padded”) by adding zeros for times
beyond the last measured signal, which thereby increases the value of T artifi-
cially. Although this does not add new information to the analysis, it does build
in the experimentalist’s view that the signal has no existence, or no meaning, at
times after the measurements are stopped.
While periodicity is expected for a Fourier series, it is somewhat surprising for

Fourier a integral, which have been touted as the right tool for nonperiodic func-
tions. Clearly, if we input values of the signal for longer lengths of time, then the
inherent period becomes longer, and if the repeat period T is very long, it may
be of little consequence for times short compared to the period. If y(t) is actually
periodic with period Nh, then the DFT is an excellent way of obtaining Fourier
series. If the input function is not periodic, then theDFT can be a bad approxima-
tion near the endpoints of the time interval (after which the function will repeat)
or, correspondingly, for the lowest frequencies.
The DFT and its inverse can be written in a concise and insightful way, and be

evaluated efficiently, by introducing a complex variable Z for the exponential and
then raising Z to various powers:

yk =
√
2π
N

N∑
n=1

Z−nkYn , Z = e−2πi∕N , (12.37)

Yn = 1√
2π

N∑
k=1

Znk yk , Znk ≡ [(Z)n]k . (12.38)

With this formulation, the computer needs to compute only powers of Z. We give
our DFT code in Listing 12.1. If your preference is to avoid complex numbers,

5) See also Section 12.5.1 where we discuss the related phenomenon of aliasing.

284 12 Fourier Analysis: Signals and Filters

we can rewrite (12.37) in terms of separate real and imaginary parts by applying
Euler’s theorem with θ

def
=2π∕N :

Z = e−iθ , ⇒ Z±nk = e∓inkθ = cos nkθ ∓ i sin nkθ , (12.39)

⇒ Yn = 1√
2π

N∑
k=1

[
cos(nkθ)Re yk + sin(nkθ) Im yk

+ i(cos(nkθ) Im yk − sin(nkθ)Re yk)
]
, (12.40)

yk =
√
2π
N

N∑
n=1

[
cos(nkθ)Re Yn − sin(nkθ)Im Yn

+ i(cos(nkθ)ImYn + sin(nkθ)Re Yn)
]
. (12.41)

Readers new to DFTs are often surprised when they apply these equations to
practical situations and end upwith transforms Y having imaginary parts, despite
the fact that the signal y is real. Equation 12.40 should make it clear that a real
signal (Im yk ≡ 0) will yield an imaginary transform unless

∑N
k=1 sin(nkθ)Re yk =

0. This occurs only if y(t) is an even function over−∞ ≤ t ≤ +∞ and we integrate
exactly. Because neither condition holds, the DFTs of real, even functions may
have small imaginary parts. This is not as a result of an error in programming,
and in fact is a good measure of the approximation error in the entire procedure.
The computation time for a DFT can be reduced even further by using fast

Fourier transform algorithm, as discussed in Section 12.9. An examination
of (12.37) shows that theDFT is evaluated as amatrix multiplication of a vector of
length N containing the Z values by a vector of length N of y value. The time for
this DFT scales like N2, while the time for the FFT algorithm scales as N log2 N .
Although this may not seem like much of a difference, for N = 102−3, the differ-
ence of 103−5 is the difference between a minute and a week. For this reason, it is
the FFT is often used for online spectrum analysis.

Listing 12.1 DFTcomplex.py uses the built-in complex numbers of Python to compute the
DFT for the signal in method f(signal).

DFTcomplex . py : Discrete Fourier Transform with bui l t in complex from
v isua l import * from

v i s u a l . graph import * import cmath # complex math

s i gng r = gd i sp l ay (x=0 , y=0 , width =600 , he ight =250 , t i t l e = ’ S igna l ’ , \
x t i t l e = ’x ’ , y t i t l e = ’ s i g na l ’ , xmax = 2 . * math . pi , xmin = 0 , \

ymax = 30 , ymin = 0)
s i g f i g = gcurve (co lo r=co lo r . yel low , d i s p l a y=s igngr)
imagr = gd i sp l ay (x=0 , y=250 , width =600 , he ight =250 , t i t l e = ’ Imag Fourier TF’ ,

x t i t l e = ’x ’ , y t i t l e = ’TF. Imag ’ , xmax=10 . , xmin=−1,ymax=100 ,ymin=−0.2)
impart = gvbars (d e l t a = 0 .05 , co l o r = co lo r . red , d i s p l a y = imagr)

N = 50 ; Np = N
s i gna l = zeros ((N+1) , f l o a t)
twopi = 2 . * p i ; sq2pi = 1 . / sq r t (twopi) ; h = twopi /N
d f t z = zeros ((Np) , complex) # Complex elements

28512.5 The Discrete Fourier Transform

de f f (s i g n a l) : # Signal
s tep = twopi /N; x = 0 .
f o r i in range (0 , N+1) :

s i g n a l [i] = 30* cos (x * x * x * x)
s i g f i g . p l o t (pos = (x , s i g n a l [i])) # Plot
x += step

de f f o u r i e r (d f t z) : # DFT
f o r n in range (0 , Np) :

zsum = complex (0 . 0 , 0 . 0)
f o r k in range (0 , N) :

zexpo = complex (0 , twopi * k *n /N) # Complex exponent
zsum += s i gna l [k] * exp(−zexpo)

d f t z [n] = zsum * sq2pi
i f d f t z [n] . imag != 0 :

impart . p l o t (pos = (n , d f t z [n] . imag)) # Plot

f (s i g n a l) ; f o u r i e r (d f t z) # Call s igna l , transform

12.5.1
Aliasing (Assessment)

The sampling of a signal by DFT for only a finite number of times (large Δt) lim-
its the accuracy of the deduced high-frequency components present in the signal.
Clearly, good information about very high frequencies requires sampling the sig-
nal with small time steps so that all the wiggles can be included.While a poor de-
duction of the high-frequency components may be tolerable if all we care about
are the low-frequency components, the inaccurate high-frequency components
remain present in the signal andmay contaminate the low-frequency components
that we deduce. This effect is called aliasing and is the cause of the Moiré pattern
distortion in digital images.
As an example, consider Figure 12.2 showing the two functions sin(πt∕2)

and sin(2πt) for 0 ≤ t ≤ 8, with their points of overlap in bold. If we were un-
fortunate enough to sample a signal containing these functions at the times t =
0, 2, 4, 6, 8, then we would measure y ≡ 0 and assume that there was no signal
at all. However, if we were unfortunate enough to measure the signal at the filled
dots in Figure 12.2 where sin(πt∕2) = sin(2πt), specifically, t = 0, 12∕10, 4∕3,…,
then our Fourier analysis would completely miss the high-frequency compo-
nent. In DFT jargon, we would say that the high-frequency component has been
aliased by the low-frequency component. In other cases, some high-frequency
values may be included in our sampling of the signal, but our sampling rate may
not be high enough to include enough of them to separate the high-frequency
component properly. In this case some high-frequency signals would be included
spuriously as part of the low-frequency spectrum, and this would lead to spu-
rious low-frequency oscillations when the signal is synthesized from its Fourier
components.
More precisely, aliasing occurs when a signal containing frequency f is sam-

pled at a rate of s = N∕T measurements per unit time, with s ≤ f ∕2. In this case,
the frequencies f and f − 2s yield the same DFT, and we would not be able to

286 12 Fourier Analysis: Signals and Filters

sin(2 t) sin(t/2)

–1

0

1

2 4 6

Figure 12.2 A plot of the functions sin(πt∕2)
and sin(2πt). If the sampling rate is not high
enough, these signals may appear indistin-
guishable in a Fourier decomposition. If the

sample rate is too low and if both signals
are present in a sample, the deduced low-
frequency component may be contaminated
by the higher frequency component signal.

determine that there are two frequencies present. That being the case, to avoid
aliasing we want no frequencies f > s∕2 to be present in our input signal. This is
known as theNyquist criterion. In practice, some applications avoid the effects of
aliasing by filtering out the high frequencies from the signal and then analyzing
only the remaining low-frequencypart. (The low-frequency sinc filter discussed in
Section 12.8.1 is often used for this purpose.) Although filtering eliminates some
high-frequency information, it lessens the distortion of the low-frequency com-
ponents, and so may lead to improved reproduction of the signal.
If accurate values for the high frequencies are required, then we will need to

increase the sampling rate s by increasing the number N of samples taken within
the fixed sampling time T = Nh. By keeping the sampling time constant and in-
creasing the number of samples taken, we make the time step h smaller and we
pick up the higher frequencies. By increasing the number N of frequencies and
that you compute, you move the previous higher frequency components in closer
to the middle of the spectrum, and thus away from the error-prone ends.
If we increase the total time sampling time T = Nh and keep h the same, then

the sampling rate s = N∕T = 1∕h remains the same. Because ω1 = 2π∕T , this
makes ω1 smaller, which means we have more low frequencies recorded and a
smoother frequency spectrum. And as we said, this is often carried out, after the
fact, by padding the end of the data set with zeros.

Listing 12.2 DFTreal.py computes the discrete Fourier transform for the signal in method
f(signal) using real numbers.

DFTreal . py : Discrete Fourier Transform using rea l numbers

from v i s u a l . graph import *

s i gng r = gd i sp l ay (x=0 , y=0 , width =600 , he ight =250 , \
t i t l e = ’ S igna l y(t)= 3 cos (wt)+2 cos (3wt)+ cos (5wt) ’ , \

x t i t l e = ’x ’ , y t i t l e = ’ s i g na l ’ , xmax=2 .*math . pi , xmin=0 ,ymax=7 , ymin=−7)

28712.5 The Discrete Fourier Transform

s i g f i g = gcurve (co l o r=co lo r . yel low , d i s p l a y=s igng r)
imagr = gd i sp l ay (x=0 , y=250 , width =600 , he ight =250 ,\

t i t l e = ’ Fourier transform imaginary part ’ , x t i t l e = ’x ’ , \
y t i t l e = ’ Transf . Imag ’ , xmax=10 .0 , xmin=−1,ymax=20 , ymin=−25)

impart = gvbars (d e l t a =0 .05 , co l o r=co lo r . red , d i s p l a y=imagr)

N = 200
Np = N
s i gna l = zeros ((N+1) , f l o a t)
twopi = 2 . * p i
sq2pi = 1 . / sq r t (twopi)
h = twopi /N
dftimag = zeros ((Np) , f l o a t) # Im. transform

de f f (s i g n a l) :
s tep = twopi /N
t= 0 .
f o r i in range (0 ,N+1) :

s i g n a l [i] = 3* s in (t * t * t)
s i g f i g . p l o t (pos=(t , s i g n a l [i]))
t += step

de f f o u r i e r (dft imag) : # DFT
f o r n in range (0 ,Np) :

imag = 0 .
f o r k in range (0 , N) :

imag += s i g n a l [k] * s in ((twopi * k *n) /N)
dftimag [n] = −imag * sq2pi # Im transform
i f dftimag [n] ! =0 :

impart . p l o t (pos=(n , dft imag [n]))

f (s i g n a l)
f o u r i e r (dft imag)

12.5.2
Fourier Series DFT (Example)

For simplicity, let us consider the Fourier cosine series:

y(t) =
∞∑
n=0

an cos(nωt) , ak =
2
T

T

∫
0

dt cos(kωt)y(t) . (12.42)

Here T
def
= 2π∕ω is the actual period of the system (not necessarily the period of

the simple harmonic motion occurring for a small amplitude). We assume that
the function y(t) is sampled for a discrete set of times

y(t = tk) ≡ yk , k = 0, 1,… ,N . (12.43)

Because we are analyzing a periodic function, we retain the conventions used in
the DFT and require the function to repeat itself with period T = Nh; that is, we
assume that the amplitude is the same at the first and last points:

y0 = yN . (12.44)

This means that there are onlyN independent values of y being used as input. For
these N independent yk values, we can determine uniquely only N expansion co-

288 12 Fourier Analysis: Signals and Filters

efficients ak . If we use the trapezoid rule to approximate the integration in (12.42),
we determine the N independent Fourier components as

an ≃ 2h
T

N∑
k=1

cos(nωtk)y(tk) =
2
N

N∑
k=1

cos
(
2πnk
N

)
yk , n = 0,… ,N .

(12.45)

Because we can determine only N Fourier components from N independent y(t)
values, our Fourier series for the y(t)must be in terms of only these components:

y(t) ≃
N∑
n=0

an cos(nωt) =
N∑
n=0

an cos
(2πnt

Nh

)
. (12.46)

In summary, we sample the function y(t) at N times, t1,… , tN . We see that all
the values of y sampled contribute to each ak . Consequently, if we increase N
in order to determine more coefficients, we must recompute all the an values. In
the wavelet analysis in Chapter 13, the theory is reformulated so that additional
samplings determine higher spectral components without affecting lower ones.

12.5.3
Assessments

Simple analytic input It is always good to do simple checks before examining
more complex problems, even if you are using a package’s Fourier tool.

1. Sample the even signal

y(t) = 3 cos(ωt) + 2 cos(3ωt) + cos(5ωt) . (12.47)

a) Decompose this into its components.
b) Check that the components are essentially real and in the ratio 3 : 2 : 1 (or

9 : 4 : 1 for the power spectrum).
c) Verify that the frequencies have the expected values (not just ratios).
d) Verify that the components resum to give the input signal.
e) Experiment on the separate effects of picking different values of the step

size h and of enlarging the measurement period T = Nh.
2. Sample the odd signal

y(t) = sin(ωt) + 2 sin(3ωt) + 3 sin(5ωt) . (12.48)

Decompose this into its components; then check that they are essentially
imaginary and in the ratio 1 : 2 : 3 (or 1 : 4 : 9 if a power spectrum is plotted)
and that they resum to give the input signal.

3. Sample the mixed-symmetry signal

y(t) = 5 sin(ωt) + 2 cos(3ωt) + sin(5ωt) . (12.49)

28912.5 The Discrete Fourier Transform

Decompose this into its components; then check that there are three of them
in the ratio 5 : 2 : 1 (or 25 : 4 : 1 if a power spectrum is plotted) and that they
resum to give the input signal.

4. Sample the signal

y(t) = 5 + 10 sin(t + 2) .

Compare and explain the results obtained by sampling (a) without the 5, (b)
as given but without the 2, and (c) without the 5 and without the 2.

5. In our discussion of aliasing, we examined Figure 12.2 showing the func-
tions sin(πt∕2) and sin(2πt). Sample the function

y(t) = sin
(π
2
t
)
+ sin(2πt) (12.50)

and explore how aliasing occurs. Explicitly, we know that the true transform
contains peaks at ω = π∕2 and ω = 2π. Sample the signal at a rate that leads
to aliasing, as well as at a higher sampling rate at which there is no aliasing.
Compare the resulting DFTs in each case and check if your conclusions agree
with the Nyquist criterion.

Highly nonlinear oscillator Recall the numerical solution for oscillations of a
spring with power p = 12 (see (12.1)). Decompose the solution into a Fourier
series and determine the number of higher harmonics that contribute at least
10%; for example, determine the n for which |bn∕b1| < 0.1. Check that resuming
the components reproduces the signal.

Nonlinearly perturbed oscillator Remember the harmonic oscillator with a non-
linear perturbation (8.2):

V (x) = 1
2
kx2

(
1 − 2

3
αx

)
, F(x) = −kx(1 − αx) . (12.51)

For very small amplitudes of oscillation (x ≪ 1∕α), the solution x(t) essentially
should be only the first term of a Fourier series.

1. We want the signal to contain “approximately 10% nonlinearity.” This being
the case, fix your value of α so that αxmax ≃ 10%, where xmax is the maximum
amplitude of oscillation. For the rest of the problem, keep the value of α fixed.

2. Decompose your numerical solution into a discrete Fourier spectrum.
3. Plot a graph of the percentage of importance of the first two, non-DC Fourier

components as a function of the initial displacement for 0 < x0 < 1∕2α. You
should find that higher harmonics are more important as the amplitude in-
creases. Because both even and odd components are present, Yn should be
complex. Because a 10% effect in amplitude becomes a 1% effect in power,
make sure that you make a semilog plot of the power spectrum.

4. As always, check that resumations of your transforms reproduce the signal.

(Warning: The ω you use in your series must correspond to the true frequency of
the system, not the ω0 of small oscillations.)

290 12 Fourier Analysis: Signals and Filters

12.5.4
Nonperiodic Function DFT (Exploration)

Consider a simplemodel (a wave packet) of a “localized” electronmoving through
space and time. A good model for an electron initially localized around x = 5 is a
Gaussian multiplying a plane wave:

ψ(x , t = 0) = exp

[
−1
2

(
x − 5.0
σ0

)2
]
eik0x . (12.52)

This wave packet is not an eigenstate of the momentum operator6) p = i d∕dx
and in fact contains a spread of momenta. Your problem is to evaluate the Fourier
transform

ψ(p) =
+∞

∫
−∞

dx eipx√
2π

ψ(x) , (12.53)

as a way of determining the momenta components in (12.52).

12.6
Filtering Noisy Signals

You measure a signal y(t) that obviously contains noise. Your problem is to de-
termine the frequencies that would be present in the spectrum of the signal if the
signal did not contain noise. Of course, once you have a Fourier transform from
which the noise has been removed, you can transform it to obtain a signal s(t)
with no noise.
In the process of solving this problem, we examine two simple approaches: the

use of autocorrelation functions and the use of filters. Both approaches find wide
applications in science, with our discussion not doing the subjects justice. We will
see filters again in the discussion of wavelets in Chapter 13.

12.7
Noise Reduction via Autocorrelation (Theory)

We assume that the measured signal is the sum of the true signal s(t), which we
wish to determine, plus some unwelcome noise n(t):

y(t) = s(t) + n(t) . (12.54)

Our first approach at removing the noise relies on that fact that noise is a ran-
dom process and thus should not be correlated with the signal. Yet what do we

6) We use natural units in which ℏ = 1.

29112.7 Noise Reduction via Autocorrelation (Theory)

mean when we say that two functions are not correlated? Well, if the two tend to
oscillate with their nodes and peaks in much the same places, then the two func-
tions are clearly correlated. An analyticmeasure of the correlation of two arbitrary
functions y(t) and x(t) is the correlation function

c(τ) =
+∞

∫
−∞

dt y∗(t)x(t + τ) ≡
+∞

∫
−∞

dt y∗(t − τ)x(t) , (12.55)

where τ, the lag time, is a variable. Even if the two signals have different mag-
nitudes, if they have similar time dependences except for one lagging or leading
the other, then for certain values of τ the integrand in (12.55) will be positive for
all values of t. For those values of τ, the two signals interfere constructively and
produce a large value for the correlation function. In contrast, if both functions
oscillate independently regardless of the value of τ, then it is just as likely for the
integrand to be positive as to be negative, in which case the two signals interfere
destructively and produce a small value for the integral.
Before we apply the correlation function to our problem, let us study some of

its properties. We use (12.18) to express c, y∗, and x in terms of their Fourier
transforms:

c(τ) =
+∞

∫
−∞

dω′′C(ω′′) e
iω′′ t√
2π

, y∗(t) =
+∞

∫
−∞

dωY ∗(ω) e
−iωt√
2π

,

x(t + τ) =
+∞

∫
−∞

dω′ X(ω′) e
+iωt√
2π

. (12.56)

Because ω, ω′, and ω′′ are dummy variables, other names may be used for these
variables without changing any results.Whenwe substitute these representations
into definition (12.55) of the correlation function and assume that the resulting
integrals converge well enough to be rearranged, we obtain

+∞

∫
−∞

dωC(ω)eiωt =
+∞

∫
−∞

dω
2π

+∞

∫
−∞

dω′Y ∗(ω)X(ω′)eiωτ2πδ(ω′ − ω)

=
+∞

∫
−∞

dωY ∗(ω)X(ω)eiωτ ,

⇒ C(ω) =
√
2π Y ∗(ω)X(ω) , (12.57)

where the last line follows because ω′′ and ω are equivalent dummy variables.
Equation 12.57 says that the Fourier transform of the correlation function be-
tween two signals is proportional to the product of the transform of one signal
and the complex conjugate of the transform of the other. (We shall see a related
convolution theorem for filters.)

292 12 Fourier Analysis: Signals and Filters

0

2

4

6

8

10

0 2 4 6 8 10 12

Initial Function y(t) + Noise

t (s)

y

0.4
0.6

0.8

1.0

1.2

1.4

x 102

0 2 4 6 8 10 12

Autocorrelation Function A(τ)

τ (s)

A

0.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

x 10 3

0 5 10 15 20 25 30 35 40 45

Power Spectrum (with Noise)

Frequency

P

10

y

0

2

4

6

8

0 2 4 6 8 10 12

Function y(t) + Noise After Low pass Filter

t (s)

(a) (b)

(c) (d)

Figure 12.3 (a) A function that is a signal plus noise s(t)+ n(t); (b) the autocorrelation function
vs. time deduced by processing this signal; (c) the power spectrum obtained from autocorrela-
tion function; (d) the signal plus noise after passage through a low-pass filter.

A special case of the correlation function c(τ) is the autocorrelation func-
tion A(τ). It measures the correlation of a time signal with itself:

A(τ)
def
=

+∞∫
−∞

dt y∗(t)y(t + τ) ≡ +∞∫
−∞

dt y(t)y∗(t − τ) . (12.58)

This function is computed by taking a signal y(t) that has been measured over
some time period and then averaging it over time using y(t + τ) as a weighting
function. This process is also called folding a function onto itself (as might be
done with dough) or a convolution. To see how this folding removes noise from
a signal, we go back to the measured signal (12.54), which was the sum of pure
signal plus noise s(t) + n(t). As an example, in Figure 12.3a we show a signal that
was constructed by adding random noise to a smooth signal. When we compute
the autocorrelation function for this signal, we obtain a function (Figure 12.3b)
that looks like a broadened, smoothed version of the signal y(t).
We can understand how the noise is removed by taking the Fourier transform

of s(t) + n(t) to obtain a simple sum of transforms:

Y (ω) = S(ω) + N(ω) , (12.59)[
S(ω)
N(ω)

]
=

+∞

∫
−∞

dt

[
s(t)
n(t)

]
e−iωt√
2π

. (12.60)

Because the autocorrelation function (12.58) for y(t) = s(t) + n(t) involves the
second power of y, is not a linear function, that is, Ay ≠ As + An , but instead

Ay(τ) =
+∞

∫
−∞

dt[s(t)s(t + τ) + s(t)n(t + τ) + n(t)n(t + τ)] . (12.61)

29312.7 Noise Reduction via Autocorrelation (Theory)

If we assume that the noise n(t) in the measured signal is truly random, then it
should average to zero over long times and be uncorrelated at times t and t + τ.
This being the case, both integrals involving the noise vanish, and so

Ay(τ) ≃
+∞

∫
−∞

dt s(t) s(t + τ) = As(τ) . (12.62)

Thus, the part of the noise that is random tends to be averaged out of the auto-
correlation function, and we are left with an approximation of the autocorrelation
function of the pure signal.
So how does this help us? Application of (12.57) with Y (ω) = X(ω) = S(ω) tells

us that the Fourier transform A(ω) of the autocorrelation function is proportional
to |S(ω)|2:

A(ω) =
√
2π |S(ω)|2 . (12.63)

The function |S(ω)|2 is the power spectrum of the pure signal. Thus, evaluation of
the autocorrelation function of the noisy signal gives us the pure signal’s power
spectrum, which is often all that we need to know. For example, in Figure 12.3a
we see a noisy signal, the autocorrelation function (Figure 12.3b), which clearly is
smoother than the signal, and finally, the deduced power spectrum (Figure 12.3c).
Note that the broadband high-frequency components characteristic of noise are
absent from the power spectrum.
You can easily modify the sample program DFTcomplex.py in Listing 12.1 to

compute the autocorrelation function and then the power spectrum from A(τ).
We present a program NoiseSincFilter.py on the instructor’s site that does this.

12.7.1
Autocorrelation Function Exercises

1. Imagine that you have sampled the pure signal

s(t) = 1
1 − 0.9 sin t

. (12.64)

Although there is just a single sine function in the denominator, there is an
infinite number of overtones as follows from the expansion

s(t) ≃ 1 + 0.9 sin t + (0.9 sin t)2 + (0.9 sin t)3 +⋯ (12.65)

a) Compute the DFT S(ω). Make sure to sample just one period but to cover
the entire period. Make sure to sample at enough times (fine scale) to ob-
tain good sensitivity to the high-frequency components.

b) Make a semilog plot of the power spectrum |S(ω)|2.
c) Take your input signal s(t) and compute its autocorrelation function A(τ)

for a full range of τ values (an analytic solution is okay too).

294 12 Fourier Analysis: Signals and Filters

d) Compute the power spectrum indirectly by performing a DFT on the au-
tocorrelation function. Compare your results to the spectrum obtained by
computing |S(ω)|2 directly.

2. Add some random noise to the signal using a random number generator:

y(ti) = s(ti) + α(2ri − 1) , 0 ≤ ri ≤ 1 , (12.66)

where α is an adjustable parameter. Try several values of α, from small values
that just add some fuzz to the signal to large values that nearly hide the signal.
a) Plot your noisy data, their Fourier transform, and their power spectrum

obtained directly from the transform with noise.
b) Compute the autocorrelation functionA(τ) and its Fourier transformA(ω).
c) Compare the DFT of A(τ) to the true power spectrum and comment on

the effectiveness of reducing noise by use of the autocorrelation function.
d) For what value of α do you essentially lose all the information in the input?

12.8
Filtering with Transforms (Theory)

A filter (Figure 12.4) is a device that converts an input signal f (t) to an output
signal g(t) with some specific property for g(t). More specifically, an analog filter
is defined (Hartmann, 1998) as integration over the input function:

g(t) =
+∞

∫
−∞

dτ f (τ) h(t − τ)
def
= f (t) ∗ h(t) . (12.67)

The operation indicated in (12.67) occurs often enough that it is given the name
convolution and is denoted by an asterisk ∗. The function h(t) is called the response
or transfer function of the filter because it is the response of the filter to a unit
impulse:

h(t) =
+∞

∫
−∞

dτ δ(τ) h(t − τ) . (12.68)

Equation 12.67 states that the output g(t) of a filter equals the input f (t) convo-
luted with the transfer function h(t − τ). Because the argument of the response
function is delayed by a time τ relative to that of the signal in integral (12.67), τ is
called the lag time. While the integration is over all times, the response of a good
detector usually peaks around zero time. In any case, the response must equal
zero for τ > t because events in the future cannot affect the present (causality).
The convolution theorem states that the Fourier transform of the convolu-

tion g(t) is proportional to the product of the transforms of f (t) and h(t):

G(ω) =
√
2πF(ω)H(ω) . (12.69)

29512.8 Filteringwith Transforms (Theory)

f(t) g(t)

Figure 12.4 A schematic of an input signal f (t) passing through a filter h that outputs the
function g(t).

The theorem results from expressing the functions in (12.67) by their transforms
and using the resulting Dirac delta function to evaluate an integral (essentially
what we did in our discussion of correlation functions).
Regardless of the domain used, filtering as we have defined it is a linear process

involving just the first powers of f . This means that the output at one frequency
is proportional to the input at that frequency. The constant of proportionality be-
tween the two may change with frequency and thus suppress specific frequencies
relative to others, but that constant remains fixed in time. Because the law of lin-
ear superposition is valid for filters, if the input to a filter is represented as the
sum of various functions, then the transform of the output will be the sum of the
functions’ Fourier transforms.
Filters that remove or decrease high-frequency components more than they

do low-frequency ones, are called low-pass filters. Those that filter out the low
frequencies are called high-pass filters. A simple low-pass filter is the RC circuit
shown in Figure 12.5a. It produces the transfer function

H(ω) = 1
1 + iωτ

= 1 − iωτ
1 + ω2τ2

, (12.70)

where τ = RC is the time constant. The ω2 in the denominator leads to a de-
crease in the response at high frequencies and therefore makes this a low-pass
filter (the iω affects only the phase). A simple high-pass filter is the RC circuit
shown in Figure 12.5b. It produces the transfer function

H(ω) = iωτ
1 + iωτ

= iωτ + ω2τ2
1 + ω2τ2

. (12.71)

H = 1 at large ω, yet H vanishes as ω → 0, as expected for a high-pass filter.
Filters composed of resistors and capacitors are fine for analog signal process-

ing. For digital processingwewant a digital filter that has a specific response func-
tion for each frequency range. A physical model for a digital filter may be con-
structed from a delay line with taps at various spacing along the line (Figure 12.6)

(a) (b)

Figure 12.5 (a) An RC circuit arranged as a low-pass filter. (b) An RC circuit arranged as a high-
pass filter.

296 12 Fourier Analysis: Signals and Filters

Figure 12.6 A delay-line filter in which the signal at different times is scaled by different
amounts ci .

(Hartmann, 1998). The signal read from tap n is just the input signal delayed by
time nτ, where the delay time τ is a characteristic of the particular filter. The out-
put from each tap is described by the transfer function δ(t − nτ), possibly with
scaling factor cn . As represented by the triangle in Figure 12.6b, the signals from
all taps are ultimately summed together to form the total response function:

h(t) =
N∑
n=0

cnδ(t − nτ) . (12.72)

In the frequency domain, the Fourier transform of a delta function is an exponen-
tial, and so (12.72) results in the transfer function

H(ω) =
N∑
n=0

cne−inωτ , (12.73)

where the exponential indicates the phase shift from each tap.
If a digital filter is given a continuous time signal f (t) as input, its output will

be the discrete sum

g(t) =
+∞

∫
−∞

dt′ f (t′)
N∑
n=0

cnδ(t − t′ − nτ) =
N∑
n=0

cn f (t − nτ) . (12.74)

And of course, if the signal’s input is a discrete sum, its output will remain a dis-
crete sum. In either case,we see that knowledge of the filter coefficients ci provides
us with all we need to know about a digital filter. If we look back at our work on
the DFT in Section 12.5, we can view a digital filter (12.74) as a Fourier transform
in which we use an N-point approximation to the Fourier integral. The cns then
contain both the integration weights and the values of the response function at
the integration points. The transform itself can be viewed as a filter of the signal
into specific frequencies.

12.8.1
Digital Filters: Windowed Sinc Filters (Exploration) ⊙

Problem Construct digital versions of high-pass and low-pass filters and deter-
mine which filter works better at removing noise from a signal.

29712.8 Filteringwith Transforms (Theory)

Figure 12.7 The rectangle function rect(ω) that is constant for a finite frequency interval. The
Fourier transform of this function is sinc(t).

A popular way to separate the bands of frequencies in a signal is with a win-
dowed sinc filter (Smith, 1999). This filter is based on the observation that an ideal
low-pass filter passes all frequencies below a cutoff frequency ωc, and blocks all
frequencies above this frequency. And because there tends to be more noise at
high frequencies than at low frequencies, removing the high frequencies tends to
remove more noise than signal, although some signal is inevitably lost. One use
for windowed sinc filters is in reducing aliasing in DFTs by removing the high-
frequency component of a signal before determining its Fourier components. The
graph in Figure 12.1bwas obtained by passing our noisy signal through a sinc filter
(using the program NoiseSincFilter.py).
If both positive and negative frequencies are included, an ideal low-frequency

filter will look like the rectangular pulse in frequency space (Figure 12.7):

H(ω, ωc) = rect
(

ω
2ωc

)
, rect(ω) =

{
1 , if |ω| ≤ 1

2
,

0 , otherwise .
(12.75)

Here rect(ω) is the rectangular function. Although maybe not obvious, a rectan-
gular pulse in the frequency domain has a Fourier transform that is proportional
to the sinc function in the time domain (Smith, 1991)

+∞

∫
−∞

dωe−iωtrect(ω) = sinc
(t
2

) def
=

sin(πt∕2)
πt∕2

, (12.76)

where the πs are sometimes omitted. Consequently, we can filter out the high-
frequency components of a signal by convoluting it with sin(ωct)∕(ωc t), a tech-
nique also known as theNyquist–Shannon interpolation formula. In terms of dis-
crete transforms, the time-domain representation of the sinc filter is simply

h[i] =
sin(ωci)

iπ
. (12.77)

298 12 Fourier Analysis: Signals and Filters

Because all frequencies below the cutoff frequency ωc are passed with unit am-
plitude, while all higher frequencies are blocked, we can see the importance of a
sinc filter.
In practice, there are a number of problems in using sinc function as the filter.

First, as formulated, the filter is noncausal; that is, there are coefficients at negative
times, which is nonphysical because we do not start measuring the signal until t =
0. Second, in order to produce a perfect rectangular response, we would have to
sample the signal at an infinite number of times. In practice, we sample at (M + 1)
points (M even) placed symmetrically around the main lobe of sin(πt)∕πt, and
then shift times to purely positive values via

h[i] =
sin[2πωc(i −M∕2)]

i −M∕2
, 0 ≤ t ≤ M . (12.78)

As might be expected, a penalty is incurred for making the filter discrete; instead
of the ideal rectangular response, we obtain some Gibbs overshoot, with rounded
corners and oscillations beyond the corner.
There are two ways to reduce the departures from the ideal filter. The first is to

increase the length of times for which the filter is sampled, which inevitably leads
to longer compute times. The other way is to smooth out the truncation of the
sinc function by multiplying it with a smoothly tapered curve like the Hamming
window function:

w[i] = 0.54 − 0.46 cos(2πi∕M) . (12.79)

In this way, the filter’s kernel becomes

h[i] =
sin[2πωc(i −M∕2)]

i −M∕2

[
0.54 − 0.46 cos

(2πi
M

)]
. (12.80)

The cutoff frequency ωc should be a fraction of the sampling rate. The time
length M determines the bandwidth over which the filter changes from 1 to 0.

Exercise Repeat the exercise that added random noise to a known signal, this
time using the sinc filter to reduce the noise. See how small you can make the
signal and still be able to separate it from the noise.

29912.9 The Fast Fourier TransformAlgorithm⊙

12.9
The Fast Fourier Transform Algorithm⊙

We have seen in (12.37) that a discrete Fourier transform can be written in the
compact form as

Yn = 1√
2π

N∑
k=1

Znk yk , Z = e−2πi∕N , n = 0, 1,… ,N − 1 . (12.81)

Even if the signal elements yk to be transformed are real, Z is complex, and there-
fore we must process both real and imaginary parts when computing transforms.
Because both n and k range over N integer values, the (Zn)k yk multiplications
in (12.81) require some N2 multiplications and additions of complex numbers.
As N gets large, as happens in realistic applications, this geometric increase in
the number of steps leads to long computation times.
In 1965, Cooley and Tukey discovered an algorithm7) that reduces the number

of operations necessary to perform a DFT from N2 to roughly N log2 N (Cooley,
1965; Donnelly and Rust, 2005). Although this may not seem like such a big dif-
ference, it represents a 100-fold speedup for 1000 data points, which changes a
full day of processing into 15min of work. Because of its widespread use (includ-
ing cell phones), the fast Fourier transform algorithm is considered one of the 10
most important algorithms of all time.
The idea behind the FFT is to utilize the periodicity inherent in the definition

of the DFT (12.81) to reduce the total number of computational steps. Essentially,
the algorithm divides the input data into two equal groups and transforms only
one group, which requires∼ (N∕2)2 multiplications. It then divides the remaining
(nontransformed) group of data in half and transforms them, continuing the pro-
cess until all the data have been transformed. The total number of multiplications
required with this approach is approximately N log2 N .
Specifically, the FFT’s time economy arises from the computationally expensive

complex factor Znk [= ((Z)n)k] having values that are repeated as the integers n
and k vary sequentially. For instance, for N = 8,

Y0 = Z0 y0 + Z0 y1 + Z0 y2 + Z0 y3 + Z0 y4 + Z0 y5 + Z0 y6 + Z0 y7 ,
Y1 = Z0 y0 + Z1 y1 + Z2 y2 + Z3 y3 + Z4 y4 + Z5 y5 + Z6 y6 + Z7 y7 ,
Y2 = Z0 y0 + Z2 y1 + Z4 y2 + Z6 y3 + Z8 y4 + Z10 y5 + Z12 y6 + Z14 y7 ,
Y3 = Z0 y0 + Z3 y1 + Z6 y2 + Z9 y3 + Z12 y4 + Z15 y5 + Z18 y6 + Z21 y7 ,
Y4 = Z0 y0 + Z4 y1 + Z8 y2 + Z12 y3 + Z16 y4 + Z20 y5 + Z24 y6 + Z28 y7 ,
Y5 = Z0 y0 + Z5 y1 + Z10 y2 + Z15 y3 + Z20 y4 + Z25 y5 + Z30 y6 + Z35 y7 ,
Y6 = Z0 y0 + Z6 y1 + Z12 y2 + Z18 y3 + Z24 y4 + Z30 y5 + Z36 y6 + Z42 y7 ,
Y7 = Z0 y0 + Z7 y1 + Z14 y2 + Z21 y3 + Z28 y4 + Z35 y5 + Z42 y6 + Z49 y7 ,

7) Actually, this algorithm has been discovered a number of times, for instance, in 1942 by
Danielson and Lanczos (Danielson and Lanczos , 1942), as well as much earlier by Gauss.

300 12 Fourier Analysis: Signals and Filters

wherewe includeZ0(≡ 1) for clarity.Whenwe actually evaluate these powers ofZ,
we find only four independent values:

Z0 = exp (0) = +1 , Z1 = exp(−2π
8
) = +

√
2
2

− i
√
2
2

,

Z2 = exp
(
−2 ⋅ 2iπ

8

)
= −i , Z3 = exp

(
−2π ⋅ 3i

8

)
= −

√
2
2

− i
√
2
2

,

Z4 = exp
(
−2π ⋅ 4i

8

)
= −Z0 , Z5 = exp

(
−2π ⋅ 5i

8

)
= −Z1 ,

Z6 = exp
(
−2 ⋅ 6iπ

8

)
= −Z2 , Z7 = exp

(
−2 ⋅ 7iπ

8

)
= −Z3 ,

Z8 = exp
(
−2π ⋅ 8i

8

)
= +Z0 , Z9 = exp

(
−2π ⋅ 9i

8

)
= +Z1 ,

Z10 = exp
(
−2π ⋅ 10i

8

)
= +Z2 , Z11 = exp

(
−2π ⋅ 11i

8

)
= +Z3 ,

Z12 = exp
(
−2π ⋅ 11i

8

)
= −Z0 , ⋯ (12.82)

When substituted into the definitions of the transforms, we obtain

Y0 = Z0 y0 + Z0 y1 + Z0 y2 + Z0 y3 + Z0 y4 + Z0 y5 + Z0 y6 + Z0 y7 , (12.83)

Y1 = Z0 y0 + Z1 y1 + Z2 y2 + Z3 y3 − Z0 y4 − Z1 y5 − Z2 y6 − Z3 y7 , (12.84)

Y2 = Z0 y0 + Z2 y1 − Z0 y2 − Z2 y3 + Z0 y4 + Z2 y5 − Z0 y6 − Z2 y7 , (12.85)

Y3 = Z0 y0 + Z3 y1 − Z2 y2 + Z1 y3 − Z0 y4 − Z3 y5 + Z2 y6 − Z1 y7 , (12.86)

Y4 = Z0 y0 − Z0 y1 + Z0 y2 − Z0 y3 + Z0 y4 − Z0 y5 + Z0 y6 − Z0 y7 , (12.87)

Y5 = Z0 y0 − Z1 y1 + Z2 y2 − Z3 y3 − Z0 y4 + Z1 y5 − Z2 y6 + Z3 y7 , (12.88)

Y6 = Z0 y0 − Z2 y1 − Z0 y2 + Z2 y3 + Z0 y4 − Z2 y5 − Z0 y6 + Z2 y7 , (12.89)

Y7 = Z0 y0 − Z3 y1 − Z2 y2 − Z1 y3 − Z0 y4 + Z3 y5 + Z2 y6 + Z1 y7 , (12.90)

Y8 = Y0 . (12.91)

We see that these transforms now require 8 × 8 = 64 multiplications of com-
plex numbers, in addition to some less time-consuming additions.We place these
equations in an appropriate form for computing by regrouping the terms into
sums and differences of the y’s:

Y0 = Z0(y0 + y4) + Z0(y1 + y5) + Z0(y2 + y6) + Z0(y3 + y7) , (12.92)

Y1 = Z0(y0 − y4) + Z1(y1 − y5) + Z2(y2 − y6) + Z3(y3 − y7) , (12.93)

Y2 = Z0(y0 + y4) + Z2(y1 + y5) − Z0(y2 + y6) − Z2(y3 + y7) , (12.94)

30112.9 The Fast Fourier TransformAlgorithm⊙

Y3 = Z0(y0 − y4) + Z3(y1 − y5) − Z2(y2 − y6) + Z1(y3 − y7) , (12.95)

Y4 = Z0(y0 + y4) − Z0(y1 + y5) + Z0(y2 + y6) − Z0(y3 + y7) , (12.96)

Y5 = Z0(y0 − y4) − Z1(y1 − y5) + Z2(y2 − y6) − Z3(y3 − y7) , (12.97)

Y6 = Z0(y0 + y4) − Z2(y1 + y5) − Z0(y2 + y6) + Z2(y3 + y7) , (12.98)

Y7 = Z0(y0 − y4) − Z3(y1 − y5) − Z2(y2 − y6) − Z1(y3 − y7) , (12.99)

Y8 = Y0 . (12.100)

Note the repeating factors inside the parentheses, with combinations of the
form yp ± yq . These symmetries are systematized by introducing the butter-
fly operation (Figure 12.8). This operation takes the yp and yq data elements
from the left wing and converts them to the yp +Zyq elements in the right wings.
In Figure 12.9 we show what happens when we apply the butterfly operations
to an entire FFT process, specifically to the pairs (y0 , y4), (y1 , y5), (y2 , y6), and
(y3 , y7). Note how the number of multiplications of complex numbers has been
reduced: For the first butterfly operation there are 8 multiplications by Z0; for the
second butterfly operation there are 8 multiplications, and so forth, until a total
of 24 multiplications are made in four butterflies. In contrast, 64 multiplications
are required in the original DFT (12.91).

yp

yp

Z

yp + Zq

yp – Zq

Figure 12.8 The basic butterfly operation in which elements yp and yq on the left are trans-
formed into yp + Zyq and yp − Zyq on the right.

12.9.1
Bit Reversal

The reader may have observed in Figure 12.9 that we started with eight data ele-
ments in the order 0–7 and that after three butterfly operators we obtained trans-
forms in the order 0, 4, 2, 6, 1, 5, 3, 7. The astute readermay further have observed
that these numbers correspond to the bit-reversed order of 0–7. Let us look into
this further. We need 3 bits to give the order of each of the 8 input data elements
(the numbers 0–7). Explicitly, on the left in Table 10.1 we give the binary rep-
resentation for decimal numbers 0–7, their bit reversals, and the corresponding

302 12 Fourier Analysis: Signals and Filters

Figure 12.9 The butterfly operations performing a FFT on the eight data on the left leading
to eight transforms on the right. The transforms are different linear combinations of the input
data.

decimal numbers. On the right we give the ordering for 16 input data elements,
where we need 4 bits to enumerate their order. Notice that the order of the first 8
elements differs in the two cases because the number of bits being reversed dif-
fers. Also note that after the reordering, the first half of the numbers are all even
and the second half are all odd.
The fact that the Fourier transforms are produced in an order corresponding to

the bit-reversed order of the numbers 0–7 suggests that if we process the data in
the bit-reversed order 0, 4, 2, 6, 1, 5, 3, 7, then the output Fourier transformswill be
ordered (see Table 10.1). We demonstrate this conjecture in Figure 12.10, where
we see that to obtain the Fourier transform for the eight input data, the butterfly
operation had to be applied three times. The number 3 occurs here because it is
the power of 2 that gives the number of data; that is, 23 = 8. In general, in order for
a FFT algorithm to produce transforms in the proper order, it must reshuffle the
input data into bit-reversed order. As a case in point, our sample program starts
by reordering the 16 (24) data elements given in Table 12.1. Now the four butterfly
operations produce sequentially ordered output.

30312.10 FFT Implementation

Table 12.1 Reordering for 16 data complex points.

Order Input data New order Order Input data New order

0 0.0 + 0.0i 0.0 + 0.0i 8 8.0 + 8.0i 1.0 + 1.0i
1 1.0 + 1.0i 8.0 + 8.0i 9 9.0 + 9.0i 9.0 + 9.0i
2 2.0 + 2.0i 4.0 + 4.0i 10 10.0 + 10.i 5.0 + 5.0i
3 3.0 + 3.0i 12.0 + 12.0i 11 11.0 + 11.0i 13.0 + 13.0i
4 4.0 + 4.0i 2.0 + 2.0i 12 12.0 + 12.0i 3.0 + 3.0i
5 5.0 + 5.0i 10.0 + 10.i 13 13.0 + 13.0i 11.0 + 11.0i
6 6.0 + 6.0i 6.0 + 6.0i 14 14.0 + 14.i 7.0 + 7.0i
7 7.0 + 7.0i 14.0 + 14.0i 15 15.0 + 15.0i 15.0 + 15.0i

Binary-Reversed 0–7 Binary-Reversed 0–16
Dec Bin Rev Dec Rev Rev Dec Rev

0 000 000 0 0000 0
1 001 100 4 1000 8
2 010 010 2 0100 4
3 011 110 6 1100 12
4 100 001 1 0010 2
5 101 101 5 1010 10
6 110 011 3 0110 6
7 111 111 7 1110 14
8 1000 — — 0001 1
9 1001 — — 1001 9

10 1010 — — 0101 5
11 1011 — — 1101 13
12 1100 — — 0011 3
13 1101 — — 1011 11
14 1101 — — 0111 7
15 1111 — — 1111 15

12.10
FFT Implementation

The first FFT program we are aware of was written in Fortran IV by Norman
Brenner atMIT’s Lincoln Laboratory (Higgins, 1976) andwas hard for us to follow.
Our (easier-to-follow) Python version is in Listing 12.3. Its input is N = 2n data
to be transformed (FFTs always require that the number of input data are a power
of 2). If the number of your input data is not a power of 2, then you canmake it so
by concatenating some of the initial data to the end of your input until a power of

304 12 Fourier Analysis: Signals and Filters

Figure 12.10 A modified FFT in which the
eight input data on the left are transformed
into eight transforms on the right. The results
are the same as in the previous figure, but

now the output transforms are in numerical
order whereas in the previous figure the input
signals were in numerical order.

2 is obtained; because a DFT is always periodic, this just starts the period a little
earlier. Our program assigns complex numbers at the 16 data points

ym = m + mi , m = 0,… , 15 , (12.101)

reorders the data via bit reversal, and then makes four butterfly operations. The
data are stored in the array dtr[max,2], with the second subscript denoting real and
imaginary parts.We increase the speed further by using the 1D array data tomake
memory access more direct:

𝚍𝚊𝚝𝚊[1] = 𝚍𝚝𝚛[0, 1], 𝚍𝚊𝚝𝚊[2] = 𝚍𝚝𝚛[1, 1], 𝚍𝚊𝚝𝚊[3] = 𝚍𝚝𝚛[1, 0],… ,
(12.102)

which also provides storage for the output. The FFT transforms data using the
butterfly operation and stores the results back in dtr[,], where the input data were
originally.

12.11
FFT Assessment

1. Compile and execute FFT.py. Make sure you understand the output.
2. Take the output from FFT.py, inverse-transform it back to signal space, and

compare it to your input. (Checking that the double transform is proportional

30512.11 FFT Assessment

to itself is adequate, although the normalization factors in (12.37) shouldmake
the two equal.)

3. Compare the transforms obtained with a FFT to those obtained with a DFT
(you may choose any of the functions studied before). Make sure to compare
both precision and execution times.

Listing 12.3 FFT.py computes the FFT or inverse transform depending upon the sign of isign.

FFT . py : FFT for complex numbers in dtr [] [2] , returned in dtr

from numpy import *
from sy s import v e r s ion
max = 2100
po in t s = 1026 # Can be increased
data = zeros ((max) , f l o a t)
dtr = zeros ((points , 2) , f l o a t)

de f f f t (nn , i s i g n) : # FFT of dtr [n , 2]
n = 2*nn
f o r i in range (0 , nn+1) : # Original data in dtr to data

j = 2* i +1
data [j] = dtr [i , 0] # Real dtr , odd data [j]
data [j +1] = dtr [i , 1] # Imag dtr , even data [j +1]

j = 1 # Place data in b i t reverse order
f o r i in range (1 , n+2 , 2) :

i f (i− j) < 0 : # Reorder equiva lent to b i t reverse
tempr = data [j]
tempi = data [j +1]
data [j] = data [i]
data [j +1] = data [i +1]
data [i] = tempr
data [i +1] = tempi

m = n / 2 ;
whi le (m−2 > 0) :

i f (j−m) <= 0 :
break

j = j−m
m = m/2

j = j+m;

pr in t (" Bit - reversed data ")

f o r i in range (1 , n+1 , 2) :
pr in t ("%2d data[%2d] %9.5 f "%(i , i , data [i])) # To see reorder

mmax = 2
whi le (mmax−n) < 0 : # Begin transform

i s t e p = 2*mmax
the t a = 6 . 2831853 / (1 . 0 * i s i g n *mmax)
s in th = math . s in (the t a / 2 . 0)
wstpr = −2.0* s in th * *2
wstp i = math . s in (the t a)
wr = 1 .0
wi = 0 .0
f o r m in range (1 ,mmax +1 ,2) :

f o r i in range (m, n+1 , i s t e p) :
j = i+mmax
tempr = wr* data [j] −wi * data [j +1]
tempi = wr* data [j +1] +wi * data [j]
data [j] = data [i] −tempr
data [j +1] = data [i +1] −tempi
data [i] = data [i] +tempr
data [i +1] = data [i +1] +tempi

tempr = wr

306 12 Fourier Analysis: Signals and Filters

wr = wr* wstpr − wi * wstp i + wr
wi = wi * wstpr + tempr * wstp i + wi ;

mmax = i s t e p
f o r i in range (0 , nn) :

j = 2* i +1
dtr [i , 0] = data [j]
dtr [i , 1] = data [j +1]

nn = 16 # Power of 2
i s i g n = −1 # −1 transform , +1 inverse transform
pr in t (’ INPUT ’)
pr in t (" i Re part Im part ")
f o r i in range (0 , nn) : # Form array

dtr [i , 0] = 1 . 0 * i # Real part
dtr [i , 1] = 1 . 0 * i # Im part
pr in t (" %2d %9.5 f %9.5 f " %(i , dtr [i , 0] , d t r [i , 1]))

f f t (nn , i s i g n) # Call FFT , use globa l dtr [] []
pr in t (’ Fourier transform ’)
pr in t (" i Re Im ")
f o r i in range (0 , nn) :

pr in t (" %2d %9.5 f %9.5 f "%(i , dtr [i , 0] , d t r [i , 1]))
pr in t (" Enter and return any character to quit ")

307

13
Wavelet and Principal Components Analyses: Nonstationary
Signals and Data Compression

There are a number of techniques that extend Fourier analysis to signals whose
forms change in time. This chapter introduceswavelet analysis, a field that has seen
extensive development and application in areas as diverse as brain waves, stock-
market trends, gravitational waves, and compression of photographic images. The
first part of the chapter deals with wavelet basics, and covers the essential materi-
als. The second part of the chapter explores the discrete wavelet transform, and is
marked as optional as a result of its technicalnature. However, it is a beautiful bit of
analysis and the basis ofmuchof the digital revolution. The chapter endswith a dis-
cussion of principal componentanalysis, another powerful technique for analyzing
signals with space and time correlations.

13.1
Problem: Spectral Analysis of Nonstationary Signals

Problem You have sampled the signal in Figure 13.1 that seems to contain an in-
creasing number of frequencies as time increases. Your problem is to undertake
a spectral analysis of this signal that tells you, in the most compact way possible,
the amount of each frequency present at each instant of time. Hint: Although we
want the method to be general enough to work with numerical data, for pedagog-
ical purposes it is useful to know that the signal is

y(t) =
⎧⎪⎨⎪⎩
sin 2πt , for 0 ≤ t ≤ 2 ,
5 sin 2πt + 10 sin 4πt , for 2 ≤ t ≤ 8 ,
2.5 sin 2πt + 6 sin 4πt + 10 sin 6πt , for 8 ≤ t ≤ 12 .

(13.1)

13.2
Wavelet Basics

The Fourier analysis we used in Chapter 12 reveals the amount of the harmonic
functions sin(ωt) and cos(ωt), and their overtones, that are present in a signal. An

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

308 13 Wavelet and Principal Components Analyses:Nonstationary Signals andData Compression

0 1 2 3 4 5 6 7 8 9

Figure 13.1 The input time signal (13.1) wewish to analyze. The signal is seen to contain
additional frequencies as time increases. The boxes are possible placements of windows for
short-time Fourier transforms.

expansion in periodic functions is fine for stationary signals (those whose forms
do not change in time) but has shortcomings for the variable form of our problem
signal (13.1). One such problem is that the Fourier reconstruction has all con-
stituent frequencies occurring simultaneously and so does not contain time reso-
lution information indicating when each frequency occurs. Another shortcoming
is that all the Fourier components are correlated, which results in more informa-
tion being stored than may be needed to reconstruct the measured signal.
There are a number of techniques that extend simple Fourier analysis to non-

stationary signals. The idea behind wavelet analysis is to expand a signal in a com-
plete set of functions (wavelets), each of which oscillates for a finite period of time,
and each of which is centered at a different time. To give you a preview before we
get into the details, we show four sample wavelets in Figure 13.2. Because each
wavelet is local in time, it is a wave packet,1) with its time localization leading to
a spectrum with a range of frequencies. These wave packets are called “wavelets”
because they exist for only short periods of time (Polikar, 2001).
Although wavelets are required to oscillate in time, they are not restricted to

a particular functional form (Addison, 2002; Goswani and Chan, 1999; Graps,
1995). As a case in point, they may be oscillating Gaussians (Morlet: in Fig-
ure 13.2a),

Ψ(t) = e2πite−t2∕2σ2 = (cos 2πt + i sin 2πt)e−t2∕2σ2 (Morlet) , (13.2)

the second derivative of a Gaussian (Mexican hat, Figure 13.2b),

Ψ(t) = −σ2 d2

dt2
e−t2∕2σ2 =

(
1 − t2

σ2

)
e−t2∕2σ2 , (13.3)

an up-and-down step function (Figure 13.2c), or a fractal shape (Figure 13.2d). All
of these wavelets are localized in both time and frequency, that is, they are large
for just a limited time and contain a limited range of frequencies. As we shall
see, translating and scaling amother wavelets generates an entire set of daughter
wavelet or basis functions, with the daughters covering different frequency ranges
at different times.

1) We discuss wave packets further in Section 13.3.

30913.3 Wave Packets and Uncertainty Principle (Theory)

–1.0

–0.5

0.0

0.5

1.0

1.0

Ψ

Ψ

Ψ

–6 –4 –2 0 2 4 6
t t

0.0

–4 0 4

–1.0

0.0

–4 0
t

4 0

0.1

0

–0.1

Daub4 e6

200 400 600 800 1000

(a) (b)

(c) (d)

Figure 13.2 Four possible mother wavelets that can be used to generate entire sets of daugh-
ter wavelets. (a–d) Morlet (real part), Mexican hat, Daub4 e6 (explained later), and Haar. The
daughter wavelets are generated by scaling and translating these mother wavelets.

13.3
Wave Packets and Uncertainty Principle (Theory)

Awave packet orwave train is a collection of waves of differing frequencies added
together in such a way as to produce a pulse of width Δt. As we shall see, the
Fourier transformof awave packet is a pulse in the frequency domain ofwidth Δω.
We will first study such wave packets analytically, and then use others numer-
ically. An example of a simple wave packet is just a sine wave that oscillates at
frequency ω0 for N periods (Figure 13.3a) (Arfken andWeber, 2001)

y(t) =
⎧⎪⎨⎪⎩
sin ω0t , for |t| < N π

ω0
≡ N T

2
,

0 , for |t| > N π
ω0

≡ N T
2
,

(13.4)

where we relate the frequency to the period via the usual ω0 = 2π∕T . In terms of
these parameters, the width of the wave packet is

Δt = NT = N 2π
ω0

. (13.5)

The Fourier transformof thewave packet (13.4) is calculated via a straightforward
application of the transform formula (12.19):

Y (ω) =
+∞

∫
−∞

dt e
−iωt√
2π

y(t) = −i√
2π

Nπ∕ω0

∫
0

dt sin ω0t sin ωt

=
(ω0 + ω) sin

[
(ω0 − ω)Nπ

ω0

]
− (ω0 − ω) sin

[
(ω0 + ω)Nπ

ω0

]
√
2π(ω2

0 − ω2)
, (13.6)

310 13 Wavelet and Principal Components Analyses:Nonstationary Signals andData Compression

–1.0

0.0

0.0

1.0

–4 0 4
t ω

y Y

0 10
(a) (b)

Figure 13.3 (a) A wave packet in time corresponding to the functional form (13.4) with ω0 = 5
and N = 6. (b) The Fourier transform in frequency of this same wave packet.

where we have dropped a factor of −i that affects only the phase. While at first
glance (13.6) appears to be singular at ω = ω0, it actually just peaks there (Fig-
ure 13.3b), reflecting the predominance of frequency ω0. Note that although the
signal y(t) appears to have only one frequency, it does drop off sharply in time
(Figure 13.3a), and these corners give Y (ω) a width Δω.
There is a fundamental relation between thewidths Δt and Δω of awave packet.

Althoughwe use a specific example to determine that relation, it is true in general.
While there may not be a precise definition of “width” for all functions, one can
usually deduce a good measure of the width (say, within 25%). To illustrate, if we
look Figure 13.3b, it makes sense to use the distance between the first zeros of the
transform Y (ω) (13.6) as the frequency width Δω. The zeros occur at

ω − ω0

ω0
= ± 1

N
⇒ Δω ≃ ω − ω0 =

ω0

N
, (13.7)

where N is the number of cycles in our original wave packet. Because the wave
packet in time makesN oscillations each of period T , a reasonablemeasure of the
time width Δt of the signal y(t) is

Δt = NT = N 2π
ω0

. (13.8)

When the products of the frequency width (13.7) and the time width (13.8) are
combined, we obtain

ΔtΔω ≥ 2π . (13.9)

The greater than sign is used to indicate that this is a minimum, that is, that y(t)
and Y (ω) extend beyond Δt and Δω, respectively. Nonetheless,most of the signal
and transform should lie within the bound (13.9).
A relation of the form (13.9) also occurs in quantum mechanics, where it is

known as the Heisenberg uncertainty principle, with Δt and Δω being called the
uncertainties in t and ω. It is true for transforms in general and states that as a
signal is made more localized in time (smaller Δt) the transform becomes less
localized (larger Δω). Conversely, the sine wave y(t) = sinω0t is completely lo-
calized in frequency, and consequently has an infinite extent in time, Δt ≃ ∞.

31113.4 Short-Time Fourier Transforms (Math)

13.3.1
Wave Packet Assessment

Consider the following wave packets:

y1(t) = e−t2∕2 , y2(t) = sin(8t)e−t2∕2 , y3(t) = (1 − t2)e−t2∕2 . (13.10)

For each wave packet:

1. Estimate the width Δt. A good measure might be the full width at half-
maxima (FWHM) of |y(t)|.

2. Use your DFT program to evaluate and plot the Fourier transform Y (ω) for
each wave packet. Make both a linear and a semilog plot (small components
are often important, yet not evident in linear plots).Make sure that your trans-
form has a good number of closely spaced frequency values over a range that
is large enough to show the periodicity of Y (ω).

3. What are the units for Y (ω) and ω in your DFT?
4. For each wave packet, estimate the width Δω. A good measure might be the

full width at half-maxima of |Y (ω)|.
5. For each wave packet determine approximate value for the constant C of the

uncertainty principle

ΔtΔω ≥ 2πC . (13.11)

13.4
Short-Time Fourier Transforms (Math)

The constant amplitude of the functions sin nωt and cos nωt for all times can limit
the usefulness of Fourier analysis for reproducing signals. Because these functions
and their overtones extend over all times with a constant amplitude, there is con-
siderable overlap among them, and consequently the information present in var-
ious Fourier components are correlated. This is undesirable for data storage and
compression, where you want to store a minimum number of data information
and also want to adjust the amount stored based on the desired quality of the re-
constructed signal.2) In lossless compression, which exactly reproduces the original
signal, you save space by storing how many times each data element is repeated,
and where each element is located. In lossy compression, in addition to remov-
ing repeated elements, you also eliminate some transform components consistent
with the uncertainty relation (13.9) and with the level of resolution required in the
reproduction. This leads to yet greater compression.

2) Wavelets have proven to be a highly effective approach to data compression, with the Joint
Photographic Experts Group (JPEG) 2000 standard being based on wavelets.

312 13 Wavelet and Principal Components Analyses:Nonstationary Signals andData Compression

In Section 12.5, we defined the Fourier transform Y (ω) of signal y(t) as

Y (ω) =
+∞

∫
−∞

dt e
−iωt√
2π

y(t) ≡ ⟨ω|y⟩ . (13.12)

As is true for simple vectors, you can think of (13.12) as giving the overlap or
scalar product of the basis function exp(iωt)∕

√
2π and the signal y(t) (notice

that the complex conjugate of the exponential basis function appears in (13.12)).
Another view of (13.12) is as the mapping or projection of the signal y into ω
space. In this latter case the overlap projects out the amount of the periodic func-
tion exp(iωt)∕

√
2π in the signal. In other words, the Fourier component Y (ω) is

also the correlation between the signal y(t) and the basis function exp(iωt)∕
√
2π,

which is the same aswhat results fromfiltering the signal y(t) through a frequency-
ω filter. If there is no exp(iωt) in the signal, then the integral vanishes and there is
no output. If y(t) = exp(iωt), the signal is at only one frequency, and the integral
is accordingly singular.
The signal in Figure 13.1 for our problem clearly has different frequencies

present at different times and for different lengths of time. In the past, this sig-
nal might have been analyzed with a precursor of wavelet analysis known as the
short-time Fourier transform. With that technique, the signal y(t) is “chopped up”
into different segments along the time axis, with successive segments centered
about successive times τ1, τ2 ,… , τN . For instance, we show three such segments
in the boxes of Figure 13.1. Once we have the dissected signal, a Fourier anal-
ysis is made for each segment. We are then left with a sequence of transforms
(Y (ST)

τ1 , Y (ST)
τ2 ,… , Y (ST)

τN), one for each short-time interval, where the superscript
(ST) indicates short time.
Rather than choppingup a signal, we can express short-time Fourier transform-

ing mathematically by imagining translating a window function w(t − τ), which is
zero outside of some chosen interval, over the signal in Figure 13.1:

Y (ST)(ω, τ) =
+∞

∫
−∞

dt eiωt√
2π

w(t − τ) y(t) . (13.13)

Here the values of the translation time τ correspond to different locations of the
window w over the signal, and the window function is essentially a transparent
box of small size on an opaque background. Any signal within the width of the
window is transformed, while the signal lying outside the window is not seen.
Note that in (13.13), the extra variable τ in the Fourier transform indicates the
location of the time around which the window was placed. Clearly, because the
short-time transform is a function of two variables, a surface or 3D plot is needed
to view the amplitude as a function of both ω and τ.

31313.5 The Wavelet Transform

13.5
The Wavelet Transform

The wavelet transform of a time signal y(t) is defined as

Y (s , τ) =
+∞

∫
−∞

dtψ∗
s ,τ(t)y(t) (wavelet transform) , (13.14)

and is similar in concept and notation to a short-time Fourier transform. The
difference is rather than using exp(iωt) as the basis functions, here we are us-
ing wave packets or wavelets ψs ,τ(t) localized in time, such as the those shown in
Figure 13.2. Because eachwavelet is localized in time, each acts as its ownwindow
function. Because each wavelet is oscillatory, each contains its own small range of
frequencies.
Equation 13.14 says that the wavelet transform Y (s , τ) is a measure of the

amount of basis function ψs ,τ(t) present in the signal y(t). The τ variable indi-
cates the time portion of the signal being decomposed, while the s variable is
equivalent to the frequency present during that time:

ω = 2π
s

, s = 2π
ω

(scale-frequency relation) . (13.15)

Because it is key to much that follows, it is a good idea to think about (13.15) for
a while. If we are interested in the time details of a signal, then this is another way
of saying that we are interested in what is happening at small values of the scale s.
Equation 13.15 indicates that small values of s correspond to high-frequency com-
ponents of the signal. That being the case, the time details of the signal are in the
high-frequency, or low-scale, components.

13.5.1
Generating Wavelet Basis Functions

The conceptual discussion of wavelets is over, and it is time to get down to work.
We first need a technique for generating wavelet basis functions, and then we
need to discretize this technique. As is often the case, the final formulation will
turn out to be simple and short, but it will be a while before we get there.
Just as the expansion of an arbitrary function in a complete set of orthogonal

functions is not restricted to any particular set, so too is the wavelet transform
not restricted to any particular wavelet basis, although somemight be better than
others for a given signal. The standard way to generate a family of wavelet basis
functions starts with Ψ(t), a mother or analyzing function of the real variable t,
and then to use this to generate daughter wavelets. As a case in point, we start
with the mother wavelet

Ψ(t) = sin(8t)e−t2∕2 . (13.16)

314 13 Wavelet and Principal Components Analyses:Nonstationary Signals andData Compression

By scaling, translating, and normalizing this mother wavelet,

ψs ,τ(t)
def
= 1√

s
Ψ

(t − τ
s

)
= 1√

s
sin

[
8(t − τ)

s

]
e−(t−τ)2∕2s2 , (13.17)

we generate the four wavelet basis functions (daughters) displayed in Figure 13.4.
We see that larger or smaller values of s, respectively, expand or contract the
mother wavelet, while different values of τ shift the center of the wavelet. Because
the wavelets are inherently oscillatory, the scaling leads to the same number of
oscillations occurring in different time spans, which is equivalent to having basis
states with differing frequencies. We see that s < 1 produces a higher frequency
wavelet, while s > 1 produces a lower frequency one, both of the same shape. As
we shall see, we do not need to store much information to outline the large-time-
scale s behavior of a signal (its smooth envelope), butwe doneedmore information
to specify its short-time-scale s behavior (details). And if we want to resolve yet
finer features in the signal, thenwewill need to havemore information on yet finer
details. Here the division by

√
s is made to ensure that there is equal “power” (or

energy or intensity) in each region of s, although other normalizations can also
be found in the literature. After substituting in the definition of daughters, the
wavelet transform (13.14) and its inverse (van den Berg, 1999) are

Y (s , τ) = 1√
s

+∞∫
−∞

dtΨ∗
(t − τ

s

)
y(t) (Wavelet Transform) , (13.18)

y(t) = 1
C

+∞∫
−∞

dτ
+∞∫
0
ds

ψ∗
s ,τ(t)
s3∕2

Y (s , τ) (Inverse Transform) , (13.19)

where the normalization constant C depends on the wavelet used. In summary,
wavelet bases are functions of the time variable t, as well as of the two parameters s
and τ. The t variable is integrated over to yield a transform that is a function of
the time scale s (frequency 2π∕s) and window location τ. You can think of scale
as being like the scale on a map (also discussed in Section 16.5.2 in relation to
fractal analysis) or in terms of resolution, as might occur in photographic images.
Regardless of the words, as we see in Chapter 16, if we have a fractal, then we have
a self-similar object that looks the same at all scales or resolutions. Similarly, each
wavelet in a set of basis functions is self-similar to the others, but at a different
scale or location. The general requirements for a mother wavelet Ψ are (Addison,
2002; van den Berg, 1999)

1. Ψ(t) is real.
2. Ψ(t) oscillates around zero such that its average is zero:

+∞

∫
−∞

Ψ(t)dt = 0 . (13.20)

31513.5 The Wavelet Transform

–0.6

0.0

0.6

–6 –4 –2 0 2 4 6

t

s = 2, τ = 0

s = 1, τ = 6 s = 2, τ = 0

s = ½, τ = 0

–1.0

0.0

1.0

–6 –4 –2 0 2 4 6

t

–1.0

1.0

0.0

–4 –2 0 2 4 6 8 10

t

–0.6

0.0

0.6

–6 –4 –2 0 2 4 6

t

Ψ

Ψ

Ψ

Ψ

(a) (b)

(c) (d)

Figure 13.4 Four wavelet basis functions
(daughters) generated by scaling (s) and
translating (τ) an oscillating Gaussian mother
wavelet. (a–d) (s = 1, τ = 0), (s = 1∕2, τ = 0),
(s = 1, τ = 6), and (s = 2, τ = 60). Note

how s < 1 is a wavelet with higher fre-
quency, while s > 1 has a lower frequency
than the s = 1 mother. Likewise, the τ = 6
wavelet is just a translated version of the τ = 0
one directly above it.

3. Ψ(t) is local, that is, a wave packet, and is square integrable:

Ψ(|t| → ∞) → 0 (rapidly) ,

+∞

∫
−∞

|Ψ(t)|2 dt < ∞ . (13.21)

4. The transforms of low powers of t vanish, that is, the first p moments:

+∞

∫
−∞

t0 Ψ(t)dt =
+∞

∫
−∞

t1Ψ(t)d t = ⋯ =
+∞

∫
−∞

t p−1Ψ(t)dt = 0 . (13.22)

This makes the transform more sensitive to details than to general shape.
As an example of howwe use the s and τ degrees of freedom in a wavelet trans-

form, consider the analysis of a chirp signal y(t) = sin(60t2) (Figure 13.5). We see
that a slice at the beginning of the signal is compared to our first basis function.
(The comparison is carried out via the convolution of the wavelet with the sig-
nal.) This first comparison is with a narrow version of the wavelet, that is, at low
scale, and yields a single coefficient. The comparison at this scale continues with
the next signal slice, and eventually ends when the entire signal has been covered
(the top row in Figure 13.5). Then in the second row, the wavelet is expanded to
larger s values, and comparisons are repeated. Eventually, the data are processed
at all scales and at all time intervals. The narrow wavelets correspond to a high-
resolution analysis, while the broadwavelets correspond to low resolution. As the
scales get larger (lower frequencies, lower resolution), fewer details of the time
signal remain visible, but the overall shape or gross features of the signal become
clearer.

316 13 Wavelet and Principal Components Analyses:Nonstationary Signals andData Compression

Figure 13.5 A schematic representation of
the steps followed in performing a wavelet
transformation over all time displacements
and scales. The upper signal is first ana-
lyzed by evaluating its overlap with a nar-
row wavelet at the signal’s beginning. This
produces a coefficient that measures the simi-

larity of the signal to the wavelet. The wavelet
is successively shifted over the length of the
signal and the overlaps are successively eval-
uated. After the entire signal is covered, the
wavelet is expanded and the entire analysis is
repeated.

13.5.2
Continuous Wavelet Transform Implementation

Wewant to develop some intuition as to what wavelet transforms look like before
going on to apply them in unknown situations and to develop a discrete algorithm.
Accordingly, modify the program you have been using for the Fourier transform
so that it now computes the continuous wavelet transform.

1. Youwill want to see the effect of using differentmother wavelets. Accordingly,
write a method that calculates the mother wavelet for
a) a Morlet wavelet (13.2),
b) a Mexican hat wavelet (13.3),
c) a Haar wavelet (the square wave in Figure 13.2).

2. Try out your transform for the following input signals and see if the results
make sense:
a) A pure sine wave y(t) = sin 2πt,
b) A sum of sine waves y(t) = 2.5 sin 2πt + 6 sin 4πt + 10 sin 6πt,
c) The nonstationary signal for our problem (13.1)

y(t) =
⎧⎪⎨⎪⎩
sin 2πt , for 0 ≤ t ≤ 2 ,
5 sin 2πt + 10 sin 4πt , for 2 ≤ t ≤ 8 ,
2.5 sin 2πt + 6 sin 4πt + 10 sin 6πt , for 8 ≤ t ≤ 12 .

(13.23)

31713.6 DiscreteWavelet Transforms, MultiresolutionAnalysis⊙

0 2 4 6 8 10 12
–20

–10

0

10

20

Input Signal

Inverted Transform

S
ig

n
a
l

Time t

Figure 13.6 Comparison of an input and reconstituted signal (13.23) using Morlet wavelets
(the curves overlap nearly perfectly). As expected for Fourier transforms, the reconstruction is
least accurate near the endpoints.

d) The half-wave function

y(t) =

{
sinωt , for 0 < t < T

2
,

0 , for T
2
< t < T .

(13.24)

3. ⊙ Use (13.19) to invert your wavelet transform and compare the recon-
structed signal to the input signal (you can normalize the two to each other).
In Figure 13.6 we show our reconstruction.

In Listing 11.1, we give our continuous wavelet transformation CWT.py (Lang
and Forinash, 1998). Because wavelets, with their transforms in two variables, are
somewhat hard to grasp at first, we suggest that you write your own code and
include a portion that does the inverse transform as a check. In the next section
we will describe the discrete wavelet transformation that makes optimal discrete
choices for the scale and time translation parameters s and τ. Figure 13.7 shows a
surface plot of the spectrum produced for the input signal (13.1) in Figure 13.1. In
realization of our goal, we see predominantly one frequency at short times, two
frequencies at intermediate times, and three frequencies at longer times.

13.6
Discrete Wavelet Transforms, Multiresolution Analysis⊙

As was true for DFTs, if a time signal is measured at only N discrete times,

y(tm) ≡ ym , m = 1,… ,N , (13.25)

then we can determine only N independent components of the transform Y . The
trick with wavelets is to remain consistent with the uncertainty principle as we

318 13 Wavelet and Principal Components Analyses:Nonstationary Signals andData Compression

0

1

2
s

Ψs,τ

0

4

8

12

–1

0

1

Figure 13.7 The continuous wavelet spec-
trum obtained by analyzing the input signal
with Morelet wavelets. Observe how at small
values of time τ there is predominantly one
frequency present, how a second, higher fre-

quency (smaller scale) component enters at
intermediate times, and how at larger times
a still higher frequency components enter
(figure courtesy of Z. Dimcovic).

compute only the N independent components required to reproduce the signal.
The discrete wavelet transform (DWT) evaluates the transformswith discrete val-
ues for the scaling parameter s and the time translation parameter τ:

ψj,k(t) =
Ψ

[
(t − k2 j)∕2 j]√

2 j
≡ Ψ

(
t∕2 j − k

)√
2 j

(DWT) , (13.26)

s = 2 j , τ = k
2 j , k , j = 0, 1,… (13.27)

Here j and k are integers whosemaximum values are yet to be determined, andwe
have assumed that the total time interval T = 1, so that time is always measured
in fractions. This choice of s and τ based on powers of 2 is called a dyadic grid
arrangement and will be seen to automatically perform the scalings and transla-
tions at the different time scales that are at the heart of wavelet analysis.3) The
DWT now becomes

Yj,k =
+∞

∫
−∞

dtψ j,k(t)y(t) ≃
∑
m

ψj,k(tm)y(tm)h (DWT) , (13.28)

where the discreteness here refers to the wavelet basis set and not the time vari-
able. For an orthonormal wavelet basis, the inverse discrete transform is then

y(t) =
+∞∑

j,k=−∞
Yj,kψ j,k(t) (inverse DWT) . (13.29)

3) Note that some references scale down with increasing j, in contrast to our scaling up.

31913.6 DiscreteWavelet Transforms, MultiresolutionAnalysis⊙

This inversion will exactly reproduce the input signal at the N input points, but
only if we sum over an infinite number of terms (Addison, 2002). Practical calcu-
lations will be less exact.

Listing 13.1 CWT.py computes a normalized
continuous wavelet transform of the signal
data in input (here assigned as a sum of sine
functions) using Morlet wavelets (courtesy

of Z. Dimcovic). The discrete wavelet trans-
form (DWT) is faster and yields a compressed
transform, but is less transparent.

CWT. py Continuous Wavelet TF . Based on program by Zlatko Dimcovic

import matp lo t l i b . py lab as p ;
from mpl_ too l k i t s . mplot3d import Axes3D ;
from v i s u a l . graph import * ;

o r i g i n a l s i g n a l =gd i sp l ay (x=0 , y=0 , width =600 , he ight =200 , \
t i t l e = ’ Input Signa l ’ , xmin=0 ,xmax=12 , ymin=−20,ymax=20)

or s i g raph=gcurve (co lo r=co lo r . ye l low)
i n v t r g r = gd i sp l ay (x=0 , y=200 , width =600 , he ight =200 ,

t i t l e = ’ Inverted Transform ’ , xmin=0 ,xmax=12 , ymin=−20,ymax=20)
i n v t r = gcurve (x = l i s t (range (0 , 240)) , d i s p l a y= inv t rg r , co l o r=

co lo r . green)
iT = 0 . 0 ; fT = 12 . 0 ; W = fT − iT ;
N = 240 ; h = W/N
noPtsS ig = N; noS = 20 ; noTau = 90 ;
iTau = 0 . ; i S = 0 . 1 ; tau = iTau ; s = iS

Need * very * small s s teps for high frequency ;
dTau = W/noTau ; dS = (W/ iS) * * (1 . / noS) ;
maxY = 0 . 0 0 1 ; s i g = zeros ((noPtsS ig) , f l o a t) # Signal

de f s i g n a l (noPtsSig , y) : # Signal function
t = 0 . 0 ; hs = W/ noPtsS ig ; t1 = W/ 6 . ; t2 = 4 . *W/ 6 .
f o r i in range (0 , noPtsS ig) :

i f t >= iT and t <= t1 : y [i] = s in (2 * p i * t)
e l i f t >= t1 and t <= t2 : y [i] = 5 . * s in (2 * p i * t) +

1 0 . * s in (4 * p i * t) ;
e l i f t >= t2 and t <= fT :

y [i] = 2 . 5 * s in (2 * p i * t) + 6 . * s in (4 * p i * t) + 1 0 . * s in (6 * p i * t)
e l s e :

pr in t (" In s i g na l (. . .) : t out o f range . ")
s y s . e x i t (1)

yy=y [i]
o r s i g r aph . p l o t (pos=(t , yy))
t += hs

s i g n a l (noPtsSig , s i g) # Form s igna l
Yn = zeros ((noS+1 , noTau+1) , f l o a t) # Transform

de f morlet (t , s , tau) : # Mother
T = (t − tau) / s
re turn s in (8 *T) * exp (− T*T/ 2 .)

de f transform (s , tau , s i g) : # Find wavelet TF
i n t e g r a l = 0 .
t = iT ;
f o r i in range (0 , l en (s i g)) :

t += h
i n t e g r a l += s i g [i] * morlet (t , s , tau) *h

re turn i n t e g r a l / sq r t (s)

de f invTransform (t , Yn) : # Compute inverse
s = iS # Transform
tau = iTau
r e c S i g _ t = 0

320 13 Wavelet and Principal Components Analyses:Nonstationary Signals andData Compression

f o r i in range (0 , noS) :
s *= dS # Scale graph
tau = iTau
f o r j in range (0 , noTau) :

tau += dTau
r e c S i g _ t += dTau*dS * (s * * (−1 . 5)) * Yn [i , j] * morlet (t , s , tau)

re turn r e c S i g _ t

pr in t ("working , f inding transform , count 20")
f o r i in range (0 , noS) :

s *= dS # Sca l ing
tau = iT
pr in t (i)
f o r j in range (0 , noTau) :

tau += dTau # Translate
Yn [i , j] = transform (s , tau , s i g)

pr in t (" transform found")
f o r i in range (0 , noS) :

f o r j in range (0 , noTau) :
i f Yn [i , j] > maxY or Yn [i , j] < − 1 *maxY :

maxY = abs (Yn [i , j]) # Find max Y
tau = iT
s = iS
pr in t (" normalize ")
f o r i in range (0 , noS) :

s *= dS
f o r j in range (0 , noTau) :

tau += dTau # Transform
Yn [i , j] = Yn [i , j] /maxY

tau = iT
pr in t (" f inding inverse transform") # Inverse TF
recS igData = " recSig . dat "
r ecS i g = zeros (l en (s i g))
t = 0 . 0 ;
pr in t (" count to 10")
kco = 0 ; j = 0 ; Yinv = Yn
f o r r s in range (0 , l en (r e cS ig)) :

r e cS i g [r s] = invTransform (t , Yinv) # Find input s igna l
xx=rs /20
yy =4 .6* r ecS i g [r s]
i n v t r . p l o t (pos=(xx , yy))
t += h
i f kco %24 == 0 :

j += 1
pr in t (j)

kco += 1
x = l i s t (range (1 , noS + 1))
y = l i s t (range (1 , noTau + 1))
X, Y = p . meshgrid (x , y)

de f functz (Yn) : # Transform function
z = Yn [X, Y]
re turn z

Z = functz (Yn)
f i g = p . f i g u r e ()
ax = Axes3D (f i g)
ax . p lot_wire frame (X, Y , Z , co l o r = ’ r ’)
ax . s e t _ x l a b e l (’ s : s ca l e ’)
ax . s e t _ y l a b e l (’Tau ’)
ax . s e t _ z l a b e l (’ Transform ’)
p . show ()

pr in t ("Done")

32113.6 DiscreteWavelet Transforms, MultiresolutionAnalysis⊙

Note in (13.26) and (13.28) that we have kept the time variable t in the wavelet
basis functions continuous, despite the fact that s and τ have been made discrete.
This is useful in establishing the orthonormality of the basis functions

+∞

∫
−∞

dtψ∗
j,k(t)ψj′ ,k′ (t) = δ j j′δkk′ , (13.30)

where δm,n is the Kronecker delta function. Being normalized to 1 means that
eachwavelet basis has “unit energy”; being orthogonalmeans that each basis func-
tion is independent of the others. And because wavelets are localized in time, the
different transform components have low levels of correlation with each other.
Altogether, this leads to efficient and flexible data storage.
The use of a discrete wavelet basismakes it clear that we sample the input signal

at the discrete values of time determined by the integers j and k. In general, you
want time steps that sample the signal at enough times in each interval to obtain
the desired level of precision. A rule of thumb is to start with 100 steps to cover
eachmajor feature. Ideally, the needed times correspond to the times at which the
signal was sampled, although this may require some forethought.
Consider Figure 13.8.We measure a signal at a number of discrete times within

the intervals (k or τ values) corresponding to the vertical columns of fixed width
along the time axis. For each time interval we want to sample the signal at a num-
ber of scales (frequencies or j values). However, as discussed in Section 13.3, the
basic mathematics of Fourier transforms indicates that the width Δt of a wave
packet ψ(t) and the width Δω of its Fourier transform Y (ω) are related by an un-
certainty principle

Δω Δt ≥ 2π .

This relationplaces a constraint on the intervals inwhich canmeasure times based
on the intervals in which we deduce frequencies. So while we may want a high-
resolution reproduction of our signal, we do not want to store more data than

Time

F
re

q
u

e
n

c
y

Figure 13.8 A graphical representation of the relation between time and frequency resolu-
tions (the uncertainty relation). Each box represents an equal portion of the time-frequency
plane but with different proportions of time and frequency.

322 13 Wavelet and Principal Components Analyses:Nonstationary Signals andData Compression

L

Data

Input

L

H H

LL

LHH

2

2

2

2

2

2

2

Figure 13.9 A multifrequency dyadic (power-
of-2) filter tree used for discrete wavelet trans-
formations. The L boxes represent low-pass
filters and the H boxes represent high-pass fil-
ters. Each filter performs a convolution (trans-
form). The circles containing “↓ 2” filter out

half of the signal that enters them, which is
called subsampling or factor-of-2 decimation.
The signal on the left yields a transform with
a single low and two high components (less
information is needed about the low compo-
nents for a faithful reproduction).

are needed to obtain that reproduction. If we sample the signal for times cen-
tered about some τ in an interval of width Δτ (Figure 13.8) and then compute the
transform at a number of scales s or frequencies ω = 2π∕s covering a range of
height Δω, then the relation between the height and width is restricted by the un-
certainty relation, which means that each of the rectangles in Figure 13.8 has the
same area Δω Δt = 2π. The increasing heights of the rectangles at higher frequen-
cies means that a larger range of frequencies should be sampled as the frequency
increases. The premise here is that the low-frequency components provide the
gross or smooth outline of the signal which, being smooth, does not require much
detail, while the high-frequency components give the details of the signal over
a short time interval and so require many components in order to record these
details with high resolution.
Industrial-strength wavelet analyses do not compute explicit integrals, but in-

stead apply a technique known asmultiresolution analysis (MRA) (Mallat, 1989).
We give an example of this technique in Figure 13.9 and in the code DWT.py in
Listing 13.2. It is based on a pyramid algorithm that samples the signal at a finite
number of times, and then passes it successively through a number of filters, with
each filter representing a digital version of a wavelet.
Filters were discussed in Section 12.8, where in (12.67) we defined the action

of a linear filter as a convolution of the filter response function with the signal.
A comparison of the definition of a filter to the definition of a wavelet trans-
form (13.14) shows that the two are essentially the same. Such being the case,
the result of the transform operation is a weighted sum over the input signal val-
ues, with each weight the product of the integration weight times the value of the
wavelet function at the integration point. Therefore, rather than tabulate explicit
wavelet functions, a set of filter coefficients is all that is needed for DWTs.
Because each filter in Figure 13.9 changes the relative strengths of different fre-

quency components, passing the signal through a series of filters is equivalent,
in wavelet language, to analyzing the signal at different scales. This is the origin
of the name “multiresolution analysis.” Figure 13.9 shows how the pyramid algo-
rithm passes the signal through a series of high-pass filters (H) and then through a
series of low-pass filters (L). Each filter changes the scale to that of the level below.

32313.6 DiscreteWavelet Transforms, MultiresolutionAnalysis⊙

Also note that the circles containing ↓ 2 in Figure 13.9. This operation filters out
half of the signal and so is called subsampling or factor-of-2 decimation. It is the
way we keep the areas of each box in Figure 13.8 constant as we vary the scale and
translation times.We consider subsampling further when we discuss the pyramid
algorithm.
In summary, the DWT process decomposes the signal into smooth informa-

tion stored in the low-frequency components and detailed information stored in
the high-frequency components. Because high-resolution reproductions of sig-
nals require more information about details than about gross shape, the pyramid
algorithm is an effective way to compress data while still maintaining high reso-
lution. In addition, because components of different resolutions are independent
of each other, it is possible to lower the number of data stored by systematically
eliminating higher resolution components. And finally, the use of wavelet filters
builds in progressive scaling, which is particularly appropriate for fractal-like re-
productions.

13.6.1
Pyramid Scheme Implementation⊙

We now implement the pyramid scheme outlined in Figure 13.9. The H and L
filters will be represented by matrices, which is an approximate way to perform
the integrations or convolutions. Then there is a decimation of the output by one-
half, and finally an interleaving of the output for further filtering. This process
simultaneously cuts down on the number of points in the data set and changes
the scale and the resolution. The decimation reduces the number of values of the
remaining signal by one half, with the low-frequency part discarded because the
details are in the high-frequency parts. As indicated in Figure 13.10, the pyramid
DWT algorithm follows five steps:

1. Successively applies the (soon-to-be-derived) c matrix (13.41) to the whole
N-length vector

⎛⎜⎜⎜⎜⎝
Y0

Y1

Y2

Y3

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
c0 c1 c2 c3
c3 −c2 c1 −c0
c2 c3 c0 c1
c1 −c0 c3 −c2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
y0
y1
y2
y3

⎞⎟⎟⎟⎟⎠
. (13.31)

2. Applies it to the N∕2-length smooth vector.
3. Repeats the application until only two smooth components remain.
4. After each filtering, the elements are ordered, with the newest two smooth

elements on top, the newest detailed elements below, and the older detailed
elements below that.

5. The process continues until there are just two smooth elements left.

324 13 Wavelet and Principal Components Analyses:Nonstationary Signals andData Compression

Input

N Samples

N/2

N/4

N/8

2

N/2

N/4

N/8

2

c

c

c

c

d

d

d

d

(1)

(2)

(3)

(n)

(1)

(2)

(3)

(n)

Coefficients

Coefficients

Coefficients

Coefficients

CoefficientsCoefficients

Coefficients

Coefficients

L

L

L

L

H

H

H

H

Figure 13.10 An input signal at the top is pro-
cessed by a tree of high- and low-band filters.
The outputs from each filtering are down-
sampled with half the data kept. The process
continues until there are only two data of

high-band filtering and two data of low-band
filtering. When complete, the total number of
output data equals the total number of signal
data. The process of wavelet analysis is thus
equivalent to a series of filterings.

To illustrate, here we filter and reorder an initial vector of length N = 8:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
y2
y3
y4
y5
y6
y7
y8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

filter
←←←←←←←←←←←←←←←←←→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s(1)1
d(1)
1
s(1)2
d(1)
2
s(1)3
d(1)
3
s(1)4
d(1)
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

order
←←←←←←←←←←←←←←←←←←←→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s(1)1
s(1)2
s(1)3
s(1)4

d(1)
1

d(1)
2

d(1)
3

d(1)
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

filter
←←←←←←←←←←←←←←←←←→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s(2)1
d(2)
1
s(2)2
d(2)
2

d(1)
1

d(1)
2

d(1)
3

d(1)
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

order
←←←←←←←←←←←←←←←←←←←→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s(2)1
s(2)2
d(2)
1

d(2)
2

d(1)
1

d(1)
2

d(1)
3

d(1)
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13.32)

32513.6 DiscreteWavelet Transforms, MultiresolutionAnalysis⊙

The discrete inversion of a transform vector back to a signal vector is made using
the transpose (inverse) of the transfer matrix at each stage. For instance,

⎛⎜⎜⎜⎜⎝
y0
y1
y2
y3

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
c0 c3 c2 c1
c1 −c2 c3 −c0
c2 c1 c0 c3
c3 −c0 c1 −c2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
Y0

Y1

Y2

Y3

⎞⎟⎟⎟⎟⎠
. (13.33)

As a more realistic example, imagine that we have sampled the chirp sig-
nal y(t) = sin(60t2) for 1024 times. The filtering process through which we place
this signal is illustrated as a passage from the top to the bottom in Figure 13.10.
First the original 1024 samples are passed through a single low band and a single
high band (which is mathematically equivalent to performing a series of convo-
lutions). As indicated by the down arrows, the output of the first stage is then
downsampled, that is, the number is reduced by a factor of 2. This results in 512
points from the high-band filter as well as 512 points from the low-band filter.
This produces the first-level output. The output coefficients from the high-band
filters are called {d(1)

i } to indicate that they show details, and {s(1)i } to indicate
that they show smooth features. The superscript indicates that this is the first
level of processing. The detail coefficients {d(1)} are stored to become part of the
final output.
In the next level down, the 512 smooth data {s(1)i } are passed through new low-

and high-band filters using a broader wavelet. The 512 outputs from each are
downsampled to form a smooth sequence {s(2)i } of size 256 and a detailed se-
quence {d(2)

i } of size 256. Again the detail coefficients {d(2)} are stored to become
part of the final output. (Note that this is only half the size of the previously stored
details.) The process continues until there are only two numbers left for the detail
coefficients and two numbers left for the smooth coefficients. Because this last
filtering is carried out with the broadest wavelet, it is of the lowest resolution and
therefore requires the least information.
In Figure 13.11, we show the actual effects on the chirp signal of pyramid fil-

tering for various levels in the processing. (The processing is carried out with
four-coefficient Daub4 wavelets, which we will discuss soon.) At the uppermost
level, the wavelet is narrow, and so convoluting this wavelet with successive sec-
tions of the signal results in smooth components that still contain many large
high-frequency parts. The detail components, in contrast, are much smaller in
magnitude. In the next stage, the wavelet is dilated to a lower frequency and the
analysis is repeated on just the smooth (low-band) part. The resulting output is
similar, but with coarser features for the smooth coefficients and larger values for
the details. Note that in the upper graphs we have connected the points to make
the output look continuous, while in the lower graphs, with fewer points, we have
plotted the output as histograms to make the points more evident. Eventually the
downsampling leads to just two coefficients output fromeach filter, at which point
the filtering ends.

326 13 Wavelet and Principal Components Analyses:Nonstationary Signals andData Compression

–4

–2

0

2

4

0

0

10 20

20

30 40

40

50 60

60

70 90 110 130

–1.0

1.0

0

80 100 120 140 180 220

2

0

–2

4

0

–4

0 15 30 35 45 55 65

0 4 8 12 16

8

4

–4

0

–8

0 1

2

0
2

–2

0

2

3 4

0

2

4

0 2 4

–2

0

2

4

5 6 7 8

10 12 14

2 6 8
0

2

–2

6

4

4

16

4

0

–4

–8

8

4

0

–4

–8
16 20 24 28 32

0.2

0

–0.2

3

1
0

–1

–3

2

0

–2
0 50 100 150 250200

0.04
0.02

–0.02

–0.04

300 350 400 450 500

600 700 800 900 1000

0.06

0.04

0.02

0

1

0

–1

0 100 200 300 400 500

0.8

0.4

0

–0.4

–0.8

0 0.2 0.4 0.6 0.8 1.0

Figure 13.11 In successive passes, the fil-
tering of the original signal at the top goes
through the pyramid algorithm and produces
the outputs shown. The sampling is reduced
by a factor of 2 in each step. Note that in the

upper graphs, we have connected the points
to emphasize their continuous nature while
in the lower graphs we plot the individual
output points as histograms.

32713.6 DiscreteWavelet Transforms, MultiresolutionAnalysis⊙

To reconstruct the original signal (called synthesis or transformation) a reversed
process is followed: Begin with the last sequence of four coefficients, upsample
them, pass them through low- and high-band filters to obtain new levels of coef-
ficients, and repeat until all the N values of the original signal are recovered. The
inverse scheme is the same as the processing scheme (Figure 13.10), only now the
directions of all the arrows are reversed.

13.6.2
Daubechies Wavelets via Filtering

We should now be able to understand that digital wavelet analysis has been stan-
dardized to the point where classes of wavelet basis functions are specified not
by their analytic forms, but rather by their wavelet filter coefficients. In 1988, the
Belgian mathematician Ingrid Daubechies discovered an important class of such
filter coefficients (Daubechies, 1995; Rowe and Abbott, 1995). We will study just
the Daub4 class containing the four coefficients c0, c1, c2, and c3.
Imagine that our input contains the four elements {y1, y2 , y3 , y4} correspond-

ing tomeasurements of a signal at four times.We represent a low-pass filter L and
a high-pass filter H in terms of the four filter coefficients as

L =
(
c0 +c1 c2 +c3

)
, (13.34)

H =
(
c3 −c2 c1 −c0

)
. (13.35)

To see how this works,we forman input vector by placing the four signal elements
in a column and then multiply the input by L and H:

L

⎛⎜⎜⎜⎜⎝
y0
y1
y2
y3

⎞⎟⎟⎟⎟⎠
=

(
c0 c1 c2 c3

) ⎛⎜⎜⎜⎜⎝
y0
y1
y2
y3

⎞⎟⎟⎟⎟⎠
= c0 y0 + c1 y1 + c2 y2 + c3 y3 ,

H

⎛⎜⎜⎜⎜⎝
y0
y1
y2
y3

⎞⎟⎟⎟⎟⎠
=

(
c3 −c2 c1 −c0

) ⎛⎜⎜⎜⎜⎝
y0
y1
y2
y3

⎞⎟⎟⎟⎟⎠
= c3 y0 − c2 y1 + c1 y2 − c0 y3 .

We see that if we choose the values of the ci ’s carefully, the result of L acting on
the signal vector is a single number that may be viewed as a weighted average of
the four input signal elements. Because an averaging process tends to smooth out
data, the low-pass filter may be thought of as a smoothing filter that outputs the
general shape of the signal.
In turn, we see that if we choose the ci values carefully, the result of H acting

on the signal vector is a single number that may be viewed as the weighted differ-
ences of the input signal. Because a differencing process tends to emphasize the

328 13 Wavelet and Principal Components Analyses:Nonstationary Signals andData Compression

variation in the data, the high-pass filter may be thought of as a detail filter that
produces a large output when the signal varies considerably, and a small output
when the signal is smooth.
We have just seen how the individual L and H filters, each represented by a

single row of the filter matrix, outputs one number when acting upon an input
signal containing four elements in a column. If we want the output of the filtering
process Y to contain the same number of elements as the input (four y’s in this
case), we just stack the L and H filters together:

⎛⎜⎜⎜⎜⎝
Y0

Y1

Y2

Y3

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
L
H
L
H

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
y0
y1
y2
y3

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
c0 c1 c2 c3
c3 −c2 c1 −c0
c2 c3 c0 c1
c1 −c0 c3 −c2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
y0
y1
y2
y3

⎞⎟⎟⎟⎟⎠
. (13.36)

Of course, the first and third rows of the Y vector will be identical, as will the
second and fourth, but we will take care of that soon.
Now we go about determining the values of the filter coefficients ci by placing

specific demands upon the output of the filter. We start by recalling that in our
discussion of discrete Fourier transforms we observed that a transform is equiv-
alent to a rotation from the time domain to the frequency domain. Yet we know
from our study of linear algebra that rotations are described by orthogonal ma-
trices, that is, matrices whose inverses are equal to their transposes. In order for
the inverse transform to return us to the input signal, the transfer matrix must be
orthogonal. For our wavelet transformation to be orthogonal, we must have the
4 × 4 filter matrix times its transpose equal to the identity matrix:

⎛⎜⎜⎜⎜⎝
c0 c1 c2 c3
c3 −c2 c1 −c0
c2 c3 c0 c1
c1 −c0 c3 −c2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
c0 c3 c2 c1
c1 −c2 c3 −c0
c2 c1 c0 c3
c3 −c0 c1 −c2

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎠
,

⇒ c20 + c21 + c22 + c23 = 1 , c2c0 + c3c1 = 0 . (13.37)

Two equations in four unknowns are not enough for a unique solution, so we now
include the further requirement that the detail filter H = (c3 , −c0 , c1 , −c2)must
output a zero if the input is smooth. We define “smooth” to mean that the input
is constant or linearly increasing:(

y0 y1 y2 y3
)
=

(
1 1 1 1

)
or

(
0 1 2 3

)
. (13.38)

This is equivalent to demanding that the moments up to order p are zero, that is,
that we have an “approximation of order p.” Explicitly,

H
(
y0 y1 y2 y3

)
= H

(
1 1 1 1

)
= H

(
0 1 2 3

)
= 0 ,

⇒ c3 − c2 + c1 − c0 = 0, 0 × c3 − 1 × c2 + 2 × c1 − 3 × c0 = 0 ,

32913.6 DiscreteWavelet Transforms, MultiresolutionAnalysis⊙

⇒ c0 =
1 +

√
3

4
√
2

≃ 0.483 , c1 =
3 +

√
3

4
√
2

≃ 0.836 , (13.39)

c2 =
3 −

√
3

4
√
2

≃ 0.224 , c3 =
1 −

√
3

4
√
2

≃ −0.129 . (13.40)

These are the basic Daub4 filter coefficients. They are used to create larger filter
matrices by placing the row versions of L and H along the diagonal, with succes-
sive pairs displaced two columns to the right. For example, for eight elements

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 c2 c3 0 0 0 0
c3 −c2 c1 −c0 0 0 0 0
0 0 c0 c1 c2 c3 0 0
0 0 c3 −c2 c1 −c0 0 0
0 0 0 0 c0 c1 c2 c3
0 0 0 0 c3 −c2 c1 −c0
c2 c3 0 0 0 0 c0 c1
c1 −c0 0 0 0 0 c3 −c2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0
y1
y2
y3
y4
y5
y6
y7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13.41)

Note that in order not to lose any information, the last pair on the bottom two
rows is wrapped over to the left. If you perform the actual multiplications indi-
cated in (13.41), you will note that the output has successive smooth and detailed
information. The output is processed with the pyramid scheme.
The time dependences of two Daub4 wavelets is displayed in Figure 13.12.

To obtain these from our filter coefficients, first imagine that an elementary
wavelet y1,1(t) ≡ ψ1,1(t) is input into the filter. This should result in a trans-
form Y1,1 = 1. Inversely, we obtain y1,1(t) by applying the inverse transform to
a Y vector with a 1 in the first position and zeros in all the other positions. Like-
wise, the ith member of the Daubechies class is obtained by applying the inverse

–0.1

–0.06

–0.02

0.02

0.06

0.1

0 400 800
–0.3

–0.1

0.1

0.3

0 400 800

(a) (b)

Figure 13.12 (a) The Daub4 e6 wavelet constructed by inverse transformation of the wavelet
coefficients. This wavelet has been found to be particularly effective in wavelet analyses. (b)
The sum of Daub4 e10 and Daub4 1e58 wavelets of different scale and time displacements.

330 13 Wavelet and Principal Components Analyses:Nonstationary Signals andData Compression

transform to a Y vector with a 1 in the ith position and zeros in all the other
positions.
Thewavelet for coefficient 6 (thus the e6 notation) is shown in Figure 13.12a and

in Figure 13.12b the sum of two wavelets corresponding to the coefficients 10 and
58. We see that the two wavelets have different levels of scale as well as different
time positions. So despite the fact that the time dependence of the wavelets is not
evident when wavelet (filter) coefficients are used, it is there.

13.6.3
DWT Implementation and Exercise

Listing 13.2 gives our program for performing a DWT on the chirp signal y(t) =
sin(60t2). The method pyram calls the daube4 method to perform the DWT or
inverse DWT, depending upon the value of sign.

1. Modify the program so that you output to a file the values for the input signal
that your code has read in. It is always important to check your input.

2. Try to reproduce Figure 13.11 by using various values for the variable nend that
controls when the filtering ends. A value nend=1024 should produce just the
first step in the downsampling (top row in Figure 13.11). Selecting nend=512
should produce the next row,while nend=4 shouldoutput just two smooth and
detailed coefficients.

3. Reproduce the scale-time diagram shown on the right of Figure 13.11. This
diagram shows the output at different scales and serves to interpret the main
components of the signal and the time in which they appear. The time line at
the bottom of the figure corresponds to a signal of length 1 over which 256
samples were recorded. The low-band (smooth) components are shown on
the left, and the high-band components on the right.
a) The bottommost figure results when nend = 256.
b) The figure in the second row up results from nend = 128, and we have

the output from two filterings. The output contains 256 coefficients but
divides time into four intervals and shows the frequency components of
the original signal in more detail.

c) Continue with the subdivisions for nend = 64, 32, 16, 8, and 4.
4. For each of these choices except the topmost, divide the time by 2 and separate

the intervals by vertical lines.
5. The topmost spectrum is your final output. Can you see any relation between

it and the chirp signal?
6. Change the sign of sign and check that the inverse DWT reproduces the orig-

inal signal.
7. Use the code to visualize the time dependence of theDaubechiesmother func-

tion at different scales.
a) Start by performing an inverse transformation on the eight-component

signal [0,0,0,0,1,0,0,0]. This hould yield a function with a width of about
5 units.

33113.6 DiscreteWavelet Transforms, MultiresolutionAnalysis⊙

b) Next perform an inverse transformation on a unit vector with N = 32 but
with all components except the fifth equal to zero. The width should now
be about 25 units, a larger scale but still covering the same time interval.

c) Continue this procedure until you obtain wavelets of 800 units.
d) Finally, with N = 1024, select a portion of the mother wavelet with data in

the horizontal interval [590,800]. This should show some self similarity.

Listing 13.2 DWT.py computes the DWT using the pyramid algorithm for the 2n signal values
stored in f[] (here assigned as the chirp signal sin 60t2). The Daub4 digital wavelets are the
basis functions, and sign = ±1 for transform/inverse.

DWT. py : Discrete Wavelet Transform , Daubechies type , g loba l va r iab le s

from v i s u a l import *
from v i s u a l . graph import *

sq3 = sq r t (3) ; f sq2 = 4 . 0 * sq r t (2) ; N = 1024 # N = 2^n
c0 = (1+ sq3) / f sq2 ; c1 = (3+ sq3) / f sq2 # Daubechies 4 coeff
c2 = (3− sq3) / f sq2 ; c3 = (1− sq3) / f sq2
t r an s f g r 1 = None # Display indica tor
t r an s f g r 1 = None

de f chirp (x i) : # Chirp s igna l
y = s in (6 0 . 0 * x i * * 2) ;
re turn y ;

de f daube4 (f , n , s i gn) : # DWT i f sign >= 0 , inverse i f sign < 0
g loba l t r ans f g r1 , t r an s f g r 2
t r = zeros ((n + 1) , f l o a t) # Temporary
i f n < 4 : re turn
mp = n/2
mp1 = mp + 1 # midpoint + 1
i f s i gn >= 0 : # DWT

j = 1
i = 1
maxx = n/2
i f n > 128 : # Scale

maxy = 3 .0
miny = − 3 . 0
Maxy = 0 .2
Miny = − 0 . 2
speed = 50 # Fast ra te

e l s e :
maxy = 10 .0
miny = − 5 . 0
Maxy = 7 .5
Miny = − 7 . 5
speed = 8 # Lower rate

i f t r an s f g r 1 :
t r an s f g r 1 . d i s p l a y . v i s i b l e = Fa l s e
t r an s f g r 2 . d i s p l a y . v i s i b l e = Fa l s e
del t r an s f g r 1
del t r an s f g r 2

t r an s f g r 1 = gd i sp l ay (x=0 , y=0 , width =600 , he ight =400 ,\
t i t l e = ’ Wavelet TF, down sample + low pass ’ , xmax=maxx , \
xmin=0 , ymax=maxy , ymin=miny)
t r an s f = gvbars (d e l t a =2 .* n /N, co lo r=co lo r . cyan , d i s p l a y=t r an s f g r 1)
t r an s f g r 2 = gd i sp l ay (x=0 , y=400 , width =600 , he ight =400 ,\

t i t l e = ’ Wavelet TF, down sample + high pass ’ , \
xmax=2*maxx , xmin=0 , ymax=Maxy , ymin=Miny)

t r an s f 2 = gvbars (d e l t a =2 . * n /N, co lo r=co lo r . cyan , d i s p l a y=t r an s f g r 2)
whi le j <= n − 3 :

332 13 Wavelet and Principal Components Analyses:Nonstationary Signals andData Compression

r a t e (speed)
t r [i] = c0 * f [j] + c1 * f [j +1] + c2 * f [j +2] + c3 * f [j +3]# low−pass
t r an s f . p l o t (pos = (i , t r [i])) # c co e f f i c i e n t s
t r [i +mp] = c3 * f [j] − c2 * f [j +1] + c1 * f [j +2] − c0 * f [j +3] # high
t r an s f 2 . p l o t (pos = (i + mp, t r [i + mp]))
i += 1 # d coe f f i c ent s
j += 2 # downsampling

t r [i] = c0 * f [n−1] + c1 * f [n] + c2 * f [1] + c3 * f [2] # low−pass
t r an s f . p l o t (pos = (i , t r [i])) # c co e f f i c i e n t s
t r [i +mp] = c3 * f [n−1] − c2 * f [n] + c1 * f [1] − c0 * f [2] # high−pass
t r an s f 2 . p l o t (pos = (i+mp, t r [i +mp]))

e l s e : # inverse DWT
t r [1] = c2 * f [mp] + c1 * f [n] + c0 * f [1] + c3 * f [mp1] # low−pass
t r [2] = c3 * f [mp] − c0 * f [n] + c1 * f [1] − c2 * f [mp1] # high−pass
j = 3
f o r i in range (1 , mp) :

t r [j] = c2 * f [i] + c1 * f [i +mp] + c0 * f [i +1] + c3 * f [i +mp1] # low
j += 1 # upsample
t r [j] = c3 * f [i] − c0 * f [i +mp] + c1 * f [i +1] − c2 * f [i +mp1] # high
j += 1 ; # upsampling

f o r i in range (1 , n+1) :
f [i] = t r [i] # copy TF to array

de f pyram (f , n , s i gn) : # DWT, replaces f by TF
i f (n < 4) : re turn # too few data
nend = 4 # ind ica t e s when to stop
i f s i gn >= 0 : # Transform

nd = n
whi le nd >= nend : # Downsample f i l t e r i n g

daube4 (f , nd , s i gn)
nd //= 2

e l s e : # Inverse TF
whi le nd <= n : # Upsampling , f i x thanks to Pavel Snopok

daube4 (f , nd , s i gn)
nd *= 2

f = zeros ((N + 1) , f l o a t) # data vector
i n x i = 1 . 0 /N # for chirp s igna l
x i = 0 .0
f o r i in range (1 , N + 1) :

f [i] = chirp (x i) # Function to TF
x i += inx i ;

n = N # must be 2 m̂
pyram (f , n , 1) # TF
pyram(f , n , − 1) # Inverse TF

13.7
Principal Components Analysis

We have seen that Fourier analysis has a shortcoming of having all of its compo-
nents correlated. This slows down the calculation of transforms and makes com-
pression and reconstitution of data problematic. Wavelets, on the other hand, ap-
pear excellent at data compression, but not appropriate for high-dimensionality
data sets or for all physical situations. Principal components analysis (PCA) is ex-
cellent for situations in which there are correlation among the variable in the data,
and especially for the type of space-time correlations as might be found in brain
waves, facial patterns and ocean currents. The same basic PCA approach is used

33313.7 Principal Components Analysis

–2

–1

0

1

2

–2 –1 0 1 2
x

y

e1

e2

–2

–1

0

1

2

–2 –1 0 1 2

x2

x1(a) (b)

Figure 13.13 (a) The normalized data and eigenvectors of covariance matrix. (b) The normal-
ized data using the PCA eigenvectors as basis.

in many fields with names such as the Karhunen–Loève transform, the Hotelling
transform, the proper orthogonal decomposition, singular value decomposition,
factor analysis, empirical orthogonal functions, empirical component analysis,
empirical modal analysis, and so forth (Wikipedia, 2014).
A key element in PCA is viewing a collection of data as defining a multidimen-

sional data space, and then finding a few basic components in those data that con-
tain most of the “power”. For example, imagine the output of 32 detectors of mag-
netic brain waves recorded every tenth of a second for an hour. In this case there
will be 33 space-time dimensions to the data and 10 × 60 × 60 × 32 = 1 152 000
data elements. And so we are nowmotivated to transform from the detector-time
interval basis to a new set of basis functions known as the principal components
which are pretty much guaranteed to concentrate most of the signal strength into
a few components (Jackson, 1991; Jolliffe, 1991; Smith, 2002). This is analogous to
the principal axes theorem of mechanics, in which the description of the rotation
of a solid object is greatly simplified if moments of inertia relative to the principal
axes are used.
As follows from the example that we will work out soon, on the left of Fig-

ure 13.13, we see a bunch of data point along with the two principal component
eigenvectors for these data. This figure shows how the first component accounts
formost of the variability of the data (has largest possible variance), while the next
component is orthogonal, and thus not correlated with the first component. The
second component accounts for much less of the data, namely the most possible
variance in the data within the constraint of being orthogonal to the first compo-
nent.

334 13 Wavelet and Principal Components Analyses:Nonstationary Signals andData Compression

Table 13.1 PCA data.

Data Adjusted data In PCA basis
x y x y x1 x2

2.5 2.4 0.69 0.49 –0.828 –0.175
0.5 0.7 –1.31 –1.21 1.78 0.143
2.2 2.9 0.39 0.99 –0.992 0.484
1.9 2.2 0.09 0.29 –0.274 0.130
3.1 3.0 1.29 1.09 –1.68 –0.209
2.3 2.7 0.49 0.79 0.913 0.175
2 1.6 0.19 –0.31 0.0991 –0.350
1.0 1.1 –0.81 –0.81 1.14 0.464
1.6 1.6 –0.31 –0.31 0.438 0.0178
1.1 0.9 –0.71 –1.01 1.22 –0.163

13.7.1
Demonstration of Principal Component Analysis

The derivation of PCA and proofs of its theorems can get quite involved. Instead,
as our introduction to the subject we take a purely operational approach and work
through a simple PCA analysis following the example of (Smith, 2002).We assume
that the data have two dimension, and we call these x and y, but they need not be
related to spatial positions.

1. Enter Data We start with a data set, in our case the first two columns of Ta-
ble 13.1.

2. Subtract the Mean PCA analysis assumes that the data in each dimension has
zero mean. Accordingly, as shown in columns two and three in Table 13.1, we cal-
culate the mean for each column, (x̄, ȳ), and then subtract them from the data
in each column. The resulting adjusted data are given in the third and fourth
columns of the table, and placed here into a data matrix:

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.69 0.49
−1.31 −1.21
0.39 0.99
0.09 0.29
1.29 1.09
0.49 0.79
0.19 −0.31
−0.81 −0.81
−0.31 −0.31
−0.71 −1.01

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13.42)

33513.7 Principal Components Analysis

3. Calculate CovarianceMatrix Recall that for a data set withN members, the vari-
ance is a measure of the deviation of the data from their mean:

var(x) = 1
N − 1

N∑
i=1

(xi − x̄)2 = 1
N − 1

N∑
i=1

(xi − x̄)(xi − x̄) . (13.43)

When a data set contains multiple dimensions (variables), there may well be a de-
pendence of the data in one-dimensional variable to that in another. The covari-
ance gives a measure of how much the deviation of one variable from the mean
varies with the deviation of another variable from the mean:

cov(x , y) = 1
N − 1

N∑
i=1

(xi − x̄)(yi − ȳ) , (13.44)

so that a positive covariance indicates that the x and y variables tend to change to-
gether in the same direction. Also, we see that the variance (13.43) can be viewed
as a special case of the covariance, var(x) = cov(x , x), and that there is a sym-
metry here with cov(x , y) = cov(y, x). All of these possible covariance values are
combined into a symmetric covariance matrix, which for our 2 × 2 case is just

C =

(
cov(x , x) cov(x , y)
cov(y, x) cov(y, y)

)
. (13.45)

The next step in a PSA is to compute the covariance matrix for all of the data,
which in our case turns out to be

C =

(
0.6166 0.6154
0.6154 0.7166

)
. (13.46)

4. Compute Unit Eigenvector and Eigenvalues of C Easy to do with NumPy:

λ1 = 1.284 , λ2 = 0.4908 , (13.47)

e1 =

(
−0.6779
−0.7352

)
, e2 =

(
−0.7352
0.6789

)
, (13.48)

where we have ordered the eigenvalues and eigenvectors so that the largest eigen-
value is first. As we shall see, the eigenvector corresponding to this largest eigen-
value is in fact the principal component in the data, typically with ∼ 80% of the
power in it.
In Figure 13.13, we show the normalized data and the two unit eigenvectors of

the covariancematrix (scaled to fill frame).Note that the e1 eigenvector looks very
much like a straight-line best fit to the data. This is the major trend in the data.
The other eigenvector e2 is clearly orthogonal to e1, and contain much less of the
signal strength than e1. It is in the direction of the variation from the straight line
fit, and cleaerly contains less information about the data. These are the essential
ideas behind PSA.

336 13 Wavelet and Principal Components Analyses:Nonstationary Signals andData Compression

5. Expressing Data in Terms of Principal Components Now that we have the princi-
pal components, we need to do something with them, namely, express the data
in terms of them. Clearly, one choice is to ignore the eigenvectors corresponding
to the smaller eigenvalues (only one in our simple example). This is useful for fo-
cusing attention on the key elements in the data, as well as for compressing the
data. What one usually does now is to form a feature vector F made up of the
eigenvectors that we wish to keep, for example,

F2 =

(
−0.6779 −0.7352
−0.7352 0.6779

)
, (13.49)

F1 =

(
−0.6779
−0.7352

)
, (13.50)

where F1 keeps just one principal component, while F2 keeps two. The matrix
gets its name because by deciding which eigenvectors we wish to keep, we are
deciding which features of the data we wish to display.
Next, we form the transpose of featurematrix composed of the eigenvectors we

wish to keep, and of the adjusted data matrix:

FT
2 =

(
−0.6779 −0.7352
−0.7352 0.6779

)
, (13.51)

XT =
(
0.69 −1.31 0.39 0.09 1.29 0.49 0.19 −0.81 −0.31 −0.71
0.49 −1.21 0.99 0.29 1.09 0.79 −0.31 −0.81 −0.31 −1.01

)
.

(13.52)

To express the data in terms of the principal components, we multiply the trans-
posed feature matrix by the transposed adjusted data matrix:

XPCA = FT
2 × XT (13.53)

=

(
−0.6779 −0.7352
−0.7352 0.6779

)
(13.54)

×
(
0.69 −1.31 0.39 0.09 1.29 0.49 0.19 −0.81 −0.31 −0.71
0.49 −1.21 0.99 0.29 1.09 0.79 −0.31 −0.81 −0.31 −1.01

)
(13.55)

=
(

0.828 1.78 −0.992 −0.274 −1.68 −0.913 0.0991 1.15 0.438 1.22
−0.175 0.143 0.384 0.130 −0.209 0.175 −0.350 0.464 0.178 −0.162

)
.

(13.56)

In Table 13.1, we place the transform data elements back into standard form,
along side the original data. On the right of Figure 13.13 we show the normalized

33713.7 Principal Components Analysis

data plotted using the eigenvectors e1 and e2 as basis. This plot shows just where
each datum point sits relative to the trend in the data. If we use only the principal
component, we would have all of the data on a straight line (we leave that as an
exercise). Of course, our data are so simple that this example does not show the
power of the technique. But if we have millions of data, it would most valuable to
be able to categorize them in terms of a few components.

13.7.2
PCA Exercises

1. Use just the principal eigenvector to perform the PCA analysis just completed
with two eigenvectors.

2. Store data from ten cycles of the chaotic pendulum studied in Chapter 15, but
do not include transients. Perform a PCA of these data and plot the results
using principal component axes.

339

14
Nonlinear Population Dynamics

Nonlinear dynamics is one of the success stories of computational physics. It has
been explored by scientists, and engineers with computers as an essential tool, of-
ten then followed by mathematicians (Motter and Campbell, 2013). The computa-
tions have led to the discovery of newphenomena such as solitons, chaos, and frac-
tals, as youwill discover on your own. In addition, because biological systems often
have complex interactions and may not be in thermodynamic equilibrium states,
models of them are often nonlinear, with properties similar to those of other com-
plex systems. In this chapter, we look at discrete models of population dynamics
that are simple yet produce surprising complex behavior. In the next chapter, we
explore chaos for a continuous system.

14.1
Bug Population Dynamics

Problem Populations of insects and patterns of weather do not appear to follow
any simple laws.1) At times, the populations patterns appear stable, at other times
they vary periodically, and at other times they appear chaotic, with no discern-
able regularity, only to settle down to something simple again. Your problem is to
deduce if a simple law can produce such complicated behaviors.

14.2
The Logistic Map (Model)

Imagine a bunch of insects reproducing generation after generation. We start
with N0 bugs, then in the next generation we have to live with N1 of them, and af-
ter i generations there areNi bugs to bug us.Wewant to define amodel of howNn
varies with the discrete generation number n. Clearly, if the rates of breeding and
dying are the same, then a stable population should occur. Yet bugs cannot live

1) Except maybe in Oregon, where storm clouds come to spend their weekends.

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

340 14 Nonlinear Population Dynamics

on love alone, they must also eat, and bugs not being farmers must compete for
the available food supply. This tends to restrict their number to lie below some
maximum population. We want to build these observations into our model.
For guidance, we look to the radioactive decay simulation in Chapter 4, where

the discrete decay law, ΔN∕Δt = −λN , led to exponential-like decay. Likewise, if
we reverse the sign of λ, we should get exponential-like growth, which is a good
place to start ourmodelling.We assume that the bug-breeding rate is proportional
to the number of bugs:

ΔNi

Δt
= λNi . (14.1)

Because we know the empirical fact that exponential growth usually tapers off, we
extend the model by incorporating the observation that for a given environment
there must be maximum population N∗, which is called the carrying capacity.
Consequently, we modify the exponential growth model (14.1) by modifiying the
growth rate so that it decreases as the population Ni approaches N∗:

λ → λ′(N∗ − Ni) (14.2)

⇒
ΔNi

Δt
= λ′(N∗ − Ni)Ni . (14.3)

We expect that when Ni is small compared to N∗, the population will grow expo-
nentially. We also expect that as Ni approachesN∗, the growth rate will decrease,
eventually becoming negative if Ni exceeds the carrying capacity N∗.
Equation 14.3 is a form of the logistic map. It is usually written as a relation

between the number of bugs in future and present generations:

Ni+1 = Ni + λ′Δt(N∗ − Ni)Ni (14.4)

= Ni(1 + λ′ΔtN∗)
[
1 − λ′Δt

1 + λ′ΔtN∗
Ni

]
. (14.5)

This relation looks simpler when expressed in terms of dimensionless variables:

xi+1 = μxi (1 − xi) , (14.6)

μ
def
= 1 + λ′ΔtN∗ , (14.7)

xi
def
= λ′Δt

1 + λ′ΔtN∗
Ni ≃

Ni

N∗
. (14.8)

Here μ is a dimensionless growth parameter and xi is a dimensionless population
variable. Observe from (14.7) that the growth rate μ = 1 when the breeding rate λ′
equals 0, and is otherwise expected to be larger than 1. If the number of bugs
born per generation λ′Δt is large, then μ ≃ λ′ΔtN∗ and xi ≃ Ni∕N∗, that is, xi is
essentially the fraction of the maximum population N∗. Consequently, realistic x

34114.3 Properties of NonlinearMaps (Theory and Exercise)

values generally lie in the range 0 ≤ xi ≤ 1, with x = 0 corresponding to no bugs,
and x = 1 corresponding to the maximum population.
The map (14.6) is seen to be the sum of a linear and a quadratic dependence

on xi . In general, we employ the term “map” to refer to a function f (x) that con-
verts one number in a sequence to the next

xi+1 = f (xi) . (14.9)

For the logisticmap, f (x) = μx(1−x), with the quadratic dependence on xmaking
this a nonlinear map, and the dependence on only the one variable x making it a
one-dimensional map.
Just by looking at (14.6) there is no way of knowing how good a model this

will be. Being as simple as it is, the model cannot be expected to be a complete
description of the population dynamics of bugs. However, if it exhibits some fea-
tures similar to those found in nature, then it may well form the foundation for a
more complete description.

14.3
Properties of Nonlinear Maps (Theory and Exercise)

Rather than going through some fancy mathematical analysis to learn about the
properties of the logisticmap (Rasband, 1990), we suggest that you explore it your-
self on a computer or a calculator by generating and plotting sequences of values.
You should get results similar to those shown in Figures 14.1 and 14.2.

Stable Populations Wewant to see if the model can produce a stable population,
that is, one that remains the same from generation to generation.

1. Calculate and plot xi+1 as a function of the generation number i.
2. The initial population x0 is called the seed, and we suggest x0 = 0.75 as a good

starting value (the dynamical effects are not sensitive to the seed).

01 02 0
0

0.4

0.8

01 02 0

xn

n n(a) (b)

Figure 14.1 The insect population xn vs. the generation number n for the two growth rates:
(a) μ = 2.8, a single attractor; (b) μ = 3.3, a double attractor.

342 14 Nonlinear Population Dynamics

01 02 0 01 02 0

xn

n n(a) (b)

Figure 14.2 The insect population xn vs. the generation number n for two different growth
rates: (a) μ = 3.5, a quadruple attractor; (b) μ = 3.8, a chaotic regime.

3. Your results should be highly sensitive to the value for the growth rate μ.
Too large a value may lead to instabilities, while too small a value may lead
to extinction. To make sure that the model is behaving reasonably, try some
cases for which we can be fairly sure of what the results should be. By trying
some negative and zero values for μ (for example, −1,−0.75,−0.5,−0.25, 0)
we should obtain decaying populations.

4. Now that you have some confidence in the model, see if you can increase the
population to some stable values. With the same initial population as before,
try μ = 0, 0.5, 1.0, 1.5, 2. Make plots of xi vs. i for each of these cases.

5. Take note of the transient behavior in these plots that occur for early genera-
tions before a steady state or more regular behavior sets in. In general, these
are not the long-term dynamical behaviors of interest.

6. For a fixed value of μ, try different values for the seed population x0. Verify
that differing values of x0 do affect the transients, but not the values of the
stable populations.

You should have found thatwith positive growth rates μ, thismodel yields stable
populations, with the bugs approaching the maximum population more rapidly
as μ gets larger. This is a good validation of the model. Some typical behaviors are
shown in Figures 14.1 and 14.2. In Figure 14.1a, we see equilibration into a single
population; in Figure 14.1b, we see oscillation between two population levels; in
Figure 14.2a we see oscillation among four levels; and in Figure 14.2b we see a
chaotic system.

14.3.1
Fixed Points

An important property of the map (14.6) is the possibility of the sequence xi
reaching a fixed point x∗, that is, a value of the population at which the system
remains. At a one-cycle fixed point, there is no change in the population from

34314.3 Properties of NonlinearMaps (Theory and Exercise)

generation i to generation i + 1, that is,

xi+1 = xi = x∗ . (14.10)

Substituting the logisticmap (14.6) into this equation produces an algebraic equa-
tion that we can solve

μx∗(1 − x∗) = x∗ , (14.11)

⇒ x∗ = 0 ,
μ − 1
μ

. (14.12)

The nonzero fixed point x∗ = (μ − 1)∕μ corresponds to a stable population with
a balance between birth and death that is reached regardless of the initial popu-
lation (Figure 14.1a). In contrast, the x∗ = 0 point is unstable and the population
remains static only as long as no bugs exist; if even a few bugs are introduced, ex-
ponential growth occurs. Further analysis (Section 14.8) tells us that the stability
of a population is determined by the magnitude of the derivative of the mapping
function f (xi) at the fixed point (Rasband, 1990):||||d f

dx
||||x∗ < 1 (stable) . (14.13)

For the one cycle of the logistic map (14.6), the derivative is

d f
dx

||||x∗ = μ − 2μx∗ =

{
μ, stable at x∗ = 0 if μ < 1 ,
2 − μ, stable at x∗ =

μ−1
μ

if μ < 3 .
(14.14)

14.3.2
Period Doubling, Attractors

Equation 14.14 tells us that while the equation for fixed points (14.12) may be
satisfied for all values of μ, the populations will not be stable if μ > 3. In this lat-
ter case, the system’s long-term population bifurcates into two populations, a so
called two-cycle. The effect is known as period doubling and is evident in Fig-
ure 14.1b. Because the system now acts as if it were attracted to two populations,
these populations are called attractors or cycle points. We can easily predict the x
values for these two-cycle attractors by demanding that generation i + 2 have the
same population as generation i:

xi = xi+2 = μxi+1(1 − xi+1) (14.15)

⇒ x∗ =
1 + μ ±

√
μ2 − 2μ − 3
2μ

. (14.16)

We see that as long as μ > 3, the square root produces a real number and thus that
physical solutions exist (complex or negative x∗ values are nonphysical).We leave
it to your computer explorations to discover how the system continues to double
periods as μ is further increased. In all cases, the pattern repeats: one populations
bifurcates into two.

344 14 Nonlinear Population Dynamics

14.4
Mapping Implementation

It is now time to carry out a more careful investigation of the logistic map along
the original path followed by (Feigenbaum, 1979):

1. Confirm Feigenbaum’s observations of the different patterns shown in Fig-
ures 14.1 and 14.2 that occur for μ = (0.4, 2.4, 3.2, 3.6, 3.8304) and seed x0 =
0.75.

2. Identify the following in your graphs:
a) Transients: Irregular behaviors before reaching a steady state that differ for

different seeds.
b) Asymptotes: In some cases, the steady state is reached after only 20 gener-

ations, while for larger μ values, hundreds of generations may be needed.
These steady-state populations are independent of the seed.

c) Extinction: If the growth rate is too low, μ ≤ 1, the population dies off.
d) Stable states:The stable single-population states attained for μ < 3 should

agree with the prediction (14.12).
e) Multiple cycles: Examine themap orbits for a growth parameter μ increas-

ing continuously through 3. Observe how the system continues to double
periods as μ increases. To illustrate, in Figure 14.2a with μ = 3.5, we notice
a steady state in which the population alternates among four attractors (a
four-cycle).

f) Intermittency:Observe simulations for 3.8264 < μ < 3.8304. Here the sys-
tem appears stable for a finite number of generations and then jumps all
around, only to become stable again.

g) Chaos: We define chaos as the deterministic behavior of a system display-
ing no discernible regularity. This may seem contradictory; if a system is
deterministic, it must have step-to-step correlations (which, when added
up,mean long-range correlations); but if it is chaotic, the complexity of the
behavior may hide the simplicity within. In an operational sense, a chaotic
system is one with an extremely high sensitivity to parameters or initial
conditions. This sensitivity to even minuscule changes is so high that it is
impossible to predict the long-range behavior unless the parameters are
known to infinite precision (a physical impossibility).

3. The system’s behavior in the chaotic region is critically dependent on the ex-
act values of μ and x0. Systems starting out with nearly identical values for μ
and x0 may end up with quite different behaviors. In some cases, the compli-
cated behaviors of nonlinear systems will be chaotic, but this is not the same
as being random.2)

a) Compare the long-termbehaviors of starting with the two essentially iden-
tical seeds x0 = 0.75 and x′0 = 0.75(1 + 𝜖), where 𝜖 ≃ 2 × 10−14.

2) You may recall from Chapter 4 that a truly random sequence of events does not even have next
step predictability, while these chaotic systems do.

34514.5 BifurcationDiagram (Assessment)

b) Repeat the simulation with x0 = 0.75 and two essentially identical survival
parameters, μ = 4.0 and μ′ = 4.0(1 − 𝜖), where 𝜖 ≃ 2 × 10−14. Both simu-
lations should start off the same but eventually diverge.

14.5
Bifurcation Diagram (Assessment)

Watching the population change with generation number gives a good idea of
the basic dynamics, at least until it gets too complicated to discern patterns. In
particular, as the number of bifurcations keeps increasing and the systembecomes
chaotic, itmay be hard to see a simple underlying structurewithin the complicated
behavior. One way to visualize what is going on is to concentrate on the attractors,
that is, those populations that appear to attract the solutions and to which the
solutions continuously return (long-term iterates). A plot of these attractors of
the logistic map as a function of the growth parameter μ is an elegant way to
summarize the results of extensive computer simulations.
A bifurcation diagram for the logistic map is shown in Figure 14.3, with one

for a Gaussian map given in Figure 14.4. To generate such a diagram you proceed
through all values of μ in steps. For each value of μ, you let the system go through
hundreds of iterations to establish that the transients have died out, and thenwrite
the values (μ, x∗) to a file for hundreds of iterations after that. If the system falls
into an n-cycle for this μ value, then there should predominantly be n different
values written to the file. Next, the value of the initial populations x0 is changed
slightly, and the entire procedure is repeated to ensure that no fixed points are
missed. When finished, your program will have stepped through all the values
of μ and x0. Our sample program Bugs.py is shown in Listing 14.1.

1
0

0.2

0.4

0.6

x*

µ

0.8

1.0

2 3 4

Figure 14.3 Bifurcation plot of attractor population x∗ vs. growth rate μ for the logistic map.
The inset shows some details of a three-cycle window. (The colors or gray scales indicate the
regimes over which we distributed the work on different CPUs when run in parallel.)

346 14 Nonlinear Population Dynamics

b = 1
b = 4
b = 5

Figure 14.4 Bifurcation plot for the Gaussian map f (x) = exp(−bx2)+ μ (courtesy of W. Hager).

Listing 14.1 Bugs.py produces the bifurcation diagram of the logistic map. A proper program
requires finer grids, a scan over initial values, and removal of duplicates.

Log is t i c map

from v i s u a l . graph import *

m_min = 1 . 0 ; m_max = 4 . 0 ; s tep = 0 .01

graph1 = gd i sp l ay (width =600 , he ight =400 , t i t l e = ’ Lo g i s t i c Map ’ , \
x t i t l e = ’m’ , y t i t l e = ’x ’ , xmax=4 .0 , xmin =1 . , ymax=1 . , ymin =0 .)

pts = gdots (shape = ’ round ’ , s i z e = 1 . 5 , co lo r = co lo r . green)
l a s t y = i n t (1000 * 0 . 5) # Eliminates some points
count = 0 # Plot every 2 i t e ra t ions
f o r m in arange (m_min , m_max, s tep) :

y = 0 .5
f o r i in range (1 , 201 , 1) : # Avoid t rans ient s

y = m* y*(1− y)
f o r i in range (201 , 402 , 1) :

y = m* y * (1 − y)
f o r i in range (201 , 402 , 1) : # Avoid t rans ient s

oldy= i n t (1000* y)
y = m* y * (1 − y)
i n t y = i n t (1000 * y)
i f i n t y != l a s t y and count%2 == 0 :

pts . p l o t (pos=(m, y)) # Avoid repeats
l a s t y = i n t y
count += 1

14.5.1
Bifurcation Diagram Implementation

The last part of this problem asks you to reproduce Figure 14.3 at various levels of
detail. While the best way to make a visualization of this sort would be with visu-
alization software that permits you to vary the intensity of each individual point
on the screen, we simply plot individual points and have the density in each region
determined by the number of points plotted there.When thinking about plotting
many individual points to draw a figure, it is important to keep in mind that your

34714.5 BifurcationDiagram (Assessment)

monitor may have approximately 100 pixels per inch and your laser printer 300
dots per inch. This means that if you plot a point at each pixel, you will be plot-
ting ∼ 3000 × 3000 ≃ 10 million elements. Beware: This can require some time
and may choke a printer. In any case, printing at a finer resolution is a waste of
time.

14.5.2
Visualization Algorithm: Binning

1. Break up the range 1 ≤ μ ≤ 4 into 1000 steps. These are the “bins” into which
we will place the x∗ values.

2. In order not to miss any structures in your bifurcation diagram, loop through
a range of initial x0 values as well.

3. Wait at least 200 generations for the transients to die out, and then print the
next several hundred values of (μ, x∗) to a file.

4. Print out your x∗ values to nomore than three or four decimal places. Youwill
not be able to resolve more places than this on your plot, and this restriction
will keep your output files smaller, as will removing duplicate entries. You can
use formatted output to control the number of decimal places, or you can do
via a simple conversion: multiply the xi values by 1000 and then throw away
the part to the right of the decimal point:

Ix[i]= int(1000*x[i]) .

You may then divide by 1000 if you want floating-point numbers.
5. Plot your file of x∗ vs. μ. Use small symbols for the points and do not connect

them.
6. Enlarge (zoom in on) sections of your plot and notice that a similar bifurcation

diagram tends to be contained within each magnified portion (this is called
self-similarity).

7. Look over the series of bifurcations occurring at

μk ≃ 3, 3.449, 3.544, 3.5644, 3.5688, 3.569 692, 3.569 89,… (14.17)

The end of this series is a region of chaotic behavior.
8. Inspect the way this and other sequences begin and then end in chaos. The

changes sometimes occur quickly, and so you may have to make plots over a
very small range of μ values to see the structures.

9. A close examination of Figure 14.3 shows regions where, for a slight increase
in μ, a very large number of populations suddenly change to very few popula-
tions. Whereas these may appear to be artifacts of the video display, this is a
real effect and these regions are called windows. Check that at μ = 3.828 427
chaos moves into a three-cycle population.

348 14 Nonlinear Population Dynamics

14.5.3
FeigenbaumConstants (Exploration)

Feigenbaum discovered that the sequence of μk values (14.17) at which bifurca-
tions occur follows a regular pattern (Feigenbaum, 1979). Specifically, the μ values
converge geometrically when expressed in terms of the distance between bifurca-
tions δ:

μk → μ∞ − c
δk

, (14.18)

δ = lim
k→∞

μk − μk−1

μk+1 − μk
. (14.19)

Use your sequence of μk values to determine the constants in (14.18) and compare
them to those found by Feigenbaum:

μ∞ ≃ 3.569 95 , c ≃ 2.637 , δ ≃ 4.6692 . (14.20)

Amazingly, the value of the Feigenbaum constant δ is universal for all second-
order maps.

14.6
Logistic Map Random Numbers (Exploration) ⊙

Although we have emphasized that chaos, with its short-term predictability, is
different fromrandom,with has nopredictability, it is nevertheless possible for the
logistic map in the chaotic region (μ ≥ 4) to be used to generate pseudo random
numbers (Phatak and Rao, 1995). This is carried out in two steps:

xi+1 ≃ 4xi(1 − xi) , (14.21)

yi =
1
π
cos−1(1 − 2xi) . (14.22)

Although successive xi ’s are correlated, if the population for every sixth gener-
ation or so is examined, the correlation is effectively gone and pseudorandom
numbers result. To make the sequence more uniform, the trigonometric trans-
formation is then used.

Exercise Use the random-number tests discussed in Chapter 4, or an actual
Monte Carlo simulation, to test this claim.

14.7
Other Maps (Exploration)

Bifurcations and chaos are characteristic properties of nonlinear systems. Yet sys-
tems can be nonlinear in a number of ways. The table below lists four maps that
generate xi sequences containing bifurcations.

34914.8 Signals of Chaos: Lyapunov Coefficient and Shannon Entropy⊙

Name f (x) Name f (x)

Logistic μx(1− x) Tent μ(1 − 2|x − 1∕2|)
Ecology xeμ(1−x) Quartic μ[1 − (2x − 1)4]
Gaussian e−bx2 + μ

The tent map derives its nonlinear dependence from the absolute value opera-
tor, while the logistic map is a subclass of the ecologymap. Explore the properties
of these other maps and note the similarities and differences.

14.8
Signals of Chaos: Lyapunov Coefficient and Shannon Entropy⊙

The Lyapunov coefficient or exponent λi provides an analytic measure of whether
a system is chaotic (Wolf et al., 1985; Ramasubramanian and Sriram, 2000;
Williams, 1997). Essentially, the coefficient is a measure of the rate of exponential
growth of the solution near an attractor. If the coefficient is positive then the so-
lution moves away from the attractor, which is an indication of chaos, while if the
coefficient is negative then the solution moves back toward the attractor, which
is an indication of stability. For 1D problems there is only one such coefficient,
whereas in general there is a coefficient for each degree of freedom. The essential
assumption is that the distance L between neighboring paths xn near an attractor
have an n (generation number or time) dependence L ∝ exp(λt). Consequently,
orbits that have λ > 0 diverge and are chaotic; orbits that have λ = 0 remain
marginally stable, while orbits with λ < 0 are periodic and stable. Mathematically,
the Lyapunov coefficient is defined as

λ = lim
t→∞

1
t
log L(t)

L(t0)
. (14.23)

As an example, we calculate the Lyapunov exponent for a general 1D map,

xn+1 = f (xn) , (14.24)

and then apply the result to the logistic map. To determine stability, we examine
perturbations about a reference trajectory x0 by adding a small perturbation and
iterating once (Manneville, 1990; Ramasubramanian and Sriram, 2000):

x̂0 = x0 + δx0 , x̂1 = x1 + δx1 . (14.25)

We substitute this into (14.24) and expand f in a Taylor series around x0:

x1 + δx1 = f (x0 + δx0) ≃ f (x0) +
δ f
δx

||||x0 δx0 = x1 +
δ f
δx

||||x0 δx0 ,

⇒ δx1 ≃
(
δ f
δx

)
x0

δx0 . (14.26)

350 14 Nonlinear Population Dynamics

This is the proof of our earlier statement that a negative derivative indicates sta-
bility. To deduce the general result we examine one iteration:

δx2 ≃
(
δ f
δx

)
x1

, δx1 =
(
δ f
δx

)
x0

(
δ f
δx

)
x1

δx0 , (14.27)

⇒ δxn =
n−1∏
i=0

(
δ f
δx

)
xi

δx0 . (14.28)

This last relation tells us how trajectories differ on the average after n steps:

|δxn | = Ln|δx0| , Ln =
n−1∏
i=0

|||||
(
δ f
δx

)
xi

||||| . (14.29)

We now solve for the Lyapunov number L and take its logarithm to obtain the
Lyapunov coefficient:

λ = ln(L) = lim
n→∞

1
n

n−1∑
i=0

ln
|||||
(
δ f
δx

)
xi

||||| . (14.30)

For the logistic map, we obtain

λ = 1
n

n−1∑
i=0

ln |μ − 2μxi | , (14.31)

where the sum is over iterations.
The code LyapLog.py in Listing 14.2 computes the Lyapunov exponents for the

bifurcation plot of the logistic map. In Figures 14.5 and 14.6, we show its out-
put, and note the sign changes in λ where the system becomes chaotic, and the

x

1

0.5

0

–0.5

3 4

λ

µ

Figure 14.5 Lyapunov coefficient (bottom) and bifurcation values (top) for the logistic map as
functions of the growth rate μ. Note how the Lyapunov coefficient, whose value is a measure
of chaos, changes abruptly at the bifurcations.

35114.8 Signals of Chaos: Lyapunov Coefficient and Shannon Entropy⊙

–0.4

0

0.4

0.8

3.5 3.6 3.7
µ

3.8 3.9 4

Lyapunov exponent

Entropy

Figure 14.6 Shannon entropy (top) and Lyapunov coefficient (bottom) for the logistic map.
Note the close relation between the thermodynamic measure of disorder (entropy) and the
nonlinear dynamics measure of chaos (Lyapunov).

abrupt changes in slope at bifurcations. (A similar curve is obtained for the fractal
dimension of the logistic map as, indeed, the two are proportional.)
Shannon entropy, like the Lyapunov exponent, is used an indicator of chaos. En-

tropy is a measure of uncertainty (garbled signal) that has proven useful in com-
munication theory (Shannon, 1948; Ott, 2002;Gould et al., 2006). Imagine that an
experiment has N possible outcomes. If the probability of each is p1, p2 ,… , pN ,
with normalization such that

∑N
i=1 pi = 1, then the Shannon entropy is defined as

SShannon = −
N∑
i=1

pi ln pi . (14.32)

Listing 14.2 LyapLog.py computes Lyapunov coefficient for the bifurcation plot of the logistic
map as a function of growth rate. Note the fineness of the μ grid.

LyapLog . py : Lyapunov coef for l o g i s t i c map

from v i s u a l import *
from v i s u a l . graph import *

m_min = 3 . 5 ; m_max = 4 . 5 ; s tep = 0 .25
graph1 = gd i sp l ay (t i t l e = ’Lyapunov coef (blue) f o r LogisticMap (red) ’ ,

x t i t l e = ’m’ , y t i t l e = ’x , Lyap ’ ,
xmax=5 .0 , xmin=0 , ymax = 1 . 0 , ymin = − 0 . 6)

funct1 = gdots (co l o r = co lo r . red)
funct2 = gcurve (co lo r = co lo r . ye l low)

f o r m in arange (m_min , m_max, s tep) : # m loop
y = 0 .5
suma = 0 .0
f o r i in range (1 , 401 , 1) : y = m* y * (1 − y) # Skip t rans ient s
f o r i in range (402 , 601 , 1) :

y = m* y * (1 − y)
funct1 . p l o t (pos = (m, y))

352 14 Nonlinear Population Dynamics

suma = suma + log (abs (m* (1 . − 2 . * y))) # Lyapunov
funct2 . p l o t (pos = (m, suma /401)) # Normalize

If pi ≡ 0, there is no uncertainty and SShannon = 0, as youmight expect. If allN out-
comes have equal probability, pi ≡ 1∕N , we obtain the expression familiar from
statistical mechanics, SShannon = lnN .
The code Entropy.py in Listing 14.3 computes the Shannon entropy for the lo-

gistic map as a function of the growth parameter μ. The results (Figure 14.6, top)
are seen to be quite similar to the Lyapunov exponent, again with discontinuities
occurring at the bifurcations.

Listing 14.3 Entropy.py computes the Shannon entropy for the logistic map as a function of
growth parameter μ.

Entropy . py Shannon Entropy with Log i s t i c map using Tkinter

t r y :
from t k i n t e r import *

ex c ep t :
from Tkinter import *

import math
from numpy import zeros , arange

g loba l Xwidth , Yheight
root = Tk ()
root . t i t l e (’ Entropy versus mu ’)
mumin = 3 . 5 ; mumax = 4 . 0 ; dmu = 0 . 0 0 5 ; nbin = 1000 ; nmax = 100000
prob = zeros ((1000) , f l o a t)
minx = mumin ; maxx = mumax; miny=0; maxy =2 .5 ; Xwidth=500; Yheight =500

c = Canvas (root , width = Xwidth , he ight = Yheight)
c . pack ()

Button (root , t e x t = ’ Quit ’ , command = root . qu i t) . pack () # to begin quit

de f world2sc (xl , yt , xr , yb) : # x − l e f t , y − top , x − right , y − bottom
maxx = Xwidth # canvas width _________________________
maxy = Yheight # canvas height | | |tm |
lm = 0 .10 *maxx # l e f t margin | ___ | ____ | _______ ___ |
rm = 0 .90 *maxx # right margin | lm | | | |
bm = 0 .85 *maxy # bottom margin | ___ | | | |
tm = 0 .10 *maxy # top margin | __ | __ | ____________ | |
mx = (lm − rm) / (x l − xr) # | | bm rm| |
bx = (x l *rm − xr * lm) / (x l − xr) # | | __ | ____________ | |
my = (tm − bm) / (y t − yb) # | |
by = (yb *tm − y t *bm) / (yb − y t) # | _______________________ |
l i nea rTr = [mx, bx , my, by] # (maxx , maxy)
re turn l i ne a rTr # returns 4 element l i s t

de f xyax i s (mx, bx , my, by) : # to be ca l l ed a f t e r c a l l workd2sc
x1 = (i n t) (mx*minx + bx) # minima and maxima converted to
x2 = (i n t) (mx*maxx + bx) # canvas coordinades
y1 = (i n t) (my*maxy + by)
y2 = (i n t) (my*miny + by)
yc = (i n t) (my*0 . 0 + by)
c . c r e a t e _ l i n e (x1 , yc , x2 , yc , f i l l = " red ") # plots x axis
c . c r e a t e _ l i n e (x1 , y1 , x1 , y2 , f i l l = ’ red ’) # plots y − axis

f o r i in range (7) : # to plot x t i c s
x = minx + (i − 1) * 0 . 1 # world coordinates
x1 = (i n t) (mx* x + bx) # convert to canvas coord
x2 = (i n t) (mx*minx + bx)

35314.9 Coupled Predator–PreyModels

y = miny + i * 0 . 5 # rea l coordinates
y2 = (i n t) (my* y + by) # convert to canvas coords
c . c r e a t e _ l i n e (x1 , yc − 4 , x1 , yc + 4 , f i l l = ’ red ’) # t i c s x
c . c r e a t e _ l i n e (x2 − 4 , y2 , x2 + 4 , y2 , f i l l = ’ red ’) # t i c s y
c . c r e a t e _ t e x t (x1 + 10 , yc + 10 , t e x t = ’%5.2 f ’% (x) , \

f i l l = ’ red ’ , anchor = E) # x axis
c . c r e a t e _ t e x t (x2 + 30 , y2 , t e x t = ’%5.2 f ’% (y) , \

f i l l = ’ red ’ , anchor = E) # y axis
c . c r e a t e _ t e x t (70 , 30 , t e x t = ’ Entropy ’ , f i l l = ’ red ’ , anchor = E) # y
c . c r e a t e _ t e x t (420 , yc − 10 , t e x t = ’mu’ , f i l l = ’ red ’ , anchor = E)# x

mx, bx , my, by = world2sc (minx , maxy , maxx , miny) # return a l i s t
xyax i s (mx, bx , my, by) # give va lues to axis
mu0 = mumin*mx + bx # for the beginning
entr0 = my*0 . 0 + by # f i r s t coord . mu0, entr0

f o r mu in arange (mumin , mumax, dmu) : # mu loop
pr in t (mu)
f o r j in range (1 , nbin) :

prob [j] = 0
y = 0 .5
f o r n in range (1 , nmax + 1) :

y = mu* y * (1 . 0 − y) # Log i s t i c map, Skip t rans ient s
i f (n > 30000) :

i b in = i n t (y * nbin) + 1
prob [ib in] += 1

entropy = 0 .
f o r i b in in range (1 , nbin) :

i f (prob [ib in] >0) :
entropy = entropy −

(prob [ib in] / nmax) *math . log10 (prob [ib in] / nmax)
entrpc = my* entropy + by
muc = mx*mu + bx
c . c r e a t e _ l i n e (mu0 , entr0 , muc , entrpc , width = 1 , f i l l = ’ blue ’)
mu0 = muc
entr0 = entrpc

root . mainloop ()

14.9
Coupled Predator–Prey Models

At thebeginningof this chapter,we saw complicatedbehavior arising fromamodel
of bug population dynamics in whichwe imposed amaximum population. We de-
scribed that systemwith a discrete logistic map. Now we study models describing
predator–prey population dynamics proposed by the American physical chemist
Lotka (Lotka, 1925) and the Italian mathematician Volterra (Volterra, 1926; Gurney
and Nisbet, 1998). Though simple, versions of these equations are used to model
biological systems and neural networks.

Problem Is it possible to use a small number of predators to control a population
of pests so that the number of pests remains essentially constant? Include in your
considerations the interaction between the populations as well as the competition
for food and predation time.

354 14 Nonlinear Population Dynamics

14.10
Lotka–Volterra Model

We extend the logistic map to the Lotka–Volterra Model (LVM) which describes
two populations coexisting in the same geographical region. Let

p(t) = prey density , P(t) = Predator density . (14.33)

In the absence of interactions between the species, we assume that the prey pop-
ulation p breeds at a per-capita rate of a. This would lead to exponential growth:

Δp
Δt

= ap (Discrete) , (14.34)

d p
dt

= ap (Continuous) , (14.35)

⇒ p(t) = p(0)eat . (14.36)

Here we give both the discrete and continuous versions of the model, with the
exponential the solution of the continuous version. Yet exponential growth does
not occur because the predators P eat more prey if the number of prey increases.
The interaction rate between predator and prey requires both to be present, with
the simplest assumption being that it is proportional to their joint probability:

Interaction rate = b pP , (14.37)

where b is a constant. This leads to a prey growth rate including both predation
and breeding:

Δp
Δt

= ap − b pP (Discrete LVM-I for prey) , (14.38)

d p
dt

= ap − b pP (LVM-I for prey) . (14.39)

If left to themselves, predators P will also breed and increase their population. Yet
predators need animals to eat, and if there are no other populations to prey upon,
we assume that they will eat each other (or their young) at a per-capita mortality
rate m:

dP
dt

||||competition
= −mP ⇒ P(t) = P(0)e−mt . (14.40)

However, if there are prey also to interact with (read “eat”) at the rate b pP, the
predator population will grow at the rate

dP
dt

= 𝜖b pP − mP (LVM-I for predators) , (14.41)

35514.10 Lotka–Volterra Model

where 𝜖 is a constant that measures the efficiency with which predators convert
prey interactions into food.
Equations 14.39 and 14.41 are two simultaneous ODEs and are our first model.

After placing them in the standard dynamic form, we solve them with the rk4
algorithm:

d y∕dt = f (y, t) ,
y0 = p , f0 = ay0 − b y0 y1 ,
y1 = P , f1 = 𝜖b y0 y1 − my1 .

(14.42)

A sample code to solve these equations is PredatorPrey.py in Listing 14.4.

Listing 14.4 PredatorPrey.py computes population dynamics for a group of interacting
predators and prey.

PredatorPrey . py : Lotka−Volterra models

from v i s u a l import *
from v i s u a l . graph import *

Tmin = 0 .0
Tmax = 500 .0
y = zeros ((2) , f l o a t)
Ntimes = 1000
y [0] = 2 .0
y [1] = 1 .3
h = (Tmax − Tmin) /Ntimes
t = Tmin

de f f (t , y , F) : # Modify th i s function for your problem
F [0] = 0 . 2 * y [0] * (1 − (y [0] / (2 0 . 0))) − 0 . 1 * y [0] * y [1]
F [1] = − 0 . 1 * y [1] + 0 . 1 * y [0] * y [1] ;

de f rk4 (t , y , h , Neqs) : # rk4 method , DO NOT modify
F = zeros ((Neqs) , f l o a t)
ydumb = zeros ((Neqs) , f l o a t)
k1 = zeros ((Neqs) , f l o a t)
k2 = zeros ((Neqs) , f l o a t)
k3 = zeros ((Neqs) , f l o a t)
k4 = zeros ((Neqs) , f l o a t)
f (t , y , F)
f o r i in range (0 , Neqs) :

k1 [i] = h*F [i]
ydumb [i] = y [i] + k1 [i] / 2 .

f (t + h / 2 . , ydumb , F)
f o r i in range (0 , Neqs) :

k2 [i] = h*F [i]
ydumb [i] = y [i] + k2 [i] / 2 .

f (t + h / 2 . , ydumb , F)
f o r i in range (0 , Neqs) :

k3 [i] = h*F [i]
ydumb [i] = y [i] + k3 [i]

f (t + h , ydumb , F)
f o r i in range (0 , Neqs) :

k4 [i] = h*F [i]
y [i] = y [i] + (k1 [i] + 2 . * (k2 [i] + k3 [i]) + k4 [i]) / 6 .

graph1 = gd i sp l ay (x= 0 , y= 0 , width = 500 , he ight = 400 , \
t i t l e = ’ Prey p(green) and predator P(yellow) vs time ’ , x t i t l e =

’ t ’ , \
y t i t l e = ’P, p ’ , xmin=0 ,xmax=500 , ymin=0 ,ymax=3 .5)

356 14 Nonlinear Population Dynamics

funct1 = gcurve (co lo r = co lo r . ye l low)
funct2 = gcurve (co lo r = co lo r . green)
graph2 = gd i sp l ay (x= 0 , y= 400 , width = 500 , he ight = 400 ,

t i t l e = ’ Predator P vs prey p ’ ,
x t i t l e = ’P ’ , y t i t l e = ’p ’ , xmin=0 ,xmax=2.5 , ymin=0 ,ymax=3.5)

funct3 = gcurve (co lo r = co lo r . red)

f o r t in arange (Tmin , Tmax + 1 , h) :
funct1 . p l o t (pos = (t , y [0]))
funct2 . p l o t (pos = (t , y [1]))
funct3 . p l o t (pos = (y [0] , y [1]))
r a t e (60)
rk4 (t , y , h , 2)

14.10.1
Lotka–Volterra Assessment

Results from the code PredatorPrey.py are shown in Figure 14.7. In Figure 14.7a,
we see that the two populations oscillate out of phase with each other in time;
when there are many prey, the predator population eats them and grows; yet then
the predators face a decreased food supply and so their population decreases; that
in turn permits the prey population to grow, and so forth. In Figure 14.7b, we plot
what is called a “phase–space” plot of P(t) vs. p(t). A closed orbit here indicates
a limit cycle that repeats indefinitely. Although increasing the initial number of
predators does decrease the maximum number of pests, it is not a satisfactory
solution to our problem, as the large variation in the number of pests cannot be
called “control.”

1. Explain in words why their is a correlation between extremums in prey and
predator populations?

2. Because predators eat prey, one might expect the existence of a large number
of predators to lead to the eating of a large number of prey. Explain why the
maxima in predator population and the minima in prey population do not
occur at the same time.

3. Why do the extreme values of the population just repeat with no change in
their values?

4. Explain the meaning of the spirals in the predator–prey phase space diagram.
5. Explain why the phase–space orbits closed?
6. What different initial conditions would lead to different phase–space orbits?
7. Discuss the symmetry and lack of symmetry in the phase–space orbits.

14.11
Predator–Prey Chaos

Mathematical analysis tells us that, in addition to nonlinearity, a systemmust con-
tain a minimum number of degrees of freedom before chaos will occur. For ex-
ample, for chaos to occur in a predator–prey model, there must be three or more

35714.11 Predator–Prey Chaos

t

0

2

4

0 200 400

p(t)

P(t)

P

p

0

2

4

0 1 2
(a) (b)

Figure 14.7 (a) The time dependencies of the
populations of prey p(t) (solid curve) and of
predator P(t) (dashed curve) from the Lotka–
Volterra model. (b) A phase–space plot of Prey

population p as a function of predator pop-
ulation P. The different orbits correspond to
different initial conditions.

species present. And so to produce some real chaos, wemust extend our previous
treatment. Accordingly, we now extend the predator–prey model to include four
species, each with population pi competing for the same finite set of resources.
The differential equation formof themodel (Vano et al., 2006; Cencini et al., 2010)
extends the Lotka–Volterra model (14.41) to:

d pi

dt
= ai pi

(
1 −

4∑
j=1

bi j p j

)
, i = 1, 4 . (14.43)

Here ai is a measure of the growth rate of species i, and bi j is a measure of the
extent to which species j consumes the resources otherwise used by species i. If
we require both ai ≥ 0 and bi j ≥ 0, then all populations should remain in the range
0 ≤ pi ≤ 1.
Because four species covers a very large parameter space, we suggest that you

start your exploration using the same parameters that (Vano et al., 2006) found
produces chaos:

ai =

⎛⎜⎜⎜⎜⎝
1

0.72
1.53
1.27

⎞⎟⎟⎟⎟⎠
, bi j =

⎛⎜⎜⎜⎜⎝
1 1.09 1.52 0
0 1 0.44 1.36

2.33 0 1 0.47
1.21 0.51 0.35 1

⎞⎟⎟⎟⎟⎠
. (14.44)

But because chaotic systems are hyper sensitive to the exact parameter values,
you may need to modify these slightly.
Note that the self-interactions terms aii = 1, which is a consequence of mea-

suring the population of each species in units of its individual carrying capacity.
We solve (14.43) with initial conditions corresponding to an equilibrium point at

358 14 Nonlinear Population Dynamics

pj

pi

pk

Figure 14.8 A chaotic attractor for the 4D Lotka–Volterramodel projected onto three axes.

which all species coexist:

pi(t = 0) =

⎛⎜⎜⎜⎜⎝
0.3013
0.4586
0.1307
0.3557

⎞⎟⎟⎟⎟⎠
. (14.45)

One way to visualize the solution to (14.43) is to make four plots of p1(t), p2(t),
p3(t), and p4(t) vs. time. The results are quite interesting, and we leave that as an
exercise for you. Amore illuminating visualizationwould be to create a 4D phase–
space plot of [p1(ti), p2(ti), p3(ti), p4(ti)] for i = 1,N , where N is the number of
time steps used in your numerical solution. Even in the presence of chaos, the
geometric structure so created may have a smooth and well-defined shape. Un-
fortunately, we havenoway to show such a plot, and so in its steadwemust project
the 4D structure onto 2D and 3D axes. We show one such 3D plot in Figure 14.8.
This is a classic type of chaotic attractor, with the 3D structure folded over into a
nearly 2D structure (the Rossler equation is famous for producing such a struc-
ture).

35914.11 Predator–Prey Chaos

14.11.1
Exercises

1. Solve (14.43) for the suggested parameters and initial conditions, and make
plots of p1−4(t) as functions of time. Comment on the type of behavior that
these plots exhibit.

2. Construct the 4D phase chaotic attractor formed by the solutions of (14.43) by
writing to a file the values [p1(ti), p2(ti), p3(ti), p4(ti)]where i labels the time
step. In order to avoid needlessly long files, you may want to skip a number of
time steps before each file output.
a) Plot all possible 2Dphase–space plots, that is, plots of pi vs p j , i≠ j= 1−3.
b) Plot all possible 3D phase–space plots, that is, plots of pi vs p j vs pk .
Note: you have to adjust the parameters or initial conditions slightly to obtain
truly chaotic behavior.

14.11.2
LVM with Prey Limit

The initial assumption in the LVM that prey grow without limit in the absence of
predators is clearly unrealistic. As with the logisticmap, we include a limit on prey
numbers that accounts for depletion of the food supply as the prey population
grows. Accordingly, we modify the constant growth rate from a to a(1− p∕K) so
that growth vanisheswhen the population reaches a limitK , the carrying capacity:

d p
dt

= ap
(
1 −

p
K

)
− b pP , (14.46)

dP
dt

= 𝜖b pP − mP (LVM-II) . (14.47)

The behavior of this model with prey limitations is shown in Figure 14.9. We see
that both populations exhibit damped oscillations as they approach their equilib-
rium values, and that as hoped for, the equilibrium populations are independent

t

0

1

2

3

0 200 400

P

p

p

P

1

2

3

1 2.2
(a) (b)

Figure 14.9 (a) The Lotka–Volterra model of prey population p(t) (solid curve) and preda-
tor population P(t) (dashed curve) vs. time when a prey population limit is included. (b) Prey
population p as a function of predator population P.

360 14 Nonlinear Population Dynamics

of the initial conditions. Note how the phase–space plot spirals inward to a single
close limit cycle, on which it remains, with little variation in prey number. This is
“control,” and we may use it to start a chemical-free pest control business.

14.11.3
LVM with Predation Efficiency

An additional unrealistic assumption in the original LVM is that the predators im-
mediately eat all the prey with which they interact. As anyone who has watched a
cat hunt a mouse knows, predators spend some time finding prey and also chas-
ing, killing, eating, and digesting it (all together called handling). This extra time
decreases the rate b pP at which prey are eliminated. We define the functional re-
sponse pa as the probability of one predator finding one prey. If a single predator
spends time tsearch searching for prey, then

pa = btsearch p ⇒ tsearch =
pa

b p
. (14.48)

If we call th the time a predator spends handling a single prey, then the effective
time a predator spends handling a prey is path. Such being the case, the total
time T that a predator spends finding and handling a single prey is

T = tsearch + thandling =
pa

b p
+ path (14.49)

⇒
pa

T
=

b p
1 + b pth

, (14.50)

where pa∕T is the effective rate of eating prey. We see that as the number of
prey p→∞, the efficiency in eating them→ 1.We include this efficiency in (14.46)
by modifying the rate b at which a predator eliminates prey to b∕(1 + b pth):

d p
dt

= ap
(
1 −

p
K

)
−

b pP
1 + b pth

, (LVM-III) . (14.51)

To bemore realistic about the predator growth, we also place a limit on the preda-
tor carrying capacity but make it proportional to the number of prey:

dP
dt

= mP
(
1 − P

k p

)
, (LVM-III) . (14.52)

Solutions for the extended model (14.51) and (14.52) are shown in Figure 14.10.
Observe the existence of three dynamic regimes as a function of b:

∙ small b: no oscillations, no overdamping,
∙ medium b: damped oscillations that converge to a stable equilibrium,
∙ large b: limit cycle.

The transition from equilibrium to a limit cycle is called a phase transition.

36114.11 Predator–Prey Chaos

t

0

400

0 400

P

p

P
o

p
u

la
ti
o

n

t

0

200

0
t

0 400

P

p

Figure 14.10 Lotka–Volterra model with predation efficiency and prey limitations. From left to
right: overdamping, b = 0.01; damped oscillations, b = 0.1, and limit cycle, b = 0.3.

We finally have a satisfactory solution to our problem. Although the prey popu-
lation is not eliminated, it can be kept from getting too large and from fluctuating
widely. Nonetheless, changes in the parameters can lead to large fluctuations or
to nearly vanishing predators.

14.11.4
LVM Implementation and Assessment

1. Write a program to solve (14.51) and (14.52) using the rk4 algorithm and the
following parameter values.

Model a b 𝝐 m K k

LVM-I 0.2 0.1 1 0.1 0 —
LVM-II 0.2 0.1 1 0.1 20 —
LVM-III 0.2 0.1 — 0.1 500 0.2

2. For each of the three models, construct
a) a time series for prey and predator populations,
b) phase–space plots of predator vs. prey populations.

3. LVM-I: Compute the equilibrium values for the prey and predator popula-
tions. Do you think that a model in which the cycle amplitude depends on the
initial conditions can be realistic? Explain.

4. LVM-II: Calculate numerical values for the equilibrium values of the prey and
predator populations. Make a series of runs for different values of prey car-
rying capacity K . Can you deduce how the equilibrium populations vary with
prey carrying capacity?

5. Make a series of runs for different initial conditions for predator and prey pop-
ulations. Do the cycle amplitudes depend on the initial conditions?

6. LVM-III:Make a series of runs for different values of b and reproduce the three
regimes present in Figure 14.10.

7. Calculate the critical value for b corresponding to a phase transition between
the stable equilibrium and the limit cycle.

362 14 Nonlinear Population Dynamics

14.11.5
Two Predators, One Prey (Exploration)

1. Another version of the LVM includes the possibility that two populations of
predators P1 and P2 may “share” the same prey population p. Investigate the
behavior of a system in which the prey population grows logistically in the
absence of predators:

d p
dt

= ap
(
1 −

p
K

)
−

(
b1P1 + b2P2

)
p , (14.53)

dP
dt

= 𝜖1b1 pP1 − m1P1 ,
dP2

dt
= 𝜖2b2 pP2 − m2P2 . (14.54)

a) Use the following values for the model parameters and initial conditions:
a = 0.2,K = 1.7, b1 = 0.1, b2 = 0.2,m1 =m2 = 0.1, 𝜖1 = 1.0, 𝜖2 = 2.0, p(0) =
P2(0) = 1.7, and P1(0) = 1.0.

b) Determine the time dependence for each population.
c) Vary the characteristics of the second predator and calculate the equilib-

rium population for the three components.
d) What is your answer to the question, “Can two predators that share the

same prey coexist?”
2. The nonlinear nature of the Lotka–Volterramodel can lead to chaos and frac-

tal behavior. Search for complex behaviors by varying the growth rates.

363

15
Continuous Nonlinear Dynamics

InChapter14, wedeveloped the logisticmapandpredator–preymodels as ameans
to understand how biological populations achieve dynamic equilibrium. In this
chapter, we explore the driven realistic pendulum, a continuous system chaos that
can support chaotic behavior. In Chapter 8, we have already seen how useful our
tools are at solving nonlinear equations. Our emphasis now is on exploring chaos
and on the usefulness of phase space in displaying the simplicity underlying com-
plex behavior.

15.1
Chaotic Pendulum

Problem The plane pendulum is a classic subject for physics. However, it has
most often been studied assuming small angle displacements, which is a good ap-
proximation only for very large grandfather clocks.However, when the pendulum
is driven and the displacements get large, themotion becomes too complicated for
analytic solution. Your problem is to compute the motion of a driven pendulum
with large displacements, to ensure that your calculation is reliable and sensitive,
and then to search for the simplicity that may underly complexity.
What we call a chaotic pendulum is just a pendulum with friction and a driv-

ing torque (Figure 15.1a), but without the assumption of small deflection angle.
Newton’s laws of rotational motion tell us that the sum of the gravitational torque
−mgl sin θ, the frictional torque −βθ̇, and the external torque τ0 cosωt equals
the moment of inertia of the pendulum times its angular acceleration (Rasband,
1990):

I d
2θ
dt2

= −mgl sin θ − βdθ
dt

+ τ0 cosωt (15.1)

⇒
d2θ
dt2

= −ω2
0 sin θ − αdθ

dt
+ f cosωt , (15.2)

ω0 =
mgl
I

, α =
β
I
, f =

τ0
I

. (15.3)

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

364 15 Continuous Nonlinear Dynamics

f

m

m2

m1

l

l2

l1

θ

θ2

θ1

α

(a) (b)

Figure 15.1 (a) A pendulum of length l driven
through resistive air (dotted arcs) by an ex-
ternal sinusoidal torque (semicircle). The
strength of the external torque is given by f

and that of air resistance by α. (b) A double
pendulumwith neither air resistance nor a
driving force. In both cases there is a gravita-
tional torque.

Equation 15.2 is a second-order time-dependent nonlinear differential equation.
Its nonlinearity arises from the sin θ, as opposed to the θ, dependence of the grav-
itational torque. The parameter ω0 is the natural frequency of the system arising
from the restoring torque, α is ameasure of the strength of friction, and f is amea-
sure of the strength of the driving torque. In our standard ODE form, d y∕dt = f
(Chapter 8), we have two simultaneous first-order equations:

dy(0)

dt
= y(1) , (15.4)

dy(1)

dt
= −ω2

0 sin y(0) − αy(1) + f cosωt ,

y(0) = θ(t) , y(1) = dθ(t)
dt

. (15.5)

15.1.1
Free PendulumOscillations

If we ignore friction and external torques, Newton’s law (15.2) takes the simple,
yet still nonlinear, form

d2θ
dt2

= −ω2
0 sin θ . (15.6)

If the displacements are small, we can approximate sin θ by θ and obtain the linear
equation of simple harmonic motion with frequency ω0:

d2θ
dt2

≃ −ω2
0θ ⇒ θ(t) = θ0 sin(ω0t + φ) . (15.7)

36515.1 Chaotic Pendulum

In Chapter 8, we studied how nonlinearities produce anharmonic oscillations,
and indeed (15.6) is another good candidate for such studies. As before, we ex-
pect solutions of (15.6) for the free realistic pendulum to be periodic, but with a
frequency ω ≃ ω0 only for small oscillations. Furthermore, because the restoring
torque, mgl sin θ ≃ mgl(θ − θ3∕3), is less than the mglθ assumed in a harmonic
oscillator, realistic pendulums swing slower (have longer periods) as their angular
displacements are made larger.

15.1.2
Solution as Elliptic Integrals

The analytic solution to the realistic pendulum is a textbook problem (Landau and
Lifshitz, 1976; Marion and Thornton, 2003; Scheck, 1994), except that it is hardly
a solution and hardly analytic. The “solution” is based on energy being a constant
(integral) of the motion. For simplicity, we start the pendulum off at rest at its
maximum displacement θm. Because the initial energy is all potential, we know
that the total energy of the system equals its initial potential energy (Figure 15.1),

E = PE(0) = mgl −mgl cos θm = 2mgl sin2
(θm

2

)
. (15.8)

Yet because E = KE + PE is a constant, we can write for any value of θ

2mgl sin2 θm
2

= 1
2
I
(
dθ
dt

)2

+ 2mgl sin2 θ
2
,

⇒
dθ
dt

= 2ω0

[
sin2

θm
2

− sin2 θ
2

]1∕2
⇒

dt
dθ

=
T0∕π[

sin2(θm∕2) − sin2(θ∕2)
]1∕2 ,

⇒
T
4

=
T0

4π

θm

∫
0

dθ[
sin2(θm∕2) − sin2(θ∕2)

]1∕2 , (15.9)

⇒ T ≃ T0

[
1 +

(1
2

)2
sin2

θm
2

+
(1 ⋅ 3
2 ⋅ 4

)2
sin4

θm
2

+⋯
]
. (15.10)

Because the motion is still periodic, we have assumed that it takes T∕4 for the
pendulum to travel from θ = 0 to θ = θm. The integral in (15.9) can be expressed
as an elliptic integral of the first kind (studied in Section 5.16). If you think of
an elliptic integral as a generalization of a trigonometric function, then this is a
closed-form solution; otherwise, it is an integral needing computation. The series
expansion of the period (15.10) is obtained by expanding the denominator and
integrating it term by term. It tells us, for example, that an amplitude of 80◦ leads
to a 10% slowdown of the pendulum relative to the small θ result. In contrast, we
will determine the period computationally without the need for any expansions.

366 15 Continuous Nonlinear Dynamics

15.1.3
Implementation and Test: Free Pendulum

As a preliminary to the solution of the full equation (15.2), modify your rk4 pro-
gram to solve (15.6) for the free oscillations of a realistic pendulum.

1. Start your pendulumat θ = 0with θ̇(0)≠ 0.Gradually increase θ̇(0) to increase
the importance of nonlinear effects.

2. Test your program for the linear case (sin θ → θ) and verify that
a) your solution is harmonic with frequency ω0 = 2π∕T0, and
b) the frequency of oscillation is independent of the amplitude.

3. Devise an algorithm to determine the period T of the oscillation by counting
the time it takes for three successive passes of the amplitude through θ = 0.
(You need three passes because a general oscillation may not be symmetric
about the origin.) Test your algorithm for simple harmonic motion where you
know T0.

4. For the realistic pendulum, observe the change in period as a function of in-
creasing initial energy or displacement. Plot your observations along
with (15.10).

5. Verify that as the initial KE approaches 2mgl, the motion remains oscillatory
but not harmonic (Figure 15.4).

6. At E = 2mgl (the separatrix), the motion changes from oscillatory to rota-
tional (“over the top” or “running”). See how close you can get your solution
to the separatrix and to its infinite period.

7. ⊙ Use the applet HearData (Figure 15.2) to convert your different oscillations
to sound and hear the difference between harmonic motion (boring) and an-
harmonic motion containing overtones (interesting).

Figure 15.2 The data screen (a) and the
output screen (b) of the applet HearData
that converts data into sounds. Columns of
[ti , x(ti)] data are pasted into the data win-

dow, processed into the graph in the output
window, and then converted to sound data
that are played by Java.

36715.2 Visualization:Phase-Space Orbits

15.2
Visualization: Phase-Space Orbits

The conventional solution to an equation ofmotion is the position x(t) and the ve-
locity v(t) as functions of time. Often behaviors that appear complicated as func-
tions of time appear simpler when viewed in an abstract space called phase space,
where the ordinate is the velocity v(t) and the abscissa is the position x(t) (Fig-
ure 15.3). As we see from the phase-space figures, the solutions form geometric
objects that are easy to recognize. (We provide two applets Pend1 and Pend2 to
help the reader make the connections between phase-space shapes and the cor-
responding physical motion.)
The position and velocity of a free harmonic oscillator are given by the trigono-

metric functions

x(t) = A sin(ωt) , v(t) = dx
dt

= ωA cos(ωt) . (15.11)

When substituted into the total energy, we obtain two important results:

E = KE + PE =
(1
2
m
)
v2 +

(1
2
ω2m2

)
x2 (15.12)

= mω2A2

2
cos2(ωt) + mω2A2

2
sin2(ωt) = 1

2
mω2A2 . (15.13)

The first equation, being that of an ellipse, proves that the harmonic oscillator
follows closed elliptical orbits in phase space, with the size of the ellipse increasing
with the system’s energy. The second equation proves that the total energy is a
constant of the motion. Different initial conditions having the same energy start
at different places on the same ellipse and transverse the same orbits.

xxv(t) v(t) v(t)

x(t) x(t)

x

V(x) V(x) V(x)

x(t)

E1

E1

E1
E1

E2

E2E3

E3(a) (b) (c)

Figure 15.3 Three potentials and their behav-
iors in phase space. The different orbits below
the potentials correspond to different ener-
gies, as indicated by the limits of maximum
displacements within the potentials (dashed
lines). (a) A repulsive potential leads to open
orbits characteristic of nonperiodic motion.
The trajectories cross at the hyperbolic point

in the middle, an unstable equilibrium point.
(b) The harmonic oscillator leads to symmetric
ellipses; the closed orbits indicate periodic
behavior, and the symmetric trajectories indi-
cate a symmetric potential. (c) A nonharmonic
oscillator. Notice that the ellipse-like trajec-
tories at the bottom are neither ellipses nor
symmetric.

368 15 Continuous Nonlinear Dynamics

pendulum

rotating solutions

falls
back

pendulum
starts
rotating

–4

V(θ)

–2

0

2

θ

θ

–2 0 2 4 6 8 10

(a)

(b)

Figure 15.4 (a) Phase-space trajectories for a pendulum including “over the top” motions. (b)
The corresponding θ dependence of the potential.

In Figures 15.3–15.7, we show various phase-space structures. Study these fig-
ures and their captions and note the following:

∙ The orbits of anharmonic oscillations will still be ellipse like, but with angular
corners that become more distinct with increasing nonlinearity.

∙ Closed trajectories describe periodic oscillations (the same (x , v) occur again
and again), with a clockwise motion arising from the restoring torque.

∙ Open orbits correspond to nonperiodic or “running” motion (a pendulum ro-
tating like a propeller).

∙ Regions of space where the potential is repulsive lead to open trajectories in
phase space (Figure 15.3).

∙ As seen in Figure 15.4a, the separatrix corresponds to the trajectory in phase
space that separates open and closed orbits. Motion on the separatrix itself is
indeterminant, as the pendulummay balance, or move either way at the max-
ima of V (θ).

∙ Friction may cause the energy to decrease with time and the phase space orbit
to spiral into a fixed point. Yet if the system is driven, it would not remain there.

∙ For certain parameters, a closed limit cycle occurs in which the energy pumped
in by the external torque exactly balances that lost by friction (Figure 15.5b).

∙ Because solutions for different initial conditions are unique, different orbits
do not cross. Nonetheless, open orbits join at points of unstable equilibrium
(hyperbolic points in Figure15.3a) where an indeterminacy exists.

15.2.1
Chaos in Phase Space

It is easy to solve the nonlinear ODE (15.4) on the computer using our usual tech-
niques. However, it is not so easy to understand the solutions because they are

36915.2 Visualization:Phase-Space Orbits

(a) (b)

Figure 15.5 (a) Position vs. time for two initial conditions of a chaotic pendulum that end up
with the same limit cycle. (b) A phase space plot of position versus velocity for the limit cycle
shown in (a) (courtesy of W. Hager).

so rich in complexity. The solutions are easier to understand in phase space, par-
ticularly if you learn to recognize some characteristic structures there. Actually,
there are a number of “tools” that can be used to decide if a system is chaotic in
contrast to just complex. Geometric structures in phase space is one of them, and
determination of the Lyupanov coefficient (discussed in Section 14.8) is another.
Both signal the simplicity lying within the complexity.
What may be surprising is that even though the ellipse-like figures in phase

space were observed originally for free systems with no friction and no driving
torque, similar structures continue to exist for driven systems with friction. The
actual trajectories may not remain on a single structure for all times, but they
are attracted to them and return to them often. In contrast to periodic motion
which produces closed figures in phase-space, random motion appears as a dif-
fuse cloud filling the entire energetically accessible region. Complex or chaotic
motion falls someplace in between (Figure 15.6b). If viewed for long times and for
many initial conditions, chaotic trajectories in phase space, while resembling the
familiar geometric figures, may contain dark or diffuse bands rather than single
lines. The continuity of trajectories within bands means that a continuum of so-
lutions are possible and that the system flows continuously among the different
trajectories forming the band. The transitions among different phase-space orbits
appear chaotic in normal space. The bands are what makes the solutions hyper-
sensitive to the initial conditions as the slightest change in them causes the system
to flow to nearby phase-space trajectories.
Pick out the following phase-space structures in your simulations:

Limit cycles When a chaotic pendulum is driven by a not-too-large driving
torque, it is possible to pick the magnitude for this torque such that after the
initial transients die off, the average energy put into the system during one pe-
riod exactly balances the average energy dissipated by friction during that period
(Figure 15.5):

⟨ f cosωt⟩ = ⟨
αdθ
dt

⟩
=

⟨
αdθ(0)

dt
cosωt

⟩
⇒ f = αdθ(0)

dt
. (15.14)

370 15 Continuous Nonlinear Dynamics

θ(0) = –0.8
many cycle

θ(0) = 0.725
1 cycle

θ(0) = 0.219
3 cycle

θ
v
s
 t

θ
v
s
 θ

Y
(ω

)

(a) (b) (c)

Figure 15.6 Position vs. time, phase-space
plot, and Fourier spectrum for a chaotic
pendulum with ω0 = 1, α = 0.2, f = 0.52,
and ω = 0.666 and three different initial con-

ditions. Column (a) displays three dominant
cycles, the column (b) only one, while column
(c) has multiple cycles. (Examples of chaotic
behavior can be seen in Figure 15.7).

This leads to limit cycles that appear as closed ellipse-like figures. (Yet unstable
solutions may make sporadic jumps between limit cycles.)

Predictable attractors There are orbits, such as fixed points and limit cycles, into
which the system settles or returns to often, and that are not particularly sensitive
to initial conditions. If your location in phase space is near a predictable attractor,
ensuing times will bring you to it.

Strange attractors Well-defined, yet complicated, semiperiodic behaviors that
appear to be uncorrelated with the motion at an earlier time. They are distin-
guished from predictable attractors by being fractal (Chapter 16) chaotic, and
highly sensitive to the initial conditions (José and Salatan, 1998). Even after mil-
lions of oscillations, the motion remains attracted to them.

Chaotic paths Regions of phase space that appear as filled-in bands rather than
lines. Continuity within the bands implies complicated behaviors, yet still with
simple underlying structure.

37115.2 Visualization:Phase-Space Orbits

–15 –10

–2

0

2 f = 0.52

–10

0

–10

–2

0

2
f = 0.54

600

time

0

20

600

0

40

60

–2

0

2

6

20

40

0

θ(
t)

θ(t)

θ(t)

θ(t)

θ(t)

ω

θ(
θ)

.
θ(

θ)
.

θ(
θ)

.
Y

(ω
)

time

θ(0) = 0.314, θ(0) = 0.8, ω = 0.697
.

0 200 400

02 04 0

02 4

0 200 400

0 200 4000 10 20

Figure 15.7 Some examples of complicated
behaviors of a realistic pendulum. From top to
bottom in each column of the figure, the first
three rows show θ(t) behavior, a broadband
Fourier spectrum, a phase-space diagram
containing regular patterns with dark bands,

and a broad Fourier spectrum. These fea-
tures are characteristic of chaos. In the bottom
two rows we see how the behavior changes
abruptly after a slight change in the magni-
tude of the force and that for f = 0.54 there
occur the characteristic broad bands of chaos.

Mode locking When themagnitude f of the driving torque is larger than that for
a limit cycle (15.14), the driving torque can overpower the natural oscillations,
resulting in a steady-state motion at the frequency of the driver. This is called
mode locking. While mode locking can occur for linear or nonlinear systems, for

372 15 Continuous Nonlinear Dynamics

nonlinear systems the driving torque may lock onto the system by exciting an
overtone, leading to a rational relation between the driving frequency and the
natural frequency:

ω
ω0

= n
m

, n,m = integers . (15.15)

Butterfly effects One of the classic quips about the hypersensitivity of chaotic
systems to the initial conditions is that the weather pattern in North America is
hard to predict well because it is sensitive to the flapping of butterfly wings in
South America. Although this appears to be counterintuitive because we know
that systems with essentially identical initial conditions should behave the same,
eventually the systems diverge. The appletPend2 (Figure15.8c and d) lets you com-
pare two simulations of nearly identical initial conditions. As seen in Figure 15.8b
and d, the initial conditions for both pendulums differ by only 1 part in 917, and so
the initial paths in phase space are the same. Nonetheless, at just the time shown
here, the pendulums balance in the vertical position, and then one falls before the
other, leading to differing oscillations and differing phase-space plots from this
time onward.

15.2.2
Assessment in Phase Space

The challenge in understanding simulations of the chaotic pendulum (15.4) is
that the 4D parameter space (ω0 , α, f , ω) is so immense that only sections of
it can be studied systematically. We would expect that sweeping through driv-
ing frequency ω should show resonances and beating; sweeping through the fric-
tional force α should show underdamping, critical damping, and overdamping;
and sweeping through the driving torque f should show mode locking (for the
right values of ω). All these behaviors can be found in the solution of your differ-
ential equation, yet they are mixed together in complex ways.
In this assessment, you should try to reproduce the behaviors shown in the

phase-space diagrams in Figure 15.6 and in the applets in Figure 15.8. Beware: Be-
cause the system is chaotic, you should expect that your results will be sensitive
to the exact values of the initial conditions and to the details of your integration
routine.We suggest that you experiment; start with the parameter values we used
to produce our plots and then observe the effects of making very small changes
in parameters until you obtain different modes of behavior.

1. Take your solution to the realistic pendulum and include friction. Run it for a
variety of initial conditions, including over-the-top ones. Because no energy
is fed to the system, you should see spirals in phase space. Note, if you plot
points at uniform time steps without connecting them, then the spacing be-
tween points gives an indication of the speed of the pendulum.

2. Next, verify that with no friction, but with a very small driving torque, you
obtain a perturbed ellipse in phase space.

37315.2 Visualization:Phase-Space Orbits

Figure 15.8 (a,b) Output from the ap-
plet Pend1 that produces an animation of
a chaotic pendulum, along with the corre-
sponding position vs. time and phase-space
plots. (b) The resulting Fourier spectrum pro-

duced by Pend1. (c,d) outputs from two runs
of the applet Pend2 producing an animation
of two chaotic pendula along with the cor-
responding phase-space plots, and the final
output with limit cycles (dark bands).

3. Set the driving torque’s frequency close to the natural frequency ω0 of the
pendulum and search for beats (Figure 15.2b). Note that in addition to the
frequency, you may need to adjust the magnitude and phase of the driving
torque to avoid an “impedance mismatch” between the pendulum and driver.

374 15 Continuous Nonlinear Dynamics

4. Finally, scan the frequency ω of the driving torque and search for nonlinear
resonance (it looks like beating).

5. Explore chaos: Start off with the initial conditions we used in Figure 15.6,

(x0 , v0) = (−0.0885, 0.8) , (−0.0883, 0.8) , (−0.0888, 0.8) . (15.16)

To save time and storage, you may want to use a larger time step for plotting
than the one used to solve the differential equations.

6. Identify which parts of the phase-space plots correspond to transients. (The
appletsmay help youwith this, especially if youwatch the phase-space features
being built up in time.)

7. Ensure that you have found:
a) a period-3 limit cycle where the pendulum jumps between three major

orbits in phase space,
b) a running solution where the pendulum keeps going over the top,
c) chaotic motion in which some paths in the phase space appear as bands.

8. Look for the “butterfly effect” (Figure 15.8c and d). Start two pendulums off
with identical positions but with velocities that differ by 1 part in 1000. Notice
that the initial motions are essentially identical but eventually diverge.

15.3
Exploration: Bifurcations of Chaotic Pendulums

We have seen that a chaotic system contains a number of dominant frequencies
and that the system tends to “jump” from one to another. This means that the
dominant frequencies occur sequentially, in contrast to linear systems where they
occur simultaneously. We now want to explore this jumping as a computer exper-
iment. If we sample the instantaneous angular velocity θ̇ = dθ∕dt of our chaotic
simulation at various instances in time, we should obtain a series of values for the
frequency, with the major Fourier components occurring more often than oth-
ers.1) These are the frequencies to which the system is attracted. That being the
case, if we make a scatterplot of the sampled θ̇s for many times at one particu-
lar value of the driving force and then change the magnitude of the driving force
slightly and sample the frequencies again, the resulting plot may show distinc-
tive patterns of frequencies. That a bifurcation diagram similar to the one for bug
populations results is one of the mysteries of life.
In the scatterplot in Figure 15.9, we sample θ̇ for the motion of a chaotic pen-

dulum with a vibrating pivot point (in contrast to our usual vibrating external
torque). This pendulum is similar to our chaotic one (15.2), but with the driving

1) We refer to this angular velocity as θ̇ because we have already used ω for the frequency of the
driver and ω0 for the natural frequency.

37515.4 Alternate Problem: The Double Pendulum

0

2

f

|θ
(t

)|

.

0 1 2

Figure 15.9 A bifurcation diagram for the
damped pendulumwith a vibrating pivot (see
also the similar diagram for a double pendu-
lum, Figure 15.11). The ordinate is |dθ∕d t|,
the absolute value of the instantaneous angu-
lar velocity at the beginning of the period of

the driver, and the abscissa is the magnitude
of the driving force f. Note that the heavy line
results from the overlapping of points, not
from connecting the points (see enlargement
in the inset).

force depending on sin θ:

d2θ
dt2

= −αdθ
dt

−
(
ω2
0 + f cosωt

)
sin θ . (15.17)

Essentially, the acceleration of the pivot is equivalent to a sinusoidal variation of g
or ω2

0. Analytic and numeric studies of this system are in the literature (Landau
and Lifshitz, 1976; DeJong, 1992; Gould et al., 2006). To obtain the bifurcation
diagram in Figure 15.9:

1. Use the initial conditions θ(0) = 1 and θ̇(0) = 1.
2. Set α = 0.1, ω0 = 1, and ω = 2, and vary 0 ≤ f ≤ 2.25.
3. For each value of f , wait 150 periods of the driver before sampling to permit

transients to die off. Sample θ̇ for 150 times at the instant the driving force
passes through zero.

4. Plot the 150 values of |θ̇| vs. f .
15.4
Alternate Problem: The Double Pendulum

For those of you who have already studied a chaotic pendulum, an alternative is to
study a double pendulum without any small-angle approximation (Figures 15.1b
and 15.10, and animation DoublePend.mp4). A double pendulumhas a second pen-
dulum connected to the first, and because each pendulum acts as a driving force
for the other, we need not include an external driving torque to produce a chaotic
system (there are enough degrees of freedom without it).
The equations of motions for the double pendulum are derived most directly

from the Lagrangian formulation of mechanics. The Lagrangian is fairly simple

376 15 Continuous Nonlinear Dynamics

Figure 15.10 Photographs of a double pen-
dulum built by a student in the OSU Physics
Department. The upper pendulum consists
of two separated shafts so that the lower one
can rotate completely around. Both pendula

can go over their tops. The first two frames
show the pendulum released from rest and
then moving quickly. The photography with
faster shutter speeds stops the motion in vari-
ous stages (photograph by R. Landau).

but has the θ1 and θ2 motions innately coupled:

L = KE − PE = 1
2
(m1 + m2)l21 θ̇1

2 + 1
2
m2l22 θ̇2

2

+ m2 l1l2 θ̇1 θ̇2 cos(θ1 − θ2) + (m1 + m2)gl1 cos θ1 + m2gl2 cos θ2 .
(15.18)

Usually, textbooks approximate these equations for small oscillations, which di-
minish the nonlinear effects, and results in “slow” and “fast”modes that lookmuch
like regular harmonicmotions.What is more interesting is themotion that results
without any small-angle restrictions, particularly when the pendula have enough
initial energy to go over the top (Figure 15.10). In Figure 15.11a, we see several
phase-space plots for the lower pendulum with m1 = 10m2. When given enough
initial kinetic energy to go over the top, the trajectories are seen to flow between
twomajor attractors as energy is transferred back and forth between the pendula.
In Figure 15.11b is a bifurcation diagram for the double pendulum.This was cre-

ated by sampling and plotting the instantaneous angular velocity θ̇2 of the lower
pendulum at 70 times as the pendulum passed through its equilibrium position.

37715.5 Assessment: Fourier/Wavelet Analysis of Chaos

0

0

θ2
˙

θ2

4–8

Angular Velocity versus Mass

10

0

A
n

g
u

la
r

V
e
lo

c
it

y
 o

f

L
o

w
e

r
P

e
n

d
u

lu
m

10

Mass of Upper Pendulum(b)(a)

Figure 15.11 (a) Phase-space trajectories for a
double pendulum withm1 = 10m2 and with
two dominant attractors. (b) A bifurcation dia-
gram for the double pendulum displaying the

instantaneous velocity of the lower pendulum
as a function of the mass of the upper pendu-
lum (both plots courtesy of J. Danielson).

Themass of the upper pendulum (a convenient parameter) was then changed, and
the process repeated. The resulting structure is fractal and indicates bifurcations
in the number of dominant frequencies in the motion. A plot of the Fourier or
wavelet spectrum as a function of mass is expected to show similar characteristic
frequencies.

15.5
Assessment: Fourier/Wavelet Analysis of Chaos

We have seen that a realistic pendulum experiences a restoring torque, τg ∝
sin θ ≃ θ − θ3∕3! + θ5∕5! +⋯, that contains nonlinear terms that lead to nonhar-
monic behavior. In addition, when a realistic pendulum is driven by an external
sinusoidal torque, the pendulummaymode-lockwith the driver and consequently
oscillate at a frequency that is rationally related to the driver’s. Consequently, the
behavior of the realistic pendulum is expected to be a combination of various
periodic behaviors, with discrete jumps between modes.
In this assessment, you should determine the Fourier components present in

the pendulum’s complicated and chaotic behaviors. You should show that a three-
cycle structure, for example, contains three major Fourier components, while a
five-cycle structure has five. You should also notice that when the pendulum goes
over the top, its spectrum contains a steady-state (DC) component.

1. Dust off your program for analyzing a y(t) into Fourier components.
2. Apply your analyzer to the solution of the chaotic pendulum for the cases

where there are one-, three-, and five-cycle structures in phase space. Deduce
themajor frequencies contained in these structures. Wait for the transients to
die out before conducting your analysis.

378 15 Continuous Nonlinear Dynamics

3. Compare your results with the output of the Pend1 applet (Figure 15.8a and
b).

4. Try to deduce a relation among the Fourier components, the natural fre-
quency ω0, and the driving frequency ω.

5. A classic signal of chaos is a broadband, although not necessarily flat, Fourier
spectrum. Examine your system for parameters that give chaotic behavior
and verify this statement by plotting the power spectrum in both linear and
semilogarithmic plots. (The power spectrum often varies over several orders
of magnitude.)

Wavelet Exploration We saw in Chapter 13 that a wavelet expansion is more ap-
propriate than a Fourier expansion for a signal containing components that occur
for finite periods of time. Because chaotic oscillations are just such signals, repeat
the Fourier analysis of this section using wavelets instead of sines and cosines.
Can you discern the temporal sequence of the various components?

15.6
Exploration: Alternate Phase-Space Plots

Imagine that you havemeasured the displacement of some system as a function of
time. Your measurements appear to indicate characteristic nonlinear behaviors,
and you would like to check this by making a phase-space plot but without go-
ing to the trouble of measuring the conjugate momenta to plot vs. displacement.
Amazingly enough, one may instead plot x(t + τ) vs. x(t) as a function of time to
obtain a phase-space plot (Abarbanel et al., 1993). Here τ is a lag time and should
be chosen as some fraction of a characteristic time for the system under study.
While this may not seem like a valid way to make a phase-space plot, recall the
forward difference approximation for the derivative,

v(t) = dx(t)
dt

≃ x(t + τ) − x(t)
τ

. (15.19)

We see that plotting x(t + τ) vs. x(t) is thus similar to plotting v(t) vs. x(t).

Exercise Create a phase-space plot from the output of your chaotic pendulum
by plotting θ(t + τ) vs. θ(t) for a large range of t values. Explore how the graphs
change for different values of the lag time τ. Compare your results to the conven-
tional phase-space plots you obtained previously.

37915.7 Further Explorations

15.7
Further Explorations

1. The nonlinear behavior in once-common objects such as vacuum tubes and
metronomes is described by the van der Pool Equation,

d2x
dt2

+ μ
(
x2 − x20

) dx
dt

+ ω2
0x = 0 . (15.20)

Verify that the behavior predicted for these systems is self-limiting because
the equation contains a limit cycle that is also a predictable attractor. You can
think of (15.20) as describing an oscillator with x-dependent damping (the μ
term). If x > x0, friction slows the system down; if x < x0, friction speeds the
systemup.Orbits internal to the limit cycle spiral out until they reach the limit
cycle; orbits external to it spiral in.

2. Duffing Oscillator: Another damped, driven nonlinear oscillator is

d2θ
dt2

− 1
2
θ(1 − θ2) = −α dθ

dt
+ f cosωt . (15.21)

While similar to the chaotic pendulum, it is easier to find multiple attractors
for this oscillator. Performa phase-space analysis for this equation. (Moonand
Li, 1985).

3. Lorenz Attractors: In 1961, Edward Lorenzwas using a simplified atmospheric
convection model to predict weather patterns, when, as a shortcut, he entered
the decimal 0.506 instead of entering the full 0.506 127 for a parameter in the
model (Peitgen et al., 1994; Motter and Campbell, 2013). The results for the
two numbers were so different that at first he thought it to be a numerical
error, but in time he realized that this was a nonlinear system with chaotic
behavior. Now we want you to repeat this discovery.
With simplified variables, the equation used by Lorenz are

ẋ = σ(y − x) , (15.22)

̇dy = ρx − y − xz , (15.23)

̇dz = −βz + x y , (15.24)

where x(t) is ameasure of fluid velocity as a function of time t, y(t) and z(t) are
measures of the temperature distributions in two directions, and σ, ρ, and β
are parameters. Note that the xz and x y terms make these equations nonlin-
ear.
a) Modify yourODE solver to handle these three, simultaneous Lorenz equa-

tions.
b) To start, use parameter values σ = 10, β = 8∕3, and ρ = 28.
c) Make sure to use a small enough step size so that good precision is ob-

tained. You must have confidence that you are seeing chaos and not nu-
merical error.

380 15 Continuous Nonlinear Dynamics

d) Make plots of x vs. t, y vs. t, and z vs. t.
e) The initial behaviors in these plots are called “transients” and are not con-

sidered dynamically interesting. Leave off these transients in the plots to
follow.

f) Make a “phase-space” plot of z(t) vs. x(t) (the independent variable t does
not appear in such a plot). The distorted, number eight-like figures you ob-
tain (Figure 15.12) are called Lorenz attractors, “attractors” because even
chaotic solutions tend to be attracted to them.

g) Make phase-space plots of y(t) vs. x(t), and z(t) vs. y(t).
h) Make a 3D plot of x(t) vs. y(t) vs. z(t).
i) The parameters given to you should lead to chaotic solutions. Check this

claim by seeing how small a change you canmake in a parameter value and
still, eventually, obtain different answers.

4. A 3D Computer Fly: Make x(t) vs. y(t), x(t) vs. z(t), and y(t) vs. z(t) phase-
space plots of the equations

x = sin ay − z cos bx , y = z sin cx − cos dy , z = e sin x . (15.25)

Here the parameter e controls the degree of apparent randomness.
5. Hénon–Heiles Potential: The potential and Hamiltonian

V (x , y) = 1
2
x2 + 1

2
y2 + x2 y − 1

3
y3 , H = 1

2
p2x +

1
2
p2y + V (x , y) ,

(15.26)

Figure 15.12 A 3D plot of a Lorenz attractor output from the program LorentzAtract.py (on
the Instructor’s disk).

38115.7 Further Explorations

are used to describe three interacting astronomical objects. The potential
binds the objects near the origin but releases them if they move far out. The
equations of motion follow from the Hamiltonian equations:

d px

dt
= −x − 2x y ,

d py

dt
= −y − x2 + y2 , dx

dt
= px ,

dy
dt

= py .

(15.27)

a) Numerically solve for the position [x(t), y(t)] for a particle in the Hénon–
Heiles potential.

b) Plot [x(t), y(t)] for a number of initial conditions. Check that the initial
condition E < 1∕6 leads to a bounded orbit.

c) Produce a Poincaré section in the (y, py) plane by plotting (y, py) each
time an orbit passes through x = 0.

383

16
Fractals and Statistical Growth Models

It is common to notice regular and eye-pleasing natural objects, such as plants and
sea shells, that do not have well-defined geometric shapes. When analyzed math-
ematically with a prescription that normally produces integers, some of these ob-
jects are found to have a dimension that is a fractional number, and so they are
called “fractals.” In this chapter, we implement simple, statistical models that grow
fractals. To the extent that these models generate structures that look like those in
nature, it is reasonable to assume that the naturalprocessesmust be following sim-
ilar rules arising from the basic physics or biology that creates the objects. Detailed
applications of fractals can be found in the literature (Mandelbrot, 1982; Armin and
Shlomo, 1991; Sander et al., 1994; Peitgen et al., 1994).

16.1
Fractional Dimension (Math)

Benoit Mandelbrot, who first studied fractional-dimension figures with super-
computers at IBM Research, gave them the name fractals (Mandelbrot, 1982).
Some geometric objects, such as Koch curves, are exact fractals with the same
dimension for all their parts. Other objects, such as bifurcation curves, are statis-
tical fractals in which elements of chaos occur and the dimension can be defined
only for each part of the object, or on the average.
Consider an abstract object such as the density of charge within an atom. There

are an infinite number of ways to measure the “size” of this object. For example,
eachmoment ⟨rn⟩ is a measure of the size, and there is an infinite number of such
moments. Likewise, when we deal with complicated objects, there are different
definitions of dimension and each may give a somewhat different value.
Our first definition of the dimension df , the Hausdorff–Besicovitch dimension,

is based on our knowledge that a line has dimension 1, a triangle has dimension 2,
and a cube has dimension 3. It seems perfectly reasonable to ask if there is some
mathematical formula that agrees with our experience with regular objects, yet
can also be used for determining fractional dimensions. For simplicity, let us con-
sider objects that have the same length L on each side, as do equilateral triangles

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

384 16 Fractals and StatisticalGrowthModels

and squares, and that have uniform density. We postulate that the dimension of
an object is determined by the dependence of its total mass upon its length:

M(L) ∝ Ldf , (16.1)

where the power df is the fractal dimension. As you may verify, this rule works
with the 1D, 2D, and 3D regular figures in our experience, so it is a reasonable to
try it elsewhere.Whenwe apply (16.1) to fractal objects, we end upwith fractional
values for df . Actually, we will find it easier to determine the fractal dimension
not from an object’s mass, which is extensive (depends on size), but rather from
its density, which is intensive. The density is defined as mass/length for a linear
object, as mass/area for a planar object, and as mass/volume for a solid object.
That being the case, for a planar object we hypothesize that

ρ = M(L)
area

∝ Ldf

L2 ∝ Ldf−2 . (16.2)

16.2
The Sierpiński Gasket (Problem 1)

To generate our first fractal (Figure 16.1), we play a game of chance in which we
place dots at points picked randomly within a triangle (Bunde and Havlin, 1991).
Here are the rules (which you should try out in the margins now).

1. Draw an equilateral triangle with vertices and coordinates:

vertex 1 : (a1 , b1) ; vertex 2 : (a2 , b2) ; vertex 3 : (a3 , b3) . (16.3)

2. Place a dot at an arbitrary point P = (x0 , y0) within this triangle.
3. Find the next point by selecting randomly the integer 1, 2, or 3:

a) If 1, place a dot halfway between P and vertex 1.
b) If 2, place a dot halfway between P and vertex 2.
c) If 3, place a dot halfway between P and vertex 3.

4. Repeat the process using the last dot as the new P.

Mathematically, the coordinates of successive points are given by the formulas

(xk+1, yk+1) =
(xk , yk) + (an , bn)

2
, n = integer (1 + 3ri) , (16.4)

where ri is a random number between 0 and 1 and where the integer function
outputs the closest integer smaller than or equal to the argument. After 15 000
points, you should obtain a collection of dots like those in Figure 16.1a.

16.2.1
Sierpiński Implementation

Write a program to produce a Sierpiński gasket. Determine empirically the fractal
dimension of your figure. Assume that each dot hasmass 1 and that ρ = CLα . (You

38516.2 The SierpińskiGasket (Problem 1)

0

100

200

300

10 000 points

0 100 200 300
(a) (b)

Figure 16.1 (a) A statistical fractal Sierpiński
gasket containing 10 000 points. Note the self-
similarity at different scales. (b) A geometric
Sierpiński gasket constructed by successively

connecting the midpoints of the sides of each
equilateral triangle. The first three steps in the
process are labeled as A, B, C.

can have the computer do the counting by defining an array box of all 0 values and
then change a 0 to a 1 when a dot is placed there.)

16.2.2
Assessing Fractal Dimension

The topology in Figure 16.1 was first analyzed by the Polish mathematician Sier-
piński. Observe that there is the same structure in a small region as there is in the
entire figure. In other words, if the figure had infinite resolution, any part of the
figure could be scaled up in size and would be similar to the whole. This property
is called self-similarity.
We construct a nonstatistical form of the Sierpiński gasket by removing an in-

verted equilateral triangle from the center of all filled equilateral triangles to create
the next figure (Figure 16.1b).We then repeat the process ad infinitum, scaling up
the triangles so each one has side r = 1 after each step. To see what is unusual
about this type of object, we look at how its density (mass/area) changes with
size, and then apply (16.2) to determine its fractal dimension. Assume that each
triangle has mass m and assign unit density to the single triangle:

ρ(L = r) ∝ M
r2

= m
r2

def
= ρ0 (Figure 16.1b-A) . (16.5)

Next, for the equilateral triangle with side L = 2, the density is

ρ(L = 2r) ∝ (M = 3m)
(2r)2

= 3
4
mr2 = 3

4
ρ0 (Figure 16.1b-B) . (16.6)

386 16 Fractals and StatisticalGrowthModels

We see that the extra white space in Figure 16.1b leads to a density that is 3/4 that
of the previous stage. For the structure in Figure 16.1c, we obtain

ρ(L = 4r) ∝ (M = 9m)
(4r)2

= 9
16

m
r2

=
(3
4

)2
ρ0 (Figure 16.1b-C) . (16.7)

We see that as we continue the construction process, the density of each new
structure is 3/4 that of the previous one. Interesting. Yet in (16.2) we derived that

ρ ∝ CLdf−2 . (16.8)

Equation 16.8 implies that a plot of the logarithmof the density ρ vs. the logarithm
of the length L for successive structures yields a straight line of slope

df − 2 =
Δ log ρ
Δ log L

. (16.9)

As applied to our problem,

df = 2 +
Δ log ρ(L)
Δ log L

= 2 +
log 1 − log 3

4

log1 − log 2
≃ 1.584 96 . (16.10)

As is evident in Figure 16.1, as the gasket grows larger (and consequently more
massive), it contains more open space. So despite the fact that its mass approaches
infinity as L→∞, its density approaches zero! And because a 2D figure like a solid
triangle has a constant density as its length increases, a 2D figure has a slope equal
to 0. Because the Sierpiński gasket has a slope df − 2 ≃ −0.415 04, it fills space to
a lesser extent than a 2D object but more so than a 1D object; it is a fractal with
dimension 1.6.

16.3
Growing Plants (Problem 2)

It seems paradoxical that natural processes subject to chance can produce objects
of high regularity and symmetry. For example, it is hard to believe that some-
thing as beautiful and graceful as a fern (Figure 16.2a) has random elements in it.
Nonetheless, there is a clue here in that much of the fern’s beauty arises from the
similarity of each part to the whole (self-similarity), with different ferns similar
but not identical to each other. These are characteristics of fractals. Your problem
is to discover if a simple algorithm including some randomness can draw regular
ferns. If the algorithm produces objects that resemble ferns, then presumably you
have uncovered mathematics similar to that responsible for the shapes of ferns.

16.3.1
Self-Affine Connection (Theory)

In (16.4), which defines mathematically how a Sierpiński gasket is constructed,
a scaling factor of 1/2 is part of the relation of one point to the next. Amore general

38716.3 Growing Plants (Problem 2)

Figure 16.2 (a) A fractal fern generated by 30 000 iterations of the algorithm (16.14). Enlarg-
ing this fern shows that each frond with a similar structure. (b) A fractal tree created with the
simple algorithm (16.17).

transformation of a point P = (x , y) into another point P′ = (x′ , y′) via scaling is

(x′ , y′) = s(x , y) = (sx , s y) (scaling) . (16.11)

If the scale factor s > 0, an amplification occurs, whereas if s < 0, a reduction
occurs. In our definition (16.4) of the Sierpiński gasket, we also added in a con-
stant an . This is a translation operation, which has the general form

(x′ , y′) = (x , y) + (ax , ay) (translation) . (16.12)

Another operation, not used in the Sierpiński gasket, is a rotation by angle θ:

x′ = x cos θ − y sin θ , y′ = x sin θ + y cos θ (rotation) . (16.13)

The entire set of transformations, scalings, rotations, and translations defines an
affine transformation (affine denotes a close relation between successive points).
The transformation is still considered affine even if it is a more general linear
transformation with the coefficients not all related by a single θ (in that case, we
can have contractions and reflections). What is important is that the object cre-
ated with these rules turns out to be self-similar; each step leads to new parts of
the object that bear the same relation to the ancestor parts as the ancestors did to
theirs. This is what makes the object look similar at all scales.

16.3.2
Barnsley’s Fern Implementation

Weobtain a Barnsley’s fern (Barnsley andHurd, 1992) by extending the dots game
to one in which new points are selected using an affine connection with some

388 16 Fractals and StatisticalGrowthModels

elements of chance mixed in:

(x , y)n+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(0.5, 0.27yn) , with 2% probability ,
(−0.139xn + 0.263yn + 0.57
0.246xn + 0.224yn − 0.036) , with 15% probability ,

(0.17xn − 0.215yn + 0.408
0.222xn + 0.176yn + 0.0893) , with 13% probability ,

(0.781xn + 0.034yn + 0.1075
−0.032xn + 0.739yn + 0.27) , with 70% probability .

(16.14)

To select a transformation with probability , we select a uniform random num-
ber 0 ≤ r ≤ 1 and perform the transformation if r is in a range proportional to :

 =

⎧⎪⎪⎨⎪⎪⎩
2% , r < 0.02 ,
15% , 0.02 ≤ r ≤ 0.17 ,
13% , 0.17 < r ≤ 0.3 ,
70% , 0.3 < r < 1 .

(16.15)

The rules (16.14) and (16.15) can be combined into one:

(x , y)n+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(0.5, 0.27yn), r < 0.02 ,
(−0.139xn + 0.263yn + 0.57
0.246xn + 0.224yn − 0.036), 0.02 ≤ r ≤ 0.17 ,

(0.17xn − 0.215yn + 0.408
0.222xn + 0.176yn + 0.0893), 0.17 < r ≤ 0.3 ,

(0.781xn + 0.034yn + 0.1075,
−0.032xn + 0.739yn + 0.27), 0.3 < r < 1 .

(16.16)

Although (16.14) makes the basic idea clearer, (16.16) is easier to program, which
we do in Listing 16.1.
The starting point in Barnsley’s fern (Figure 16.2) is (x1 , y1) = (0.5, 0.0), and the

points are generated by repeated iterations. An important property of this fern is
that it is not completely self-similar, as you can see by noting how different the
stems and the fronds are. Nevertheless, the stem can be viewed as a compressed
copy of a frond, and the fractal obtained with (16.14) is still self-affine, yet with a
dimension that varies from part to part in the fern.

Listing 16.1 Fern3D.pysimulates the growth of ferns in 3D.

Fern3D . py : Fern in 3D, see Barnsley , " Fra c t a l s Everywhere"

from v i s u a l import *
from v i s u a l . graph import *
import random

38916.3 Growing Plants (Problem 2)

imax = 20000
x = 0 . 5 ; y = 0 . 0 ; z = −0 .2 ; xn = 0 . 0 ; yn = 0 .0

graph1 = d i s p l a y (width =500 , he ight =500 , forward =(−3 ,0 ,−1) , \
t i t l e = ’ 3D Fracta l Fern (rotate via r i g ht mouse button) ’ , range=10)

graph1 . show_rendert ime = True # Pts / sphs : cyc le =27/750 ms, render=6/30

pts = po in t s (co l o r=co lo r . green , s i z e =0 .01)
f o r i in range (1 , imax) :

r = random . random () ;
i f (r <= 0 . 1) : # 10% probab i l i t y

xn = 0 .0
yn = 0 .18 * y
zn = 0 .0

e l i f (r > 0 .1 and r <= 0 . 7) : # 60% probab i l i t y
xn = 0.85 * x
yn = 0 .85 * y + 0 .1 * z + 1 .6
zn = −0.1 * y + 0 .85 * z

e l i f (r > 0 .7 and r <= 0 . 8 5) : # 15 % probab i l i t y
xn = 0 .2 * x − 0 . 2 * y
yn = 0 .2 * x + 0 .2 * y + 0 .8
zn= 0 .3 * z

e l s e :
xn = −0.2 * x +0.2 * y # 15% probab i l i t y
yn = 0 .2 * x +0.2 * y + 0 .8
zn = 0 .3 * z

x = xn
y = yn
z = zn
xc = 4 . 0 * x # l inea r TF for plot
yc = 2 . 0 * y−7
zc = z
pts . append (pos=(xc , yc , zc))

16.3.3
Self-Affinity in Trees Implementation

Now that you know how to grow ferns, look around and notice the regularity in
trees (such as in Figure 16.2b). Can it be that this also arises from a self-affine
structure? Write a program, similar to the one for the fern, starting at (x1 , y1) =
(0.5, 0.0) and iterating the following self-affine transformation:

(xn+1 , yn+1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(0.05xn , 0.6yn) , 10% probability ,
(0.05xn ,−0.5yn + 1.0) , 10% probability ,
(0.46xn − 0.15yn , 0.39xn + 0.38yn + 0.6) , 20% probability ,
(0.47xn − 0.15yn , 0.17xn + 0.42yn + 1.1) , 20% probability ,
(0.43xn + 0.28yn ,−0.25xn + 0.45yn + 1.0) , 20% probability ,
(0.42xn + 0.26yn ,−0.35xn + 0.31yn + 0.7) , 20% probability .

(16.17)

390 16 Fractals and StatisticalGrowthModels

16.4
Ballistic Deposition (Problem 3)

There are a number of physical and manufacturing processes in which particles
are deposited on a surface and form a film. Because the particles are evaporated
from a hot filament, there is randomness in the emission process yet the produced
films turn out to have well-defined, regular structures. Again we suspect fractals.
Your problem is to develop a model that simulates this growth process and com-
pare your produced structures to those observed.

16.4.1
Random Deposition Algorithm

The idea of simulating random depositions was first reported by Vold (1959),
which includes tables of random numbers used to simulate the sedimentation of
moist spheres in hydrocarbons. We shall examine a method of simulation that
results in the deposition shown in Figure 16.3 (Family and Vicsek, 1985).
Consider particles falling onto and sticking to a horizontal line of length L com-

posed of 200 deposition sites. All particles start from the same height, but to sim-
ulate their different velocities, we assume they start at random distances from the
left side of the line. The simulation consists of generating uniform random sites
between 0 and L, and having a particle stick to the site on which it lands. Because
a realistic situation may have columns of aggregates of different heights, the par-
ticle may be stopped before it makes it to the line, or it may bounce around until it
falls into a hole.We therefore assume that if the column height at which the parti-
cle lands is greater than that of both its neighbors, it will add to that height. If the
particle lands in a hole, or if there is an adjacent hole, it will fill up the hole. We
speedup the simulation by setting the height of the hole equal to the maximum of
its neighbors:

2001000
0

100

200

Length

S
u

rf
a
c
e
 H

e
ig

h
t

Figure 16.3 A simulation of the ballistic deposition of 20 000 particles onto a substrate of
length 200. The vertical height increases in proportion to the length of deposition time, with
the top being the final surface.

39116.5 Length of British Coastline (Problem 4)

1. Choose a random site r.
2. Let the array hr be the height of the column at site r.
3. Make the decision:

hr =

{
hr + 1 , if hr ≥ hr−1 , hr > hr+1 ,
max[hr−1 , hr+1] , if hr < hr−1 , hr < hr+1 .

(16.18)

Our simulation is Fractals/Film.py with the essential loop:

spot = i n t (random)
i f (spot == 0)

i f (coas t [spot] < coas t [spot +1])
coas t [spot] = coas t [spot +1] ;
e l s e coas t [spot]++;

e l s e i f (spot == coas t . l ength − 1)
i f (coas t [spot] < coas t [spot −1]) coas t [spot] = coas t [spot −1] ;
e l s e coas t [spot]++;

e l s e i f (coas t [spot]< coas t [spot −1] && coas t [spot]< coas t [spot +1])
i f (coas t [spot −1] > coas t [spot +1]) coas t [spot] = coas t [spot −1] ;

e l s e coas t [spot] = coas t [spot +1] ;
e l s e coas t [spot]++;

The results of this type of simulation show several empty regions scattered
throughout the line (Figure 16.3), which is an indication of the statistical nature of
the process while the film is growing. Simulations by Fereydoon reproduced the
experimental observation that the average height increases linearly with time and
produced fractal surfaces. (You will be asked to determine the fractal dimension
of a similar surface as an exercise.)

Exercise Extend the simulation of random deposition to two dimensions, so
rather than making a line of particles we now deposit an entire surface.

16.5
Length of British Coastline (Problem 4)

In 1967,Mandelbrot (Mandelbrot, 1967) asked a classic question, “How long is the
coast of Britain?” If Britain had the shape of Colorado orWyoming, both of which
have straight-line boundaries, its perimeter would be a curve of dimension 1 with
finite length. However, coastlines are geographic not geometric curves, with each
portion of the coast sometimes appearing self-similar to the entire coast. If the
perimeter of the coast is in fact a fractal, then its length is either infinite or mean-
ingless. Mandelbrot deduced the dimension of the west coast of Britain to be df =
1.25, which implies infinite length. In your problem we ask you to determine the
dimension of the perimeter of one of our fractal simulations.

392 16 Fractals and StatisticalGrowthModels

16.5.1
Coastlines as Fractals (Model)

The length of the coastline of an island is the perimeter of that island. While the
concept of perimeter is clear for regular geometric figures, some thought is re-
quired to give it meaning for an object that may be infinitely self-similar. Let us
assume that a map maker has a ruler of length r. If she walks along the coastline
and counts the number of times N that she must place the ruler down in order to
cover the coastline, shewill obtain a value for the length L of the coast asNr. Imag-
ine now that the map maker keeps repeating her walk with smaller and smaller
rulers. If the coast was a geometric figure or a rectifiable curve, at some point
the length L would become essentially independent of r and would approach a
constant. Nonetheless, as discovered empirically by Richardson (1961) for natu-
ral coastlines such as those of South Africa and Britain, the perimeter appears to
be an unusual function of r:

L(r) = Mr1−df , (16.19)

where M and df are empirical constants. For a geometric figure or for Col-
orado, df = 1 and the length approaches a constant as r → 0. Yet for a fractal
with df > 1, the perimeter L → ∞ as r → 0. This means that as a consequence
of self-similarity, fractals may be of finite size but have infinite perimeters. Physi-
cally, at some point there may be no more details to discern as r → 0 (say, at the
quantum or Compton size limit), and so the limit may not be meaningful.

16.5.2
Box Counting Algorithm

Consider a line of length L brokenup into segments of length r (Figure 16.4a). The
number of segments or “boxes” needed to cover the line is related to the size r of
the box by

N(r) = L
r
= C

r
, (16.20)

where C is a constant. A proposed definition of fractional dimension is the power
of r in this expression as r → 0. In our example, it tells us that the line has dimen-
sion df = 1. If we now ask howmany little circles of radius r it would take to cover
or fill a circle of area A (Figure 16.4, middle), we will find that

N(r) = lim
r→0

A
πr2

⇒ df = 2 , (16.21)

as expected. Likewise, counting the number of little spheres or cubes that can be
packedwithin a large sphere tells us that a sphere has dimension df = 3. In general,
if it takes N little spheres or cubes of side r → 0 to cover some object, then the
fractal dimension df can be deduced as

N(r) = C
(1
r

)df
= C′sdf (as r → 0) , (16.22)

39316.5 Length of British Coastline (Problem 4)

2r

80400
0

40

100

(a) (b)

Figure 16.4 Examples of the use of “box”
counting to determine fractal dimension. (a)
In the top “boxes” are circles and the perime-
ter is being covered. In the bottom an entire
figure is being covered. In (b) a “coastline”

is being covered by boxes of two different
sizes (scales). The fractal dimension can be
deduced by recording the number of box of
different scale needed to cover the figures.

logN(r) = logC − df log(r) (as r → 0) , (16.23)

⇒ df = − lim
r→0

Δ logN(r)
Δ log r

. (16.24)

Here s ∝ 1∕r is called the scale in geography, so r → 0 corresponds to an infinite
scale. To illustrate, youmay be familiar with the low scale on amap being 10 000m
to a centimeter, while the high scale is 100m to a centimeter. If we want the map
to show small details (sizes), we need a map of high scale.
We will use box counting to determine the dimension of a perimeter, not of an

entire figure. Once we have a value for df , we can determine a value for the length
of the perimeter via (16.19). (If you cannot wait to see box counting in action, in
the auxiliary online files you will find an applet Jfracdim that goes through all the
steps of box counting before your eyes and even plots the results.)

16.5.3
Coastline Implementation and Exercise

Rather than ruin our eyes using a geographic map, we use a mathematical one,
specifically, the top portion of Figure 16.3 that may look like a natural coastline.
Determine df by covering this figure, or one you have generated, with a semitrans-
parent piece of graph paper,1) and counting the number of boxes containing any
part of the coastline (Figures 16.4 and 16.5).

1) Yes, we are suggesting a painfully analog technique based on the theory that trauma leaves a
lasting impression. If you prefer, you can store your output as a matrix of 1 and 0 values and let
the computer do the counting, but this will take more of your time!

394 16 Fractals and StatisticalGrowthModels

square (m = 2.00)

coastline (m = 1.3)

straight line (m = 1.02)

log(scale)

–4 –3 –2 –1–3.5 –2.5 –1.5

lo
g

(N
u

m
b

e
r

b
o

x
e

s
)

Figure 16.5 Fractal dimensions of a line, box, and coastline determined by box counting. The
slope at vanishingly small scale determines the dimension.

1. Print your coastline graph with the same physical scale (aspect ratio) for the
vertical and horizontal axes. This is required because the graph paper you will
use for box counting has square boxes and so you want your graph to also
have the same vertical and horizontal scales. Place a piece of graph paper over
your printout and look though the graph paper at your coastline. If you do not
have a piece of graph paper available, or if you are unable to obtain a printout
with the same aspect ratio for the horizontal and vertical axes, add a series of
closely spaced horizontal and vertical lines to your coastline printout and use
these lines as your graph paper. (Box counting should still be accurate if both
your coastline and your graph paper have the same aspect ratios.)

2. The vertical height in our printout was 17 cm, and the largest division on our
graph paper was 1 cm. This sets the scale of the graph as 1 : 17, or s = 17 for
the largest divisions (lowest scale). Measure the vertical height of your fractal,
compare it to the size of the biggest boxes on your “piece” of graph paper, and
thus determine your lowest scale.

3. With our largest boxes of 1 cm × 1 cm, we found that the coastline passed
through N = 24 large boxes, that is, that 24 large boxes covered the coastline
at s = 17. Determine howmany of the largest boxes (lowest scale) are needed
to cover your coastline.

4. With our next smaller boxes of 0.5 cm × 0.5 cm, we found that 51 boxes cov-
ered the coastline at a scale of s = 34. Determine how many of the midsize
boxes (midrange scale) are needed to cover your coastline.

5. With our smallest boxes of 1mm × 1mm, we found that 406 boxes covered
the coastline at a scale of s = 170. Determine howmany of the smallest boxes
(highest scale) are needed to cover your coastline.

6. Equation 16.24 tells us that as the box sizes get progressively smaller, we have

logN ≃ logA + df log s ,

⇒ df ≃
Δ logN
Δ log s

=
logN2 − logN1

log s2 − log s1
=

log(N2∕N1)
log(s2∕s1)

.

Clearly, only the relative scales matter because the proportionality constants
cancel out in the ratio. A plot of logN vs. log s should yield a straight line.

39516.6 CorrelatedGrowth, Forests, Films (Problem 5)

In our example we found a slope of df = 1.23. Determine the slope and thus
the fractal dimension for your coastline. Although only two points are needed
to determine the slope, use your lowest scale point as an important check.
(Because the fractal dimension is defined as a limit for infinitesimal box sizes,
the highest scale points are more significant.)

7. As given by (16.19), the perimeter of the coastline

L ∝ s1.23−1 = s0.23 . (16.25)

If we keep making the boxes smaller and smaller so that we are looking at the
coastline at higher and higher scale and if the coastline is self-similar at all
levels, then the scale s will keep getting larger and larger with no limits (or at
least until we get down to some quantum limits). This means

L ∝ lim
s→∞

s0.23 = ∞ . (16.26)

Does your fractal implies an infinite coastline? Does it make sense that a small
island like Britain, which you can walk around, has an infinite perimeter?

16.6
Correlated Growth, Forests, Films (Problem 5)

It is an empirical fact that in nature there is increased likelihood that a plant will
grow if there is another one nearby (Figure 16.6a). This correlation is also valid
for the simulation of surface films, as in the previous algorithm. Your problem is
to include correlations in the surface simulation.

16.6.1
Correlated Ballistic Deposition Algorithm

A variation of the ballistic deposition algorithm, known as the correlated ballistic
deposition, simulates mineral deposition onto substrates onwhich dendrites form
(Tait et al., 1990). In Listing 16.2 we extend the previous algorithm to include the
likelihood that a freshly deposited particlewill attract another particle.We assume
that the probability of sticking depends on the distance d that the added particle
is from the last one (Figure 16.6b):

 = cdη . (16.27)

Here η is a parameter and c is a constant that sets the probability scale.2) For our
implementation we choose η = −2, which means that there is an inverse square
attraction between the particles (decreased probability as they get farther apart).

2) The absolute probability, of course, must be less than one, but it is nice to choose c so that the
relative probabilities produce a graph with easily seen variations.

396 16 Fractals and StatisticalGrowthModels

i

i + 1d

(a) (b)

Figure 16.6 (a) A view that might be seen in the undergrowth of a forest or after a correlated
ballistic deposition. (b) The probability of particle i + 1 sticking in one column depends upon
the distance d from the previously deposited particle i.

As in our study of uncorrelated deposition, a uniform randomnumber in the in-
terval [0, L] determines the column inwhich the particle will be deposited.Weuse
the same rules about the heights as before, but now a second random number is
used in conjunction with (16.27) to decide if the particle will stick. For instance, if
the computed probability is 0.6 and if r < 0.6, the particle will be accepted (sticks),
if r > 0.6, the particle will be rejected.

16.7
Globular Cluster (Problem 6)

Consider a bunch of grapes on an overhead vine. Your problem is to determine
how its tantalizing shape arises. In a flash of divine insight, you realize that these
shapes, as well as others such as those of dendrites, colloids, and thin-film struc-
ture, appear to arise from an aggregation process that is limited by diffusion.

16.7.1
Diffusion-Limited Aggregation Algorithm

Amodel of diffusion-limited aggregation (DLA) has successfully explained the re-
lation between a cluster’s perimeter andmass (Witten and Sander, 1983).We start
with a 2D lattice containing a seed particle in themiddle, draw a circle around the
particle, and place another particle on the circumference of the circle at some ran-
domangle.We then release the second particle and have it execute a randomwalk,
much like the one we studied in Chapter 4, but restricted to vertical or horizon-
tal jumps between lattice sites. This is a simulation of a type of Brownian motion

39716.7 Globular Cluster (Problem 6)

Figure 16.7 (a) A globular cluster of particles of the type that might occur in a colloid. (b) The
applet Dla2en.html lets you watch these clusters grow. Here the cluster is at the center of the
circle, and random walkers are started at random points around the circle.

related to diffusion. To make the model more realistic, we let the length of each
step vary according to a randomGaussian distribution. If at some point during its
random walk, the particle encounters another particle within one lattice spacing,
they stick together and the walk terminates. If the particle passes outside the cir-
cle from which it was released, it is lost forever. The process is repeated as often
as desired and results in clusters (Figure 16.7 and applet dla).

Listing 16.2 Column.py simulates correlated ballistic deposition of minerals onto substrates
on which dendrites form.

Column . py

from v i s u a l import * ;
import random

maxi = 100000; npoints = 200 # Number i t e ra t ions , spaces
i = 0 ; d i s t = 0 ; r = 0 ; x = 0 ; y = 0
oldx = 0 ; o ldy = 0 ; pp = 0 . 0 ; prob = 0 .0
h i t = zeros ((200) , i n t)

graph1 = d i s p l a y (width = 500 , he ight = 500 , range=250 ,
t i t l e = ’ Correlated B a l l i s t i c Deposit ion ’)

pts = po in t s (co l o r=co lo r . green , s i z e =2)

f o r i in range (0 , npoints) : h i t [i] = 0 # Clear array
oldx = 100 ; o ldy = 0

f o r i in range (1 , maxi + 1) :
r = i n t (npoints * random . random ())
x = r − oldx
y = h i t [r] − oldy
d i s t = x * x + y * y
i f (d i s t == 0) : prob = 1 .0 # St ick ing prob depends on l a s t x
e l s e : prob = 9 . 0 / d i s t
pp = random . random ()

398 16 Fractals and StatisticalGrowthModels

i f (pp < prob) :
i f (r >0 and r <(npoints − 1)) :

i f ((h i t [r] >= h i t [r − 1]) and (h i t [r] >= h i t [r + 1])) :
h i t [r] = h i t [r] + 1

e l s e :
i f (h i t [r − 1] > h i t [r + 1]) :

h i t [r] = h i t [r − 1]
e l s e : h i t [r] = h i t [r + 1]

oldx = r
oldy = h i t [r]
o lxc = oldx *2 − 200 # TF for plot
o l yc = oldy *4 − 200
pts . append (pos=(olxc , o l yc))

1. Write a subroutine that generates random numbers with a Gaussian distribu-
tion.3)

2. Define a 2D lattice of points represented by the array grid[400,400] with all el-
ements initially zero.

3. Place the seed at the center of the lattice; that is, set grid[199,199]=1.
4. Imagine a circle of radius 180 lattice spacings centered at grid[199,199]. This is

the circle from which we release particles.
5. Determine the angular position of the new particle on the circle’s circumfer-

ence by generating a uniform random angle between 0 and 2π.
6. Compute the x and y positions of the new particle on the circle.
7. Determine whether the particlemoves horizontally or vertically by generating

a uniform random number 0 < rx y < 1 and applying the rule

if

{
rx y < 0.5 , motion is vertical ,
rx y > 0.5 , motion is horizontal .

(16.28)

8. Generate a Gaussian-weighted random number in the interval [−∞,∞]. This
is the size of the step, with the sign indicating direction.

9. We now know the total distance and direction the particle will move. It jumps
one lattice spacing at a time until this total distance is covered.

10. Before a jump, check whether a nearest-neighbor site is occupied:
a) If occupied, the particle stays at its present position and the walk is over.
b) If unoccupied, the particle jumps one lattice spacing.
c) Continue the checking and jumping until the total distance is covered, un-

til the particle sticks, or until it leaves the circle.
11. Once one random walk is over, another particle can be released and the pro-

cess repeated. This is how the cluster grows.

Becausemany particles are lost, youmay need to generate hundreds of thousands
of particles to form a cluster of several hundred particles.

3) We indicated how to do this in Section 5.22.1.

39916.7 Globular Cluster (Problem 6)

16.7.2
Fractal Analysis of DLA or a Pollock

A cluster generated with the DLA technique is shown in Figure 16.7. We wish to
analyze it to see if the structure is a fractal and, if so, to determine its dimension.
(As an alternative, you may analyze the fractal nature of the Pollock painting in
Figure 16.8, a technique used to determine the authenticity of this sort of art.) As
a control, simultaneously analyze a geometric figure, such as a square or circle,
whose dimension is known. The analysis is a variation of the one used to deter-
mine the length of the coastline of Britain.

1. If you have not already done so, use the box counting method to determine
the fractal dimension of a simple square.

2. Draw a square of length L, small relative to the size of the cluster, around the
seed particle. (Small might be seven lattice spacings to a side.)

3. Count the number of particles within the square.
4. Compute the density ρ by dividing the number of particles by the number of

sites available in the box (49 in our example).
5. Repeat the procedure using larger and larger squares.
6. Stop when the cluster is covered.
7. The (box counting) fractal dimension df is estimated from a log–log plot of

the density ρ vs. L. If the cluster is a fractal, then (16.2) tells us that ρ ∝ Ldf−2,
and the graph should be a straight line of slope df − 2.

The graph we generated had a slope of −0.36, which corresponds to a fractal di-
mension of 1.66. Because random numbers are involved, the graph you generate
will be different, but the fractal dimension should be similar. (Actually, the struc-
ture is multifractal, and so the dimension also varies with position.)

Figure 16.8 Number 8 by the American
painter Jackson Pollock. (Used with permis-
sion, Neuberger Museum, State University
of New York.) Some researchers claim that
Pollock’s paintings exhibit a characteristic frac-

tal structure, while some other researchers
question this (Kennedy, 2006). See if you can
determine the fractal dimensions within this
painting.

400 16 Fractals and StatisticalGrowthModels

16.8
Fractals in Bifurcation Plot (Problem 7)

Recollect the project involving the logisticsmapwherewe plotted the values of the
stable population numbers vs. the growth parameter μ. Take one of the bifurcation
graphs you produced and determine the fractal dimension of different parts of the
graph by using the same technique that was applied to the coastline of Britain.

16.9
Fractals from Cellular Automata

We have already indicated in places how statistical models may lead to fractals.
There is a class of statistical models known as cellular automata that produce com-
plex behaviors from very simple systems. Here we study some.

Cellular automata were developed by von Neumann and Ulam in the early 1940s
(von Neumann was also working on the theory behind modern computers then).
Though very simple, cellular automata have found applications in many branches
of science (Peitgen et al., 1994; Sipper, 1996). Their classic definition is (Barnsley
and Hurd, 1992):

A cellular automaton is a discrete dynamical system in which space, time,
and the states of the system are discrete. Each point in a regular spatial lat-
tice, called a cell, can have any one of a finite number of states, and the states
of the cells in the lattice are updated according to a local rule. That is, the
state of a cell at a given time depends only on its own state one time step pre-
viously, and the states of its nearby neighbors at the previous time step. All
cells on the lattice are updated synchronously, and so the state of the entice
lattice advances in discrete time steps.

A cellular automaton in two dimensions consists of a number of square cells that
grow upon each other. A famous one is Conway’s Game of Life, which we imple-
ment in Listing 16.3. In this, cells with value 1 are alive, while cells with value 0
are dead. Cells grow according to the following rules:

1. If a cell is alive and if two or three of its eight neighbors are alive, then the cell
remains alive.

2. If a cell is alive and if more than three of its eight neighbors are alive, then the
cell dies because of overcrowding.

3. If a cell is alive and only one of its eight neighbors is alive, then the cell dies of
loneliness.

4. If a cell is dead and more than three of its neighbors are alive, then the cell
revives.

40116.9 Fractals from Cellular Automata

A variation on the Game of Life is to include a “rule one out of eight” that a cell
will be alive if exactly one of its neighbors is alive, otherwise the cell will remain
unchanged.

Listing 16.3 Gameoflife.py is an extension of Conway’s Game of Life in which cells always
revive if one out of eight neighbors is alive.

Gameoflife . py : Cel lular automata in 2 dimensions

’ ’ ’ * Rules : a c e l l can be e i t he r dead (0) or a l i v e (1)
* I f a c e l l i s a l i v e :
* on next step w i l l remain a l i v e i f
* 2 or 3 o f i t s c l o s e r 8 neighbors are a l i v e .
* I f > 3 o f 8 neighbors are a l ive , c e l l d i e s o f overcrowdedness
* I f l e s s than 2 neighbors are a l i v e the c e l l d i e s o f l o n e l i n e s s
* A dead c e l l w i l l be a l i v e i f 3 o f i t s 8 neighbors are a l i v e ’ ’ ’

from v i s u a l import *
from v i s u a l . graph import * ; import random

scene = d i s p l a y (width= 500 , he ight= 500 , t i t l e = ’Game of L i f e ’)
c e l l = zeros ((5 0 , 5 0)) ; c e l l u = zeros ((5 0 , 5 0))
curve (pos=

[(−49 ,−49) , (−49 ,49) , (49 , 49) , (49 , −49) ,(−49 ,−49)] , co lo r=co lo r . white)
boxes = po in t s (shape= ’ square ’ , s i z e =8 , co lo r=co lo r . cyan)

de f drawce l l s (ce) :
boxes . pos = [] # Erase previous c e l l s
f o r j in range (0 , 50) :

f o r i in range (0 , 50) :
i f ce [i , j] == 1 :

xx = 2* i −50
yy = 2* j −50
boxes . append (pos=(xx , yy))

de f i n i t i a l () :
f o r j in range (20 , 28) :

f o r i in range (20 , 28) :
r= i n t (random . random () *2)
c e l l [j , i] = r

re turn c e l l

de f gameo f l i f e (c e l l) :
f o r i in range (1 , 49) :

f o r j in range (1 , 49) :
sum1 = c e l l [i −1 , j −1] + c e l l [i , j −1] + c e l l [i +1 , j −1] # neighb
sum2 = c e l l [i −1 , j] + c e l l [i +1 , j] + c e l l [i −1 , j +1] \

+ c e l l [i , j +1] + c e l l [i +1 , j +1]
a l i v e = sum1+sum2
i f c e l l [i , j] == 1 :

i f a l i v e == 2 or a l i v e == 3 : # Alive
c e l l u [i , j] = 1 # Lives

i f a l i v e > 3 or a l i v e < 2 : # Overcrowded or sol i tude
c e l l u [i , j] = 0 # dies

i f c e l l [i , j] == 0 :
i f a l i v e == 3 :

c e l l u [i , j] = 1 # Revives
e l s e :

c e l l u [i , j] = 0 # Remains dead
a l i v e = 0
re turn c e l l u

temp = i n i t i a l ()
d r awce l l s (temp)
whi le True :

402 16 Fractals and StatisticalGrowthModels

r a t e (6)
c e l l = temp
temp = gameo f l i f e (c e l l)
d r awce l l s (c e l l)

Early studies of the statistical mechanics of cellular automata weremade by (Wol-
fram, 1983), who indicated how one can be used to generate a Sierpiński gasket.
Because we have already seen that a Sierpiński gasket exhibits fractal geometry
(Section 16.2), this represents a microscopic model of how fractals may occur in
nature. This model uses eight rules, given graphically at the top of Figure 16.9, to
generate new cells from old. We see all possible configurations for three cells in
the top row, and the begetted next generation in the row below. At the bottom of
Figure 16.9 is a Sierpiński gasket of the type created by the applet JCellAut. This
plays the game and lets you watch and control the growth of the gasket.

Figure 16.9 The rules for two versions of the Game of Life. The rules, given graphically on the
top row, create the gaskets below (output obtained from the applet JCellAut in the auxiliary
files).

16.10
Perlin Noise Adds Realism⊙

We have already seen in this chapter how statistical fractals are able to generate
objects with a striking resemblance to those in nature. This appearance of realism
may be further enhanced by including a type of coherent randomness known as
Perlin noise. The technique we are about to discuss was developed by Ken Perlin
of New York University, who won an Academy Award (an Oscar) in 1997 for it
and has continued to improve it (Perlin, 1985). This type of coherent noise has
found use in important physics simulations of stochastic media (Tickner, 2004),
as well as in video games and motion pictures like Tron.

40316.10 Perlin Noise Adds Realism⊙

0

00 0

1

1

1 1

00

0

0

0 1

01

1 1

g

g
g

g1

1

2

2

3

3

p p

pp
(x , y)

(x , y)

(x , y)

(x , y)

(x, y)

(x , y)

(x , y)

(x , y)
(x, y)

(x , y)

(a)

(b)

Figure 16.10 The coordinates used in adding
Perlin noise. (a) The rectangular grid used to
locate a square in space and a corresponding
point within the square. As shownwith the ar-
rows, unit vectors g i with random orientation

are assigned at each grid point. (b) A point
within each square is located by drawing the
four pi . The g i vectors are the same as on the
left.

The inclusion of Perlin noise in a simulation adds both randomness and a type
of coherence among points in space that tends to make dense regions denser and
sparse regions sparser. This is similar to our correlated ballistic deposition simula-
tions (Section 16.6.1) and related to chaos in its long-range randomness and short-
range correlations. We start with some known function of x and y and add noise
to it. For this purpose, Perlin used the mapping or ease function (Figure 16.11b)

f (p) = 3p2 − 2p3 . (16.29)

As a consequence of its S shape, this mapping makes regions close to 0 even
closer to 0, while making regions close to 1 even closer (in other words, it in-
creases the tendency to clump,which showsup as higher contrast).We then break
space up into a uniform rectangular grid of points (Figure 16.10a), and consider
a point (x , y) within a square with vertices (x0 , y0), (x1 , y0), (x0 , y1), and (x1 , y1).
We next assign unit gradients vectors g0 to g3 with random orientation at each
grid point. A point within each square is located by drawing the four pi vectors
(Figure16.10b):

p0 = (x − x0)i + (y − y0) j , p1 = (x − x1)i + (y − y0) j , (16.30)

p2 = (x − x1)i + (y − y1) j , p3 = (x − x0)i + (y − y1) j . (16.31)

404 16 Fractals and StatisticalGrowthModels

(x, y)

(x
, y

)0
0

(x
, y

)
0

1

(x
, y

)0
1

(x
, y

)
1

1

s

t
u v

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1
3p 2p2 3

p

(a) (b)

Figure 16.11 The mapping used in adding Perlin noise. (a) The numbers s, t, u, and v are
represented by perpendiculars to the four vertices, with lengths proportional to their values.
(b) The function 3p2 − 2p3 is used as a map of the noise at a point like (x , y) to others close by.

Next the scalar products of the p′s and the g′s are formed:

s = p0 ⋅ g0 , t = p1 ⋅ g1 , v = p2 ⋅ g2 , u = p3 ⋅ g3 . (16.32)

As shown in Figure 16.11a, the numbers s, t, u, and v are assigned to the four
vertices of the square and represented there by lines perpendicular to the square
with lengths proportional to the values of s, t, u, and v (which can be positive or
negative).
The actual mapping proceeds via a number of steps (Figure 16.12):

1. Transform the point (x , y) to (sx , s y),

sx = 3x2 − 2x3 , s y = 3y2 − 2y3 . (16.33)

2. Assign the lengths s, t, u, and v to the vertices in the mapped square.
3. Obtain the height a (Figure 16.12) via linear interpolation between s and t.
4. Obtain the height b via linear interpolation between u and v.
5. Obtain s y as a linear interpolation between a and b.
6. The vector c so obtained is now the two components of the noise at (x , y).

16.10.1
Ray Tracing Algorithms

Ray tracing is a technique that renders an image of a scene by simulating the way
rays of light travel (Pov-Ray, 2013). To avoid tracing rays that do not contribute to
the final image, ray-tracing programs start at the viewer, trace rays backward onto
the scene, and then back again onto the light sources. You can vary the location
of the viewer and light sources and the properties of the objects being viewed, as
well as atmospheric conditions such as fog, haze, and fire.
As an example of what can be carried out, in Figure 16.14a we show the out-

put from the ray-tracing program Islands.pov in Listing 16.4, using as input the

40516.10 Perlin Noise Adds Realism⊙

(x, y)

(x , y)0
0

(x , y)
0

1 (x , y)0
1

(x , y)
1

1

s

t

u v

s

t

u v

s ,
s

(
)x

y

a

b

noise
cc

(a) (b)

Figure 16.12 Perlin noise mapping. (a) The point (x , y) is mapped to point (sx , xy). (b) Us-
ing (16.33). Then three linear interpolations are performed to find c, the noise at (x , y).

Figure 16.13 After the addition of Perlin noise, the random scatterplot in (a) becomes the
clusters on (b).

coherent random noise as shown in Figure 16.13b. The program options we used
are given in Listing 16.4 and are seen to include commands to color the islands,
to include waves, and to give textures to the sky and the sea. Pov-Ray also allows
the possibility of using Perlin noise to give textures to the objects to be created.
For example, the stone cup on the right in Figure 16.14 has a marblelike texture
produced by Perlin noise.

Listing 16.4 Islands.pov in the Codes/Animations/Fractals directory gives the Pov-Ray ray-
tracing commands needed to convert the coherent noise random plot of Figure 16.13 into the
mountain like image as shown in Figure 16.14a.

/ / I s l a nd s . pov Pov−Ray program to c rea t e I s l ands , by Manuel J Paez
plane {

<0 , 1 , 0 > , 0 / / Sky
pigment { co lo r rgb <0 , 0 , 1> }
s c a l e 1
r o t a t e <0 , 0 , 0>
t r a n s l a t e y * 0 . 2

}
g l o b a l _ s e t t i n g s {

406 16 Fractals and StatisticalGrowthModels

Figure 16.14 (a) The output from the Pov-Ray
ray-tracing program that took as input the 2D
coherent random noise plot in Figure 16.13
and added height and fog. (b) An image of a

surface of revolution produced by Pov-Ray in
which the marble-like texture is created by
Perlin noise.

adc_ba i l ou t 0.00392157
assumed_gamma 1 .5
no i s e _gene ra to r 2

}
#declare Is land_texture = texture {

pigment {
g rad i en t <0 , 1 , 0> / / V e r t i c a l d i r e c t i o n
color_map { / / Color the i s l a nd s

[0 .15 co lo r rgb <1 , 0 .968627 , 0>]
[0 . 2 co lo r rgb <0.886275 , 0 .733333 , 0.180392 >]
[0 . 3 co lo r rgb <0.372549 , 0 .643137 , 0.0823529 >]
[0 . 4 co lo r rgb <0.101961 , 0 .588235 , 0.184314 >]
[0 . 5 co lo r rgb <0.223529 , 0 .666667 , 0.301961 >]
[0 . 6 co lo r rgb <0.611765 , 0 .886275 , 0.0196078 >]
[0 .69 co lo r rgb <0.678431 , 0 .921569 , 0.0117647 >]
[0 .74 co lo r rgb <0.886275 , 0 .886275 , 0.317647 >]
[0 .86 co lo r rgb <0.823529 , 0 .796078 , 0.0196078 >]
[0 .93 co lo r rgb <0.905882 , 0 .545098 , 0.00392157 >]
}

}
f i n i s h {

ambient r g b f t <0.2 , 0 . 2 , 0 . 2 , 0 . 2 , 0.2 >
d i f f u s e 0 . 8

}
}
camera { / / Camera c h a r a c t e r i s t i c s and l o c a t i o n

pe r spec t i v e
l o c a t i on <−15, 6 , −20> / / Located here
sky <0 , 1 , 0>
d i r e c t i on <0 , 0 , 1>
r i g h t <1.3333 , 0 , 0>
up <0 , 1 , 0>
look_a t <−0.5 , 0 , 4> / / look ing a t tha t point
ang le 36

}
l i g h t _ s ou r c e {<−10 , 20 , −25>, rgb <1 , 0 .733333 , 0.00392157 >} / / L ight

#declare Is lands = he igh t _ f i e ld { / / Takes g i f and finds heights
g i f "d :\ pov\montania . g i f " / / Windows d i r e c t o r y naming
s c a l e <50 , 2 , 50>
t r a n s l a t e <−25, 0 , −25>

}
o b j e c t { / / I s l a nd s

40716.11 Exercises

I s l a nd s
t ex tu re {

I s l a nd _ t e x t u r e
s c a l e 2

}
}
box { / / Upper f ace of the box i s the sea

<−50, 0 , −50>, <50 , 0 . 3 , 50> / / Locat ion of 2 opposi te v e r t i c e s
t r a n s l a t e <−25, 0 , −25>
tex tu re { / / S imulate waves

normal {
spot ted
0 . 4
s c a l e <0.1 , 1 , 0.1 >

}
pigment { co l o r rgb <0.164706 , 0 .556863 , 0.901961 > }

}
}
fog { / / A constant fog i s def ined

fog_type 1
d i s t ance 30
rgb <0.984314 , 1 , 0.964706 >

}

16.11
Exercises

1. Figure 16.9 gives the rules (at top) and the results (below) for two versions of
the Game of Life. These results were produced by the applet JCellAut. Write
a Python program that runs the same games. Check that you obtain the same
results for the same initial conditions.

2. Recall how box counting is used to determine the fractal dimension of an ob-
ject. Imagine that the result of some experiment or simulation is an interesting
geometric figure.
a) What might be the physical/theoretical importance of determining that

this object is a fractal?
b) What might be the importance of determining its fractal dimension?
c) Why is it important to usemore than two sizes of boxes?

409

17
Thermodynamic Simulations and Feynman Path Integrals

We start this chapter bydescribinghowmagneticmaterials canbesimulatedbyap-
plying the Metropolis algorithm to the Ising model. This extends the Monte Carlo
techniques studied inChapter 4 to include now thermodynamics.Not onlydo ther-
modynamic simulationshave importantpractical applications, but theyalsogiveus
insight intowhat is “dynamic” in thermodynamics. Toward the middle of the chap-
ter, we describe a recentMonte Carlo algorithm known as Wang–Landau sampling
that has shown itself to be far more efficient than the 60-plus-year-old Metropolis
algorithm.Wang–Landau sampling is an active subject in present research, and it is
nice to see it fittingwell into an elementary textbook.We end the chapter by apply-
ing the Metropolis algorithm to Feynman’s path integral formulation of quantum
mechanics (Feynman and Hibbs, 1965). The theory, while themost advanced to be
found in this book, forms the basis for field-theoretic computations of quantum
chromodynamics, some of themost fundamental andmost time-consuming com-
putations in existence.Basic discussions can be found in (Mannheim, 1983; MacKe-
own, 1985; MacKeown and Newman, 1987), with a recent review in (Potvin, 1993).

17.1
Magnets via Metropolis Algorithm

Ferromagnets contain finite-size domains in which the spins of all the atoms point
in the same direction.When an external magnetic field is applied to thesemateri-
als, the different domains align and thematerials become “magnetized.” Yet as the
temperature is raised, the total magnetism decreases, and at the Curie tempera-
ture the system goes through a phase transition beyond which all magnetization
vanishes. Your problem is to explain the thermal behavior of ferromagnets.

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

410 17 Thermodynamic Simulations and Feynman Path Integrals

17.2
An Ising Chain (Model)

As our model, we consider N magnetic dipoles fixed in place on the links of a
linear chain (Figure 17.1). (It is a straightforward generalization to handle 2D and
3D lattices.) Because the particles are fixed, their positions and momenta are not
dynamic variables, and we need worry only about their spins.We assume that the
particle at site i has spin si , which is either up or down:

si ≡ sz ,i = ±1
2
. (17.1)

Each configuration of the N particles is described by a quantum state vector|||αj
⟩
= ||s1 , s2 ,… , sN ⟩ = {

±1
2
,±1

2
,…

}
, j = 1,… , 2N . (17.2)

Because the spin of each particle can assume any one of the two values, there
are 2N different possible states for the N particles in the system. Because fixed
particles cannot be interchanged, we do not need to concern ourselves with the
symmetry of the wave function.
The energy of the system arises from the interaction of the spins with each

other and with the external magnetic field B. We know from quantum mechan-
ics that an electron’s spin and magnetic moment are proportional to each other,
so a magnetic dipole–dipole interaction is equivalent to a spin–spin interaction.
We assume that each dipole interacts with the external magnetic field and with
its nearest neighbor through the potential:

Vi = − Jsi ⋅ si+1 − gμbsi ⋅ B . (17.3)

Here the constant J is called the exchange energy and is a measure of the strength
of the spin–spin interaction. The constant g is the gyromagnetic ratio, that is, the
proportionality constant between a particle’s angular momentum and magnetic
moment. The constant μb = eℏ∕(2mec) is the Bohr magneton, the basic measure
for magnetic moments.

E = + J

E = – J

Figure 17.1 The 1D lattice of N spins used in the Ising model of magnetism. The interaction
energy between nearest-neighbor pairs E = ±J is shown for aligned and opposing spins.

41117.2 An Ising Chain (Model)

Even for small numbers of particles, the 2N possible spin configurations gets to
be very large (220 > 106), and it is expensive for the computer to examine them
all. Realistic samples with∼ 1023 particles are beyond imagination. Consequently,
statistical approaches are usually assumed, even for moderate values of N . Just
how large N must be for this to be accurate is one of the things we want you to
explore with your simulations.
The energy of this system in state αk is the expectation value of the sum of the

potential V over the spins of the particles:

Eαk
= ⟨αk |∑

i
Vi|αk⟩ = − J

N−1∑
i=1

si si+1 − Bμb

N∑
i=1

si . (17.4)

An apparent paradox in the Isingmodel occurswhenwe turn off the externalmag-
netic field and thereby eliminate a preferred direction in space. This means that
the average magnetization should vanish despite the fact that the lowest energy
state would have all spins aligned. The answer to this paradox is that the system
with B = 0 is unstable; even if all the spins are aligned, there is nothing to stop
their spontaneous reversal. The instabilities are a type of Bloch-wall transitions
in which regions of different spin orientations change size. Indeed, natural mag-
netic materials havemultiple domains with all the spins aligned, but with different
domains pointing in different directions.
For simplicity, we assume B = 0, which means that there are just spin–spin

interactions. However, be cognizant of the fact that this means there is no pre-
ferred direction in space, and so you may have to be careful how you calculate
observables when averaging over domains. For example, you may need to take
an absolute value of the total spin when calculating the magnetization, that is, to
calculate ⟨|∑i si|⟩ rather than ⟨∑i si⟩.
The equilibrium alignment of the spins depends critically on the sign of the ex-

change energy J . If J > 0, the lowest energy state will tend to have neighboring
spins aligned. If the temperature is low enough, the ground state will be a ferro-
magnet with all the spins aligned. Yet if J < 0, the lowest energy state will tend to
have neighbors with opposite spins. If the temperature is low enough, the ground
state will be a antiferromagnet with alternating spins.
The simple 1D Ising model has its limitations. Although the model is accurate

in describing a system in thermal equilibrium, it is not accurate in describing the
approach to thermal equilibrium. Also, we have postulated that only one spin is
flipped at a time, while real magnetic materials tend to flip many spins at a time.
Other limitations are straightforward to improve, for example, the addition of
longer range interactions than just nearest neighbors, the motion of the centers,
higher multiplicity spin states, and extension to two and three dimensions.
A fascinating aspect of magnetic materials is the existence of a critical tem-

perature, the Curie temperature, above which the gross magnetization essentially
vanishes. Below the Curie temperature the system is in a quantum state with
macroscopic order; above the Curie temperature there is only short-range order
extending over atomic dimensions. Although the 1D Ising model predicts realis-

412 17 Thermodynamic Simulations and Feynman Path Integrals

tic temperature dependences for the thermodynamic quantities, the model is too
simple to support a phase transition. However, the 2D and 3D Ising models do
support the Curie temperature phase transition (Yang, 1952).

17.3
Statistical Mechanics (Theory)

Statistical mechanics starts with the elementary interactions among a system’s
particles and constructs the macroscopic thermodynamic properties such as spe-
cific heats. The essential assumption is that all configurations of the systemconsis-
tent with the constraints are possible. In some simulations, such as the molecular
dynamics ones in Chapter 18, the problem is set up such that the energy of the
system is fixed. The states of this type of system are described by what is called
a microcanonical ensemble. In contrast, for the thermodynamic simulations we
study in this chapter, the temperature, volume, and number of particles remain
fixed, and so we have what is called a canonical ensemble.
Whenwe say that an object is at temperatureT , wemean that the object’s atoms

are in thermodynamic equilibrium with an average kinetic energy proportional
to T . Although this may be an equilibrium state, it is also a dynamic one in which
the object’s energy fluctuates as it exchanges energy with its environment (it is
thermodynamics after all). Indeed, one of the most illuminating aspects of the
simulation to follow its visualization of the continual and random interchange of
energy that occurs at equilibrium.
The energy Eαj

of state αj in a canonical ensemble is not constant but is dis-
tributed with probabilities P(αj) given by the Boltzmann distribution:

(Eαj
, T) = e−Eα j ∕kBT

Z(T)
, Z(T) =

∑
α j

e−Eα j ∕kBT . (17.5)

Here k is Boltzmann’s constant, T the temperature, and Z(T) the partition func-
tion, aweighted sumover the individual states or configurations of the system.An-
other formulation, such as theWang–Landau algorithmdiscussed in Section 17.5,
sums over the energies of the states of the system and includes a density-of-states
factor g(Ei) to account for degenerate states with the same energy. While the
present sum over states is a simpler way to express the problem (one less func-
tion), we shall see that the sum over energies is more efficient numerically. In fact,
we are even able to ignore the partition function Z(T) because it cancels out in
our forming the ratio of probabilities.

41317.4 Metropolis Algorithm

17.3.1
Analytic Solution

For very large numbers of particles, the thermodynamic properties of the 1D Ising
model can be solved analytically and yields (Plischke and Bergersen, 1994)

U = ⟨E⟩ , (17.6)

U
J
= −N tanh J

kBT
= −N e J∕kBT − e− J∕kBT

e J∕kBT + e− J∕kBT
=

{
N , kBT → 0 ,
0 , kBT → ∞ .

(17.7)

The analytic results for the specific heat per particle and the magnetization are

C(kBT) =
1
N

dU
dT

=
(J∕kBT)2

cosh2(J∕kBT)
, (17.8)

M(kBT) =
Ne J∕kBT sinh(B∕kBT)√

e2 J∕kBT sinh2(B∕kBT) + e−2 J∕kBT
. (17.9)

The 2D Ising model has an analytic solution, but it is not easy to derive it (Yang,
1952; Huang, 1987).Whereas the internal energy and heat capacity are expressed
in terms of elliptic integrals, the spontaneous magnetization per particle has the
simple form

(T) =

{
0 , T > Tc ,
(1+z2)1∕4(1−6z2+z4)1∕8√

1−z2
, T < Tc ,

(17.10)

kTc ≃ 2.269 185 J , z = e−2 J∕kBT , (17.11)

where the temperature is measured in units of the Curie temperature Tc.

17.4
Metropolis Algorithm

In trying to devise an algorithm that simulates thermal equilibrium, it is important
to understand that the Boltzmann distribution (17.5) does not require a system
to remain always in the state of lowest energy, but says that it is less likely for the
system to be found in a higher energy state than in a lower energy one. Of course,
as T → 0 only the lowest energy state will be populated. For finite temperatures
we expect the energy to fluctuate by approximately kBT about the equilibrium
value.
In their simulation of neutron transmission throughmatter, Metropolis, Rosen-

bluth, Teller, and Teller (Metropolis et al., 1953) invented an algorithm to improve

414 17 Thermodynamic Simulations and Feynman Path Integrals

the Monte Carlo calculation of averages. ThisMetropolis algorithm is now a cor-
nerstone of computational physics because the sequence of configurations it pro-
duces (a Markov chain) accurately simulates the fluctuations that occur during
thermal equilibrium. The algorithm randomly changes the individual spins such
that, on the average, the probability of a configuration occurring follows a Boltz-
mann distribution. (We do not find the proof illuminating.)
TheMetropolis algorithm is a combination of the variance reduction technique

discussed in Section 5.19 and the von Neumann rejection technique discussed
in Section 5.21. There we showed how to make Monte Carlo integration more
efficient by sampling random points predominantly where the integrand is large
and how to generate random points with an arbitrary probability distribution.
Now we would like to have spins flip randomly, have a system that can reach any
energy in a finite number of steps (ergodic sampling), and have a distribution of
energies described by a Boltzmann distribution, yet have systems that equilibrate
quickly enough to compute in reasonable times.
The Metropolis algorithm is implemented via a number of steps. We start with

a fixed temperature and an initial spin configuration, and apply the algorithm un-
til a thermal equilibrium is reached (equilibration). Continued application of the
algorithm generates the statistical fluctuations about equilibrium from which we
deduce the thermodynamic quantities such as themagnetization M(T). Then the
temperature is changed, and the whole process is repeated in order to deduce
the T dependence of the thermodynamic quantities. The accuracy of the deduced
temperature dependences provides convincing evidence of the validity of the al-
gorithm. Because the 2N possible configurations ofN particles can be a very large
number, the amount of computer time needed can be very long. Typically, a small
number of iterations ≃ 10N is adequate for equilibration.
The explicit steps of the Metropolis algorithm are:

1. Start with an arbitrary spin configuration αk = {s1, s2 ,… , sN }.
2. Generate a trial configuration αk+1 by

a) picking a particle i randomly and
b) flipping its spin.1)

3. Calculate the energy Eαtr of the trial configuration.
4. If Eαtr ≤ Eαk

, accept the trial by setting αk+1 = αtr.
5. If Eαtr > Eαk

, accept with relative probability = exp(−ΔE∕kBT):
a) Choose a uniform random number 0 ≤ ri ≤ 1.

b) Set αk+1 =

{
αtr , if ≥ r j (accept) ,
αk , if < r j (reject) .

1) Large-scale, practical computations make a full sweep in which every spin is updated once, and
then use this as the new trial configuration. This is found to be efficient and useful in removing
some autocorrelations.

41517.4 Metropolis Algorithm

The heart of this algorithm is its generation of a random spin configuration αj
(17.2) with probability

(Eαj
, T) ∝ e−Eα j ∕kBT . (17.12)

The technique is a variation of vonNeumann rejection (stone throwing) in which
a random trial configuration is either accepted or rejected depending upon the
value of the Boltzmann factor. Explicitly, the ratio of probabilities for a trial con-
figuration of energy Et to that of an initial configuration of energy Ei is

 =
tr

i
= e−ΔE∕kBT , ΔE = Eαtr − Eαi . (17.13)

If the trial configuration has a lower energy (ΔE ≤ 0), the relative probability will
be greater than 1 and we will accept the trial configuration as the new initial con-
figuration without further ado. However, if the trial configuration has a higher en-
ergy (ΔE > 0), we will not reject it out of hand, but instead accept it with relative
probability = exp(−ΔE∕kBT) < 1. To accept a configuration with a probabil-
ity, we pick a uniform random number between 0 and 1, and if the probability is
greater than this number, we accept the trial configuration; if the probability is
smaller than the chosen random number, we reject it. (You can remember which
way this goes by letting Eαtr → ∞, in which case → 0 and nothing is accepted.)
When the trial configuration is rejected, the next configuration is identical to the
preceding one.
How do you start? One possibility is to start with random values of the spins (a

“hot” start). Another possibility (Figure 17.2) is a “cold” start in which you start
with all spins parallel (J > 0) or antiparallel (J < 0). In general, one tries to re-
move the importance of the starting configuration by letting the calculation run a

Figure 17.2 An Ising model simulation on
a 1D lattice of 100 initially aligned spins (on
the left). Up spins are indicated by circles, and
down spins by blank spaces. Although the

system starts with all up spins (a “cold” start),
the system is seen to form domains of up and
down spins as time progresses.

416 17 Thermodynamic Simulations and Feynman Path Integrals

while (≃ 10N rearrangements) before calculating the equilibrium thermodynamic
quantities. You should get similar results for hot, cold, or arbitrary starts, and by
taking their average you remove some of the statistical fluctuations.

17.4.1
Metropolis Algorithm Implementation

1. Write a program that implements the Metropolis algorithm, that is, that pro-
duces a new configuration αk+1 from the present configuration αk . (Alterna-
tively, use the program IsingViz.py shown in Listing 17.1.)

2. Make the key data structure in your program an array s[N] containing the val-
ues of the spins si . For debugging, print out + and − to give the spin at each
lattice point and examine the pattern for different trial numbers.

3. The value for the exchange energy J fixes the energy scale. Keep it fixed at J =
1. (Youmay also wish to study antiferromagnets with J = −1, but first examine
ferromagnets whose domains are easier to understand.)

4. The thermal energy kBT is in units of Joule and is the independent variable.
Use kBT = 1 for debugging.

5. Use periodic boundary conditions on your chain tominimize end effects. This
means that the chain is a circle with the first and last spins adjacent to each
other.

6. Try N ≃ 20 for debugging, and larger values for production runs.
7. Use the printout to check that the system equilibrates for

a) a totally ordered initial configuration (cold start); your simulation should
resemble Figure 17.2.

b) a random initial configuration (hot start).

Listing 17.1 IsingViz.py implements the Metropolis algorithm for a 1D Ising chain.

Is ingViz . py : I s ing model

from v i s u a l import *
import random
from v i s u a l . graph import *

Display for the arrows
scene = d i s p l a y (x=0 , y=0 , width =700 , he ight =200 , range=40 , t i t l e = ’ Spins ’)
engraph = gd i sp l ay (y=200 , width =700 , he ight =300 , t i t l e = ’E o f Spin System ’ , \

x t i t l e = ’ i t e r a t i o n ’ , y t i t l e = ’E ’ , xmax=500 , xmin=0 , ymax=5 , ymin=−5)
enplot = gcurve (co lo r=co lo r . ye l low)
N = 30
B = 1 .
mu = .33 # g mu
J = .20
k = 1 . # Boltzmann
T = 100 .
s t a t e = zeros ((N)) # spins up (1) , down (0)
S = zeros ((N) , f l o a t)
t e s t = s t a t e
random . seed () # Seed generator

de f energy (S) :

41717.4 Metropolis Algorithm

FirstTerm = 0 .
SecondTerm = 0 .
f o r i in range (0 ,N−2) : FirstTerm += S [i] * S [i + 1]
FirstTerm *= − J
f o r i in range (0 ,N−1) : SecondTerm += S [i]
SecondTerm *= −B*mu;
re turn (FirstTerm + SecondTerm) ;

ES = energy (s t a t e)

de f s p s t a t e (s t a t e) : # Plots spins
f o r ob j in scene . o b j e c t s : ob j . v i s i b l e =0 # Erase old arrows
j =0
f o r i in range (−N,N, 2) :

i f s t a t e [j]==−1: ypos = 5 # Spin down
e l s e : ypos = 0
i f 5* s t a t e [j] <0 : arrowcol = (1 , 1 , 1) # White arrow i f down
e l s e : arrowcol = (0 . 7 , 0 . 8 , 0)
arrow (pos=(i , ypos , 0) , a x i s =(0 ,5* s t a t e [j] , 0) , co l o r=arrowcol)
j +=1

f o r i in range (0 ,N) : s t a t e [i] = −1 # I n i t i a l spins a l l down

f o r ob j in scene . o b j e c t s : ob j . v i s i b l e =0
sp s t a t e (s t a t e)
ES = energy (s t a t e)

f o r j in range (1 , 500) :
r a t e (3)
t e s t = s t a t e
r = i n t (N*random . random ()) ; # Fl ip spin randomly
t e s t [r] *= −1
ET = energy (t e s t)
p = math . exp ((ES−ET) / (k *T)) # Boltzmann t e s t
enplot . p l o t (pos=(j , ES)) # Adds segment to curve
i f p >= random . random () :

s t a t e = t e s t
s p s t a t e (s t a t e)
ES = ET

17.4.2
Equilibration, Thermodynamic Properties (Assessment)

1. Watch a chain of N atoms attain thermal equilibrium when in contact with a
heat bath. At high temperatures, or for small numbers of atoms, you should
see large fluctuations, while at lower temperatures you should see smaller fluc-
tuations.

2. Look for evidence of instabilities in which there is a spontaneous flipping of a
large number of spins. This becomes more likely for larger kBT values.

3. Note how at thermal equilibrium the system is still quite dynamic, with spins
flipping all the time. It is this energy exchange that determines the thermody-
namic properties.

4. You may well find that simulations at small kBT (say, kBT ≃ 0.1 for N = 200)
are slow to equilibrate. Higher kBT values equilibrate faster yet have larger
fluctuations.

418 17 Thermodynamic Simulations and Feynman Path Integrals

5. Observe the formation of domains and the effect they have on the total energy.
Regardless of the direction of spin within a domain, the atom–atom interac-
tions are attractive and so contribute negative amounts to the energy of the
system when aligned. However, the ↑↓ or ↓↑ interactions between domains
contribute positive energy. Therefore, you should expect a more negative en-
ergy at lower temperatures where there are larger and fewer domains.

6. Make a graph of average domain size vs. temperature.

ThermodynamicProperties For a given spin configuration αj, the energy andmag-
netization are given by

Eαj
= − J

N−1∑
i=1

si si+1 , j =
N∑
i=1

si . (17.14)

The internal energy U(T) is just the average value of the energy,

U(T) = ⟨E⟩ , (17.15)

where the average is taken over a system in equilibrium. At high temperatures,
we expect a random assortment of spins and so a vanishing magnetization. At
low temperatures when all the spins are aligned, we expect to approach N∕2.
Although the specific heat can be computed from the elementary definition,

C = 1
N

dU
dT

, (17.16)

the numerical differentiation may be inaccurate because U has statistical fluctua-
tions. A better way to calculate the specific heat is to first calculate the fluctuations
in energy occurring duringM trials and then determine the specific heat from the
fluctuations:

U2 =
1
M

M∑
t=1

(Et)2 , (17.17)

C = 1
N2

U2 − (U)2

kBT2 = 1
N2

⟨E2⟩ − ⟨E⟩2
kBT2 . (17.18)

1. Extend your program to calculate the internal energy U and the magneti-
zation for the chain. Do not recalculate entire sums when only one spin
changes.

2. Make sure to wait for your system to equilibrate before you calculate thermo-
dynamic quantities. (You can check that U is fluctuating about its average.)
Your results should resemble Figure 17.3.

3. Reduce statistical fluctuations by running the simulation a number of times
with different seeds and taking the average of the results.

41917.4 Metropolis Algorithm

kT kT

–0.8

–0.4

0.0
0 2 4 0 2 4

0.1

0.2

0.3

0

1
EC

M

0.5

(a) (b)

Figure 17.3 Simulation results from a 1D Isingmodel of 100 spins. (a) Energy and specific heat
as functions of temperature; (b) magnetization as a function of temperature.

4. The simulations you run for small N may be realistic but may not agree with
statistical mechanics, which assumes N ≃ ∞ (you may assume that N ≃ 2000
is close to infinity). Check that agreement with the analytic results for the ther-
modynamic limit is better for large N than small N .

5. Check that the simulated thermodynamic quantities are independent of ini-
tial conditions (within statistical uncertainties). In practice, your cold and hot
start results should agree.

6. Make a plot of the internal energy U as a function of kBT and compare it to
the analytic result (17.7).

7. Make a plot of the magnetization as a function of kBT and compare it to
the analytic result. Does this agree with how you expect a heated magnet to
behave?

8. Compute the energy fluctuations U2 (17.17) and the specific heat C (17.18).
Compare the simulated specific heat to the analytic result (17.8).

17.4.3
Beyond Nearest Neighbors, 1D (Exploration)

∙ Extend the model so that the spin–spin interaction (17.3) extends to next-
nearest neighbors as well as nearest neighbors. For the ferromagnetic case this
should lead to more binding and less fluctuation because we have increased
the couplings among spins, and thus increased the thermal inertia.

∙ Extend the model so that the ferromagnetic spin–spin interaction (17.3) ex-
tends to nearest neighbors in two dimensions, and for the truly ambitious,
three dimensions. Continue using periodic boundary conditions and keep the
number of particles small, at least to start with (Gould et al., 2006).

1. Form a square lattice and place
√
N spins on each side.

2. Examine the mean energy and magnetization as the system equilibrates.

420 17 Thermodynamic Simulations and Feynman Path Integrals

–80 000

–40 000

40 000

0

0 2 4 6 8 10

E

CV

M

kT

2D Ising

Model

Figure 17.4 The energy, specific heat, and
magnetization as a function of temperature
from a 2D Isingmodel simulation with 40 000
spins. Evidence of a phase transition at the

Curie temperature kT =≃ 2.5 is seen in all
three functions. The values of C and E have
been scaled to fit on the same plot as M (cour-
tesy of J. Wetzel).

3. Is the temperature dependence of the average energy qualitatively different
from that of the 1D model?

4. Make a print out of the spin configuration for small N , and identify domains.
5. Once your system appears to be behaving properly, calculate the heat capacity

andmagnetization of the 2D Isingmodel with the same technique used for the
1D model. Use a total number of particles of 100 ≤ N ≤ 2000.

6. Look for a phase transition from ordered to unordered configurations by ex-
amining the heat capacity andmagnetization as functions of temperature. The
former should diverge, while the latter should vanish at the phase transition
(Figure 17.4).

Exercise Three fixed spin-1/2 particles interact with each other at tempera-
ture T = 1∕kb such that the energy of the system is

E = −(s1s2 + s2s3) . (17.19)

The system starts in the configuration ↑↓↑. Do a simulation by hand that uses
the Metropolis algorithm and the series of random numbers 0.5, 0.1, 0.9, 0.3 to
determine the results of just two thermal fluctuations of these three spins.

17.5
Magnets via Wang–Landau Sampling ⊙

We have used a Boltzmann distribution to simulate the thermal properties of an
Ising model. We described the probabilities for explicit spin states α with en-
ergy Eα for a system at temperature T , and summed over various configurations.
An equivalent formulation describes the probability that the system will have the

42117.5 Magnets via Wang–Landau Sampling⊙

explicit energy E at temperature T :

(Ei , T) = g(Ei)
e−Ei∕kBT

Z(T)
, Z(T) =

∑
Ei

g(Ei)e−Ei∕kBT . (17.20)

Here kB is Boltzmann’s constant, T is the temperature, g(Ei) is the number of
states of energy Ei (i = 1,… ,M), Z(T) is the partition function, and the sum is
still over allM states of the system, but nowwith states of the same energy entering
just once owing to g(Ei) accounting for their degeneracy. Because we again apply
the theory to the Ising model with its discrete spin states, the energy assumes
only discrete values. If the physical systemhad an energy that varied continuously,
then the number of states in the interval E → E + dE would be given by g(E)dE
and g(E) would be called the density of states. As a matter of convenience, we
call g(Ei) the density of states even when dealing with discrete systems, although
the term “degeneracy factor” may be more precise.
Even as theMetropolis algorithm has been providing excellent service formore

than 60 years, recent literature shows increasing use of Wang–Landau sampling
(WLS)2) (Landau andWang, 2001; STP, 2011). BecauseWLS determines the den-
sity of states and the associated partition function, it is not a direct substitute for
theMetropolis algorithm and its simulation of thermal fluctuations. However, we
will see that WLS provides an equivalent simulation for the Ising model.
The advantages of WLS is that it requires much shorter simulation times than

the Metropolis algorithm and provides a direct determination of g(Ei). For these
reasons, it has shown itself to be particularly useful for first-order phase transi-
tions where systems spend long times trapped in metastable states, as well as in
areas as diverse as spin systems, fluids, liquid crystals, polymers, and proteins. The
time required for a simulation becomes crucial when large systems are modeled.
Even a spin lattice as small as 8 × 8 has 264 ≃ 1.84 × 1019 configurations, which
makes visiting them all too expensive.
In our discussion of the Ising model, we ignored the partition function when

applying the Metropolis algorithm. Now we focus on the partition function Z(T)
and the density-of-states function g(E). Because g(E) is a function of energy but
not temperature, once it has been deduced, Z(T) and all thermodynamic quan-
tities can be calculated from it without having to repeat the simulation for each
temperature. For example, the internal energy and the entropy are calculated di-
rectly as

U(T)
def
= ⟨E⟩ = ∑

Ei
Eig(Ei)e−Ei∕kBT∑

Ei
g(Ei)e−Ei∕kBT

, (17.21)

S = kB ln g(Ei) . (17.22)

The density of states g(Ei) will be determined by taking the equivalent of a ran-
dom walk in energy space. We flip a randomly chosen spin, record the energy of

2) We thank Oscar A. Restrepo of the Universidad de Antioquia for letting us use some of his
material here.

422 17 Thermodynamic Simulations and Feynman Path Integrals

0

10

20

30

40

–2 –1 0 1 2

lo
g

 g
(E

)

E/N E/N

0

4000

8000

12 000

–2 –1 0 1 2

H
(E

)

(a) (b)

Figure 17.5 Wang–Landau sampling used
in the Ising model 2D Ising model on an
8 × 8 lattice. (a) Logarithm of the density of
states log g(E) ∝ S vs. the energy per particle.

(b) The histogram H(E) showing the number
of states visited as a function of the energy
per particle. The aim of WLS is to make this
function flat.

the new configuration, and then keep flipping more spins to change the energy.
The table H(Ei) of the number of times each energy Ei is attained is called the en-
ergy histogram (Figure 17.5b). If the walk were continued for a very long time, the
histogram H(Ei)would converge to the density of states g(Ei). Yet with 1019−1030
steps required even for small systems, this direct approach is unrealistically inef-
ficient because the walk would rarely ever get away from the most probable ener-
gies.
Clever idea number 1 behind the Wang–Landau algorithm is to explore more

of the energy space by increasing the likelihood of walking into less probable con-
figurations. This is carried out by increasing the acceptance of less likely config-
urations while simultaneously decreasing the acceptance of more likely ones. In
other words, we want to accept more states for which the density g(Ei) is small
and reject more states for which g(Ei) is large (fret not these words, the equations
are simple). To accomplish this trick, we accept a new energy Ei with a probability
inversely proportional to the (initially unknown) density of states,

(Ei) =
1

g(Ei)
, (17.23)

and then build up a histogram of visited states via a random walk.
The problem with clever idea number 1 is that g(Ei) is unknown. WLS’s clever

idea 2 is to determine the unknown g(Ei) simultaneously with the construction
of the random walk. This is accomplished by improving the value of g(Ei) via
the multiplication g(Ei) → f g(Ei), where f > 1 is an empirical factor. When
this works, the resulting histogram H(Ei) becomes “flatter” because making the
small g(Ei) values larger makes it more likely to reach states with small g(Ei) val-
ues. As the histogram gets flatter, we keep decreasing the multiplicative factor f
until it is satisfactory close to 1. At that point, we have a flat histogram and a
determination of g(Ei).
At this point you may be asking yourself, “Why does a flat histogrammean that

we have determined g(Ei)?” Flat means that all energies are visited equally, in
contrast to the peaked histogram that would be obtained normally without the

42317.6 Wang–LandauAlgorithm

1∕g(Ei) weighting factor. Thus, if by including this weighting factor we produce
a flat histogram, then we have perfectly counteracted the actual peaking in g(Ei),
which means that we have arrived at the correct g(Ei).

17.6
Wang–Landau Algorithm

The steps in WLS are similar to those in the Metropolis algorithm, but now with
use of the density-of-states function g(Ei) rather than a Boltzmann factor:

1. Start with an arbitrary spin configuration αk = {s1 , s2 ,… , sN } and with arbi-
trary values for the density of states g(Ei) = 1, i = 1,… ,M, whereM = 2N is
the number of states of the system.

2. Generate a trial configuration αk+1 by
a) picking a particle i randomly and
b) flipping i’s spin.

3. Calculate the energy Eαtr of the trial configuration.
4. If g(Eαtr) ≤ g(Eαk

), accept the trial, that is, set αk+1 = αtr.
5. If g(Eαtr) > g(Eαk

), accept the trial with probability = g(Eαk
)∕(g(Eαtr):

a) choose a uniform random number 0 ≤ ri ≤ 1.

b) set αk+1 =

{
αtr , if ≥ r j (accept) ,
αk , if < r j (reject) .

This acceptance rule can be expressed succinctly as

(Eαk
→ Eαtr) = min

[
1,

g(Eαk
)

g(Eαtr)

]
, (17.24)

which manifestly always accepts low-density (improbable) states.
6. One we have a new state, we modify the current density of states g(Ei) via the

multiplicative factor f :

g(Eαk+1
) → f g(Eαk+1

) , (17.25)

and add 1 to the bin in the histogram corresponding to the new energy:

H(Eαk+1
) → H(Eαk+1

) + 1 . (17.26)

7. The value of the multiplier f is empirical. We start with Euler’s number f =
e = 2.718 28, which appears to strike a good balance between very large num-
bers of small steps (small f) and too rapid a set of jumps through energy space
(large f). Because the entropy S = kB ln g(Ei) → kB[ln g(Ei) + ln f], (17.25)
corresponds to a uniform increase by kB in entropy.

8. Even with reasonable values for f , the repeatedmultiplications in (17.25) lead
to exponential growth in the magnitude of g. This may cause floating-point
overflows and a concordant loss of information (in the end, the magnitude

424 17 Thermodynamic Simulations and Feynman Path Integrals

of g(Ei) does not matter because the function is normalized). These overflows
are avoided by working with logarithms of the function values, in which case
the update of the density of states (17.25) becomes

ln g(Ei) → ln g(Ei) + ln f . (17.27)

9. The difficulty with storing ln g(Ei) is that we need the ratio of g(Ei) values
to calculate the probability in (17.24). This is circumvented by employing the
identity x ≡ exp(ln x) to express the ratio as

g(Eαk
)

g(Eαtr)
= exp

[
ln

g(Eαk
)

g(Eαtr)

]
= exp

[
ln g(Eαk

)
]
− exp

[
ln g(Eαtr)

]
.

(17.28)

In turn, g(Ek) = f × g(Ek) is modified to ln g(Ek) → ln g(Ek) + ln f .
10. The random walk in Ei continues until a flat histogram of visited energy val-

ues is obtained. The flatness of the histogram is tested regularly (every 10 000
iterations), and the walk is terminated once the histogram is sufficiently flat.
The value of f is then reduced so that the next walk provides a better approx-
imation to g(Ei). Flatness is measured by comparing the variance in H(Ei) to
its average. Although 90–95% flatness can be achieved for small problems like
ours, we demand only 80% (Figure 17.5):

If
Hmax − Hmin

Hmax + Hmin
< 0.2 , stop, let f →

√
f (ln f → ln f ∕2) . (17.29)

11. Keep the generated g(Ei) and reset the histogram values h(Ei) to zero.
12. The walks are terminated and new ones initiated until no significant correc-

tion to the density of states is obtained. This is measured by requiring themul-
tiplicative factor f ≃ 1 within some level of tolerance, for example, f ≤ 1 +
10−8. If the algorithm is successful, the histogram should be flat (Figure 17.5)
within the bounds set by (17.29).

13. The final step in the simulation is normalization of the deduced density of
states g(Ei). For the Ising model with N up or down spins, a normalization
condition follows from knowledge of the total number of states (STP, 2011):∑

Ei

g(Ei) = 2N ⇒ g(norm)(Ei) =
2N∑

Ei
g(Ei)

g(Ei) . (17.30)

Because the sum in (17.30) is most affected by those values of energy where
g(Ei) is large, itmay not be precise for the low-Ei densities that contribute little
to the sum. Accordingly, a more precise normalization, at least if your simula-
tion has performed a good job in occupying all energy states, is to require that
there are just two grounds states with energies E = −2N (one with all spins up
and one with all spins down):∑

Ei=−2N
g(Ei) = 2 . (17.31)

42517.6 Wang–LandauAlgorithm

In either case, it is good practice to normalize g(Ei) with one condition and
then use the other as a check.

17.6.1
WLS Ising Model Implementation

Weassume an Isingmodel with spin–spin interactions between nearest neighbors
located in an L × L lattice (Figure 17.6). To keep the notation simple, we set J = 1
so that

E = −
N∑
i↔ j

σiσ j , (17.32)

where ↔ indicates nearest neighbors. Rather than recalculate the energy each
time a spin is flipped, only the difference in energy is computed. For example,
for eight spins in a 1D array,

−Ek = σ0σ1 + σ1σ2 + σ2σ3 + σ3σ4 + σ4σ5 + σ5σ6 + σ6σ7 + σ7σ0 , (17.33)

where the 0–7 interaction arises because we assume periodic boundary condi-
tions. If spin 5 is flipped, the new energy is

−Ek+1 = σ0σ1 + σ1σ2 + σ2σ3 + σ3σ4 − σ4σ5 − σ5σ6 + σ6σ7 + σ7σ0 , (17.34)

and the difference in energy is

ΔE = Ek+1 − Ek = 2(σ4 + σ6)σ5 . (17.35)

This is cheaper to compute than calculating and then subtracting two energies.
When we advance to two dimensions with the 8 × 8 lattice in Figure 17.6, the

change in energy when a spin σi, j at site (i, j) flips is

ΔE = 2σi, j(σi+1, j + σi−1, j + σi, j+1 + σi, j−1) , (17.36)

which can assume the values−8,−4, 0, 4, and 8. There are two states ofminimum
energy E = −2N for a 2D system with N spins, and they are ones with all spins
pointing in the same direction (either up or down). The maximum energy is 2N ,
and it corresponds to alternating spin directions on neighboring sites. Each spin
flip on the lattice changes the energy by four units between these limits, and so
the values of the energies are

Ei =−2N , −2N +4 , −2N +8,… , 2N −8 , 2N −4 , 2N . (17.37)

These energies can be stored in a uniform 1D array via the simple mapping

E′ = E + 2N
4

⇒ E′ = 0, 1, 2,… ,N . (17.38)

Listing 17.2 displays our implementation of Wang–Landau sampling to calculate
the density of states and internal energy U(T) (17.21). We used it to obtain the

426 17 Thermodynamic Simulations and Feynman Path Integrals

Figure 17.6 The numbering scheme used in our WLS implementation of the 2D Isingmodel
with an 8 × 8 lattice of spins.

entropy S(T) and the energy histogram H(Ei) illustrated in Figure 17.5. Other
thermodynamic functions can be obtained by replacing the E in (17.21) with the
appropriate variable. The results look like those in Figure 17.4.
A problem that may be encountered when calculating these variables is that

the sums in (17.21) can become large enough to cause overflows, although the
ratio would not. You work around that by factoring out a common large factor,
for example,∑

Ei

X(Ei)g(Ei)e−Ei∕kBT = eλ
∑
Ei

X(Ei)eln g(Ei)−Ei∕kBT−λ , (17.39)

where λ is the largest value of ln g(Ei)−Ei∕kBT at each temperature. The factor eλ
does not actually need to be included in the calculation of the variable because it
is present in both the numerator and denominator and so eventually cancels out.

Listing 17.2 WangLandau.py simulates the 2D Ising model using Wang–Landau sampling to
compute the density of states and from that the internal energy.

WangLandau . py : Wang Landau algorithm for 2D spin system

""" Author in Java : Oscar A. Restrepo ,
Universidad de Antioquia , Medellin , Colombia
Each time fac changes , a new histogrm i s generated .
Only the f i r s t Histogram plotted to reduce computational time """

from v i s u a l import *
import random ;
from v i s u a l . graph import *

L = 8 ; N = (L*L)

Set up graphics
entgr = gd i sp l ay (x=0 , y=0 , width =500 , he ight =250 , t i t l e = ’ Density o f States ’ , \

x t i t l e = ’E/N’ , y t i t l e = ’ log g(E) ’ , xmax=2 . , xmin=−2. ,ymax=45 , ymin=0)

42717.6 Wang–LandauAlgorithm

entrp = gcurve (co l o r = co lo r . yel low , d i s p l a y = entgr)
energygr = gd i sp l ay (x=0 , y=250 , width =500 , he ight =250 , t i t l e = ’E vs T’ , \

x t i t l e = ’T ’ , y t i t l e = ’U(T) /N’ , xmax=8 . , xmin=0 , ymax =0 . , ymin=−2.)
energ = gcurve (co l o r = co lo r . cyan , d i s p l a y = energygr)
h i s t o g r = d i s p l a y (x = 0 , y = 500 , width = 500 , he ight = 300 , \

t i t l e = ’ 1 st histogram : H(E) vs . E/N, corresponds to log (f) = 1 ’)
h i s t o = curve (x = l i s t (range (0 , N+1)) , co l o r=co lo r . red , d i s p l a y=h i s t o g r)
xax i s = curve (pos = [(− N, − 10) , (N, − 10)])
minE = l a b e l (t e x t = ’ - 2 ’ , pos = (− N + 3 , − 15) , box = 0)
maxE = l a b e l (t e x t = ’ 2 ’ , pos = (N − 3 , − 15) , box = 0)
zeroE = l a b e l (t e x t = ’ 0 ’ , pos = (0 , − 15) , box = 0)
ticm = curve (pos = [(− N, − 10) , (− N, − 13)])
t i c 0 = curve (pos = [(0 , − 10) , (0 , − 13)])
ticM = curve (pos = [(N, − 10) , (N, − 13)])
enr = l a b e l (t e x t = ’E/N’ , pos = (N/2 , − 15) , box = 0)

sp = zeros ((L , L)) # Grid s ize , spins
h i s t = zeros ((N + 1))
p r h i s t = zeros ((N + 1)) # Histograms
S = zeros ((N + 1) , f l o a t) # Entropy = log g (E)

de f iE (e) : re turn i n t ((e + 2*N) / 4)

de f IntEnergy () :
exponent = 0 .0
f o r T in arange (0 . 2 , 8 . 2 , 0 . 2) : # Select lambda max

Ener = − 2*N
maxL = 0 .0 # In i t i a l i z e
f o r i in range (0 , N + 1) :

i f S [i] ! = 0 and (S [i] − Ener /T)>maxL :
maxL = S [i] − Ener /T
Ener = Ener + 4

sumdeno = 0
sumnume = 0
Ener = −2*N
f o r i in range (0 , N) :

i f S [i] != 0 :
exponent = S [i] − Ener /T − maxL

sumnume += Ener * exp (exponent)
sumdeno += exp (exponent)
Ener = Ener + 4 .0

U = sumnume / sumdeno /N # interna l energy U(T) /N
energ . p l o t (pos = (T, U))

de f WL() : # Wang − Landau sampling
Hinf = 1 . e10 # i n i t i a l va lues for Histogram
Hsup = 0 .
t o l = 1 . e−3 # tolerance , stops the algorithm
ip = zeros (L)
im = zeros (L) # BC R or down, L or up
height = abs (Hsup − Hinf) / 2 . # In i t i a l i z e histogram
ave = (Hsup + Hinf) / 2 . # about average of histogram
percent = he ight / ave
f o r i in range (0 , L) :

f o r j in range (0 , L) : sp [i , j] = 1 # I n i t i a l spins
f o r i in range (0 , L) :

ip [i] = i + 1
im [i] = i − 1 # Case plus , minus

ip [L − 1] = 0
im [0] = L − 1 # Borders
Eold = − 2*N # In i t i a l i z e energy
f o r j in range (0 , N + 1) : S [j] = 0 # Entropy i n i t i a l i z e d
i t e r = 0
fac = 1
whi le f a c > t o l :

i = i n t (N*random . random ()) # Select random spin

428 17 Thermodynamic Simulations and Feynman Path Integrals

xg = i%L
Must be i / /L , not i /L for Python 3:
yg = i / / L # Loca l ize x , y , grid point
Enew = Eold + 2* (sp [ip [xg] , yg] + sp [im [xg] , yg] + sp [xg , ip [yg]]

+ sp [xg , im [yg]]) * sp [xg , yg] # Change energy
de l t aS = S [iE (Enew)] − S [iE (Eold)]
i f de l t aS <= 0 or random . random () < exp (− de l t aS) :

Eold = Enew ;
sp [xg , yg] *= − 1 # Fl ip spin

S [iE (Eold)] += fac ; # Change entropy
i f i t e r%10000 == 0 : # Check f l a tnes s every 10000 sweeps

f o r j in range (0 , N + 1) :
i f j == 0 :

Hsup = 0
Hinf = 1e10 # I n i t i a l i z e new histogram

i f h i s t [j] == 0 : cont inue # Energies never v i s i t e d
i f h i s t [j] > Hsup : Hsup = h i s t [j]
i f h i s t [j] < Hinf : Hinf = h i s t [j]

he ight = Hsup − Hinf
ave = Hsup + Hinf
percent = 1 . 0 * he ight / ave # 1.0 to make i t f l o a t number
i f percent < 0 .3 : # Histogram f l a t ?

pr in t (" i t e r " , i t e r , " log (f) " , f a c)
f o r j in range (0 , N + 1) :

p r h i s t [j] = h i s t [j] # to plot
h i s t [j] = 0 # Save h is t

f a c *= 0 .5 # Equivalent to log (sqrt (f))
i t e r += 1
h i s t [iE (Eold)] += 1 # Change histogram , add 1 , update
i f f a c >= 0 . 5 : # jus t show the f i r s t histogram

Speed up by using array ca l cu la t ions :
h i s to . x = 2 . 0 * arange (0 ,N+1) − N
his to . y = 0 . 025 * h i s t −10

de l t aS = 0 .0
pr in t (" wait because i t e r > 13 000 000 ") # not always the same
WL() # Call Wang Landau algorithm
de l t aS = 0 .0
f o r j in range (0 , N + 1) :

r a t e (150)
order = j *4 − 2*N
de l t aS = S [j] − S [0] + log (2)
i f S [j] != 0 : entrp . p l o t (pos = (1 . * order /N, de l t aS)) # plot entropy

IntEnergy () ;
pr in t ("Done")

17.6.2
WLS Ising Model Assessment

Repeat the assessment conducted in Section 17.4.2 for the thermodynamic prop-
erties of the Ising model using WLS in place of the Metropolis algorithm.

42917.8 Feynman’s Space–TimePropagation (Theory)

17.7
Feynman Path Integral QuantumMechanics⊙

Problem As is well known, a classical particle attached to a linear spring under-
goes simple harmonicmotion with a position as a function of time given by x(t) =
A sin(ω0t + φ). Your problem is to take this classical space–time trajectory x(t)
and use it to generate the quantum wave function ψ(x , t) for a particle bound in
a harmonic oscillator potential.

17.8
Feynman’s Space–Time Propagation (Theory)

Feynman was looking for a formulation of quantum mechanics that gave a more
direct connection to classical mechanics than does Schrödinger theory, and that
made the statistical nature of quantum mechanics evident from the start. He fol-
lowed a suggestion by Dirac that Hamilton’s principle of least action, which can
be used to derive classical dynamics, may also be the ℏ → 0 limit of a quantum
least-action principle. Seeing that Hamilton’s principle deals with the paths of
particles through space–time, Feynman postulated that the quantum-mechanical
wave function describing the propagation of a free particle from the space–time
point a = (xa , ta) to the point b = (xb , tb) can expressed as (Feynman and Hibbs,
1965; Mannheim, 1983)

ψ(xb , tb) = ∫ dxaG(xb , tb ; xa , ta)ψ(xa , ta) , (17.40)

where G is Green’s function or propagator

G(xb , tb ; xa , ta) ≡ G(b, a) =
√

m
2πi(tb − ta)

exp
[
i
m(xb − xa)2

2(tb − ta)

]
. (17.41)

Equation 17.40 is a formofHuygens’s wavelet principle in which each point on the
wavefront ψ(xa , ta) emits a spherical wavelet G(b; a) that propagates forward in
space and time. It states that the newwavefront ψ(xb , tb) is created by summation
over and interference with all the other wavelets.
Feynman imagined that another way of interpreting (17.40) is as a form of

Hamilton’s principle in which the probability amplitude, that is the wave func-
tion ψ, for a particle to be at B equals the sum over all paths through space–time
originating at time A and ending at B (Figure 17.7). This view incorporates the
statistical nature of quantum mechanics by having different probabilities for
travel along the different paths. All paths are possible, but some are more likely
than others. (When you realize that Schrödinger theory solves for wave functions
and considers paths a classical concept, you can appreciate how different it is
from Feynman’s view.) The values for the probabilities of the paths derive from
Hamilton’s classical principle of least action:

The most general motion of a physical particle moving along the classical tra-
jectory x̄(t) from time ta to tb is along a path such that the action S[x̄(t)] is an

430 17 Thermodynamic Simulations and Feynman Path Integrals

Time

A

B
tb

xb xa

ta

Position

Figure 17.7 In the Feynman path-integral
formulation of quantummechanics a collec-
tion of paths connect the initial space–time
point A to the final point B. The solid line is
the trajectory followed by a classical particle,

while the dashed lines are additional paths
sampled by a quantum particle. A classical
particle somehow “knows” ahead of time that
travel along the classical trajectory minimizes
the action S.

extremum:

δS[x̄(t)] = S[x̄(t) + δx(t)] − S[x̄(t)] = 0 , (17.42)

with the paths constrained to pass through the endpoints:

δ(xa) = δ(xb) = 0 .

This formulation of classical mechanics, which is based on the calculus of vari-
ations, is equivalent to Newton’s differential equations if the action S is taken as
the line integral of the Lagrangian along the path:

S[x̄(t)] =

tb

∫
ta

dtL[x(t), ẋ(t)] , L = T[x , ẋ] − V [x] . (17.43)

Here T is the kinetic energy, V is the potential energy, ẋ = dx∕dt, and square
brackets indicate a functional3) of the function x(t) and ẋ(t).
Feynman observed that the classical action for a free (V = 0) particle,

S[b, a] = m
2
(ẋ)2(tb − ta) =

m
2
(xb − xa)2

tb − ta
, (17.44)

is related to the free-particle propagator (17.41) by

G(b, a) =
√

m
2πi(tb − ta)

eiS[b,a]∕ℏ . (17.45)

3) A functional is a number whose value depends on the complete behavior of some function and
not just on its behavior at one point. For example, the derivative f ′(x) depends on the value
of f at x, yet the integral I[f] = ∫ ba dx f (x) depends on the entire function, and is therefore a
functional of f .

43117.8 Feynman’s Space–TimePropagation (Theory)

Position

0

0.05

0.1

0.15

0.2
P

ro
b

a
b

il
it

y
quantum

classical

60

Time

–2

–1

0

1

2

P
o

s
it

io
n

–40 –20 0 20 40 80 1000 20 40

(a) (b)

Figure 17.8 (a) The probability distribution for the harmonic oscillator ground state as de-
termined with a path-integral calculation (the classical result has maxima at the two turning
points). (b) A space–time quantum path resulting from applying the Metropolis algorithm.

This is the much sought-after connection between quantum mechanics and
Hamilton’s principle. Feynman went on to postulate a reformulation of quantum
mechanics that incorporated its statistical aspects by expressing G(b, a) as the
weighted sum over all paths connecting a to b,

G(b, a) =
∑
paths

eiS[b,a]∕ℏ (path integral) . (17.46)

Here the classical action S (17.43) is evaluated along different paths (Figure 17.7),
and the exponential of the action is summed over paths. The sum (17.46) is called
a path integral because it sums over actions S[b, a], each of which is an integral
(on the computer an integral and a sum are the same anyway).
The essential connection between classical and quantummechanics is the real-

ization that in units of ℏ ≃ 10−34 J s, the action is a very large number, S∕ℏ ≥ 1020,
and so even though all paths enter into the sum (17.46), the main contributions
come from those paths adjacent to the classical trajectory x̄. In fact, because S is
an extremum for the classical trajectory, it is a constant to first order in the vari-
ation of paths, and so nearby paths have phases that vary smoothly and relatively
slowly. In contrast, paths far from the classical trajectory are weighted by a rapidly
oscillating exp(iS∕ℏ), and when many are included they tend to cancel each other
out. In the classical limit, ℏ → 0, only the single classical trajectory contributes
and (17.46) becomes Hamilton’s principle of least action. In Figure 17.8, we show
an example of an actual trajectory used in path-integral calculations.

17.8.1
Bound-State Wave Function (Theory)

Although you may be thinking that you have already seen enough expressions for
Green’s function, there is yet another one we need for our computation. Let us
assume that the Hamiltonian operator H̃ supports a spectrum of eigenfunctions,

H̃ψn = Enψn , (17.47)

432 17 Thermodynamic Simulations and Feynman Path Integrals

each labeled by the index n. Because H̃ is Hermitian, its wave functions form a
complete orthonormal set in which we may expand a general solution:

ψ(x , t) =
∞∑
n=0

cne−iEntψn(x) , cn =
+∞

∫
−∞

dxψ∗
n(x)ψ(x , t = 0) , (17.48)

where the value for the expansion coefficients cn follows from the orthonormality
of the ψn ’s. If we substitute this cn back into the wave function expansion (17.48),
we obtain the identity

ψ(x , t) =
+∞

∫
−∞

dx0
∑
n

ψ∗
n(x0)ψn(x)e−iEn tψ(x0 , t = 0) . (17.49)

Comparison with (17.40) yields the eigenfunction expansion for G:

G(x , t; x0 , t0 = 0) =
∑
n

ψ∗
n(x0)ψn(x)e−iEn t . (17.50)

We relate this to the bound-state wave function (recall that our problem is to cal-
culate that) by (1) requiring all paths to start and end at the space position x0 = x,
(2) by taking t0 = 0, and (3) by making an analytic continuation of (17.50) to neg-
ative imaginary time (permissable for analytic functions):

G(x ,−iτ; x , 0) =
∑
n

|ψn(x)|2e−Enτ = |ψ0|2e−E0τ + |ψ1|2e−E1τ +⋯ , (17.51)

⇒ |ψ0(x)|2 = lim
τ→∞

eE0τG(x ,−iτ; x , 0) . (17.52)

The limit here corresponds to long imaginary times τ, after which the parts of ψ
with higher energies decay more quickly, leaving only the ground state ψ0.
Equation 17.52 provides a closed-formsolution for the ground-state wave func-

tion directly in terms of the propagator G. Although we will soon describe how to
compute this equation, look now at Figure 17.8 showing some results of a com-
putation. Although we start with a probability distribution that peaks near the
classical turning points at the edges of the well, after a large number of iterations
we end up with a distribution that resembles the expected Gaussian, which indi-
cates that the formulation appears to be working. On the right, we see a trajec-
tory that has been generated via statistical variations about the classical trajec-
tory x(t) = A sin(ω0t + φ).

17.8.2
Lattice Path Integration (Algorithm)

Because both time and space need to be integrated over when evaluating a path
integral, our simulation starts with a lattice of discrete space–time points. We

43317.8 Feynman’s Space–TimePropagation (Theory)

t

ε

b

ti

xa xa

x’i

x’jx

xb = xN

jxi

ta

t

D

b

ta

t
j

(a) (b)

Figure 17.9 (a) A path through a space–time
lattice that starts and ends at x = xa = xb .
The action is an integral over this path, while
the path integral is a sum of integrals over all
paths. The dotted path BD is a transposed

replica of path AC. (b) The dashed path joins
the initial and final times in two equal time
steps; the solid curve uses N steps each of
size ε. The position of the curve at time tj de-
fines the position x j .

visualize a particle’s trajectory as a series of straight lines connecting one time to
the next (Figure 17.9). We divide the time between points A and B into N equal
steps of size ε, and label them with the index j:

ε
def
=

tb − ta
N

⇒ t j = ta + jε , (j = 0,N) . (17.53)

Although it is more precise to use the actual positions x(t j) of the trajectory at the
times t j to determine the x j ’s (as in Figure 17.9), in practice we discretize space
uniformly and have the links end at the nearest regular points. Once we have a
lattice, it is easy to evaluate derivatives or integrals on a link4):

dx j

dt
≃

x j − x j−1

t j − t j−1
=

x j − x j−1

ε
, (17.54)

S j ≃ L jΔt ≃
1
2
m
(x j − x j−1)2

ε
− V (x j)ε , (17.55)

where we have assumed that the Lagrangian is constant over each link.
Lattice path integration is based on the composition theorem for propagators:

G(b, a) = ∫ dx jG(xb , tb ; x j , t j)G(x j , t j ; xa , ta) , (ta < t j , t j < tb) .

(17.56)

4) Although Euler’s rule has a large error, it is often use in lattice calculations because of its
simplicity. However, if the Lagrangian contains second derivatives, you should use the more
precise central-difference method to avoid singularities.

434 17 Thermodynamic Simulations and Feynman Path Integrals

For a free particle, this yields

G(b, a) =
√ m

2πi(tb − t j)

√ m
2πi(t j − ta) ∫ dx jei(S[b, j]+S[j,a])

=
√

m
2πi(tb − ta) ∫ dx jeiS[b,a] , (17.57)

where we have added the actions because line integrals combine as S[b, j] +
S[j, a] = S[b, a]. For the N-linked path in Figure 17.9, (17.56) becomes

G(b, a) = ∫ dx1 ⋯dxN−1eiS[b,a] , S[b, a] =
N∑
j=1

S j , (17.58)

where S j is the value of the action for link j. At this point the integral over the
single path shown in Figure 17.9 has become an N-term sum that becomes an
infinite sum as the time step ε approaches zero.
To summarize, Feynman’s path-integral postulate (17.46) means that we sum

over all paths connectingA toB to obtain theGreen’s functionG(b, a). Thismeans
that we must sum not only over the links in one path but also over all the different
paths in order to produce the variation in paths required by Hamilton’s principle.
The sum is constrained such that paths must pass through A and B and cannot
double back on themselves (causality requires that particles move only forward
in time). This is the essence of path integration. Because we are integrating over
functions as well as along paths, the technique is also known as functional inte-
gration.
The propagator (17.46) is the sum over all paths connecting A to B, with each

path weighted by the exponential of the action along that path, explicitly:

G(x , t; x0 , t0) = ⨋dx1 dx2 ⋯dxN−1eiS[x ,x0] , (17.59)

S[x , x0] =
N−1∑
j=1

S[x j+1, x j] ≃
N−1∑
j=1

L
(
x j , ẋ j

)
ε , (17.60)

where L(x j , ẋ j) is the average value of the Lagrangian on link j at time t = jε. The
computation is made simpler by assuming that the potential V (x) is independent
of velocity and does not depend on other x values (local potential). Next we ob-
serve that G is evaluated with a negative imaginary time in expression (17.52) for
the ground-state wave function. Accordingly, we evaluate the Lagrangian with t =
−iτ:

L(x , ẋ) = T − V (x) = +1
2
m

(
dx
dt

)2

− V (x) (17.61)

⇒ L
(
x , dx

−i dτ

)
= −1

2
m

(
dx
dτ

)2

− V (x) . (17.62)

43517.8 Feynman’s Space–TimePropagation (Theory)

We see that the reversal of the sign of the kinetic energy in L means that L now
equals the negative of the Hamiltonian evaluated at a real positive time t = τ:

H
(
x , dx

dτ

)
= 1

2
m

(
dx
dτ

)2

+ V (x) = E (17.63)

⇒ L
(
x , dx

−idτ

)
= −H

(
x , dx

dτ

)
. (17.64)

In this way, we rewrite the t-path integral of L as a τ-path integral of H, and so
express the action and Green’s function in terms of the Hamiltonian:

S[j + 1, j] =

t j+1

∫
t j

L(x , t)d t = −i

τ j+1

∫
τ j

H(x , τ)dτ (17.65)

⇒ G(x ,−iτ; x0 , 0) = ∫ dx1 … dxN−1e− ∫ τ0 H(τ′)dτ′ , (17.66)

where the line integral of H is over an entire trajectory. Next we express the path
integral in terms of the average energy of the particle on each link, Ej = Tj + Vj ,
and then sum over links to obtain the summed energy 5):

∫ H(τ)dτ ≃
∑
j
εE j = ε({x j}) , (17.67)

({x j})
def
=

N∑
j=1

[
m
2

(x j − x j−1

ε

)2

+ V
(x j + x j−1

2

)]
. (17.68)

In (17.68), we have approximated each path link as a straight line, used Euler’s
derivative rule to obtain the velocity, and evaluated the potential at the midpoint
of each link. We now substitute this G into our solution (17.52) for the ground-
state wave function in which the initial and final points in space are the same:

lim
τ→∞

G(x ,−iτ, x0 = x , 0)
∫ dxG(x ,−iτ, x0 = x , 0)

=
∫ dx1 ⋯dxN−1 exp

[
− ∫ τ0 H dτ′

]
∫ dx dx1 ⋯dxN−1 exp

[
− ∫ τ0 H dτ′

]
⇒ ||ψ0(x)||2 = 1

Z
lim
τ→∞ ∫ dx1 ⋯dxN−1e−ε , (17.69)

Z = lim
τ→∞ ∫ dx dx1 ⋯dxN−1e−ε . (17.70)

The similarity of these expressions to thermodynamics, even with a partition
function Z, is no accident; by making the time parameter of quantum mechanics

5) In some cases, such as for an infinite square well, this can cause problems if the trial link causes
the energy to be infinite. In that case, one can modify the algorithm to use the potential at the
beginning of a link.

436 17 Thermodynamic Simulations and Feynman Path Integrals

imaginary, we have converted the time-dependent Schrödinger equation to the
heat diffusion equation

i
𝜕ψ

𝜕(−iτ)
= −∇2

2m
ψ ⇒

𝜕ψ
𝜕τ

= ∇2

2m
ψ . (17.71)

It is not surprising then that the sum over paths in Green’s function has each path
weighted by the Boltzmann factor = e−ε usually associated with thermody-
namics. We make the connection complete by identifying the temperature with
the inverse time step:

 = e−ε = e−∕kBT ⇒ kBT = 1
ε
≡ ℏ

ε
. (17.72)

Consequently, the ε→ 0 limit,whichmakes time continuous, is a “high-temperature”
limit. The τ → ∞ limit, which is required to project the ground-state wave func-
tion, means that we must integrate over a path that is long in imaginary time,
that is, long compared to a typical time ℏ∕ΔE. Just as our simulation of the Ising
model required us to wait a long time for the system to equilibrate, so the present
simulation requires us to wait a long time so that all but the ground-state wave
function has decayed. Alas, this is the solution to our problem of finding the
ground-state wave function.
To summarize, we have expressed Green’s function as a path integral that re-

quires integration of the Hamiltonian along paths and a summation over all the
paths (17.69). We evaluate this path integral as the sum over all the trajectories
in a space–time lattice. Each trial path occurs with a probability based on its ac-
tion, and we use the Metropolis algorithm to include statistical fluctuation in the
links, as if they are in thermal equilibrium. This is similar to our work with the
Ising model, however now, rather than reject or accept a flip in spin based on the
change in energy, we reject or accept a change in a link based on the change in en-
ergy. Themore iterations we let the algorithm run for, the more time the deduced
wave function has to equilibrate to the ground state.
In general,MonteCarloGreen’s function techniqueswork best if we start with a

good guess at the correct answer, and then have the algorithm calculate variations
on our guess. For the present problem this means that if we start with a path in
space–time close to the classical trajectory, the algorithm may be expected to do
a good job at simulating the quantum fluctuations about the classical trajectory.
However, it does not appear to be good at finding the classical trajectory from
arbitrary locations in space–time. We suspect that the latter arises from δS∕ℏ
being so large that the weighting factor exp(δS∕ℏ) fluctuates wildly (essentially
averaging out to zero) and so loses its sensitivity.

17.8.2.1 A Time-Saving Trick
As we have formulated the computation, we pick a value of x and perform an
expensive computation of line integrals over all space and time to obtain |ψ0(x)|2
at one x. To obtain the wave function at another x, the entire simulation must be
repeated from scratch. Rather than go through all that trouble again and again,

43717.8 Feynman’s Space–TimePropagation (Theory)

we will compute the entire x dependence of the wave function in one fell swoop.
The trick is to insert a delta function into the probability integral (17.69), thereby
fixing the initial position to be x0, and then to integrate over all values for x0:

|ψ0(x)|2 = ∫ dx1 ⋯dxNe−ε(x ,x1 ,…) (17.73)

= ∫ dx0 ⋯dxNδ(x − x0)e−ε(x ,x1 ,…) . (17.74)

This equation expresses the wave function as an average of a delta function over
all paths, a procedure that might appear totally inappropriate for numerical com-
putation because there is tremendous error in representing a singular function
on a finite-word-length computer. Yet when we simulate the sum over all paths
with (17.74), there will always be some x value for which the integral is nonzero,
and we need to accumulate only the solution for various (discrete) x values to
determine |ψ0(x)|2 for all x.
To understand how this works in practice, consider path AB in Figure 17.9 for

which we have just calculated the summed energy. We form a new path by having
one point on the chain jump to point C (which changes two links). If we replicate
section AC and use it as the extension AD to form the top path, we see that the
path CBD has the same summed energy (action) as path ACB, and in this way can
be used to determine |ψ(x′j)|2. That being the case, once the system is equilibrated,
we determine new values of the wave function at new locations x′j by flipping
links to new values and calculating new actions. The more frequently some x j is
accepted, the greater the wave function at that point.

17.8.3
Lattice Implementation

The program QMC.py in Listing 17.3 evaluates the integral (17.46) by finding the
average of the integrand δ(x0 − x)with paths distributed according to the weight-
ing function exp[−ε(x0 , x1 ,… , xN)]. The physics enters via (17.76), the calcula-
tion of the summed energy (x0 , x1 ,… , xN). We evaluate the action integral for
the harmonic oscillator potential

V (x) = 1
2
x2 , (17.75)

and for a particle of massm = 1. Using a convenient set of natural units, we mea-
sure lengths in

√
1∕mω ≡ √

ℏ∕mω = 1 and times in 1∕ω = 1. Correspondingly,
the oscillator has a period T = 2π. Figure 17.8 shows results from an application
of the Metropolis algorithm. In this computation, we started with an initial path
close to the classical trajectory and then examined a half million variations about
this path. All paths are constrained to begin and end at x = 1 (which turns out
to be somewhat less than the maximum amplitude of the classical oscillation).
When the time difference tb − ta equals a short time like 2T , the system has not

438 17 Thermodynamic Simulations and Feynman Path Integrals

had enough time to equilibrate to its ground state and thewave function looks like
the probability distribution of an excited state (nearly classical with the probability
highest for the particle to be near its turning points where its velocity vanishes).
However, when tb − ta equals the longer time 20T , the system has had enough
time to decay to its ground state and the wave function looks like the expected
Gaussian distribution. In either case (Figure 17.8a), the trajectory through space–
time fluctuates about the classical trajectory. This fluctuation is a consequence
of the Metropolis algorithm occasionally going uphill in its search; if you mod-
ify the program so that searches go only downhill, the space–time trajectory will
be a very smooth trigonometric function (the classical trajectory), but the wave
function, which is a measure of the fluctuations about the classical trajectory, will
vanish! The explicit steps of the calculation are (MacKeown, 1985; MacKeown
and Newman, 1987):

1. Construct a grid of N time steps of length ε (Figure 17.9). Start at t = 0 and
extend to time τ = Nε [this means N time intervals and (N + 1) lattice points
in time]. Note that time always increases monotonically along a path.

2. Construct a grid ofM space points separated by steps of size δ. Use a range of x
values several time larger than the characteristic size or range of the potential
being used and start with M ≃ N .

3. When calculating the wave function, any x or t value falling between lattice
points should be assigned to the closest lattice point.

4. Associate a position x j with each time τ j , subject to the boundary conditions
that the initial and final positions always remain the same, xN = x0 = x.

5. Choose a path of straight-line links connecting the lattice points correspond-
ing to the classical trajectory. Observe that the x values for the links of the path
may have values that increase, decrease, or remain unchanged (in contrast to
time, which always increases).

6. Evaluate the energy by summing the kinetic and potential energies for each
link of the path starting at j = 0:

(x0 , x1 ,… , xN) ≃
N∑
j=1

[
m
2

(x j − x j−1

ε

)2

+ V
(x j + x j−1

2

)]
.

(17.76)

7. Begin a sequence of repetitive steps in which a random position x j associated
with time t j is changed to the position x′j (pointC in Figure 17.9). This changes
two links in the path.

8. For the coordinate that is changed, use the Metropolis algorithm to weigh the
change with the Boltzmann factor.

9. For each lattice point, establish a running sum that represents the value of the
wave function squared at that point.

10. After each single-link change (or decision not to change), increase the running
sum for the new x value by 1. After a sufficiently long running time, the sum

43917.8 Feynman’s Space–TimePropagation (Theory)

divided by the number of steps is the simulated value for |ψ(x j)|2 at each lattice
point x j .

11. Repeat the entire link-changing simulation starting with a different seed. The
average wave function from a number of intermediate-length runs is better
than that from one very long run.

Listing 17.3 QMC.py determines the ground-state probability via a Feynman path integration
using the Metropolis algorithm to simulate variations about the classical trajectory.

QMC. py : Quantum MonteCarlo (Feynman path integrat ion)

from v i s u a l import *
import random
from v i s u a l . graph import *

N = 100 ; M = 101 ; x s c a l e = 10 .
path = zeros ([M] , f l o a t) ; prob = zeros ([M] , f l o a t) # In i t i a l i z e

t r a j e c = d i s p l a y (width = 300 , he ight =500 , t i t l e = ’ Spacetime Tr a j ec t o r i e s ’)
t r p l o t = curve (y = range (0 , 100) , co l o r=co lo r . magenta , d i s p l a y = t r a j e c)

de f t r j a x s () : # Axis
t r ax = curve (pos = [(−97 ,−100) ,(100 , −100)] , co lo r = co lo r . cyan ,

d i s p l a y = t r a j e c)
l a b e l (pos = (0 , −110) , t e x t = ’ 0 ’ , box = 0 , d i s p l a y = t r a j e c)
l a b e l (pos = (60 ,−110) , t e x t = ’x ’ , box = 0 , d i s p l a y = t r a j e c)

wvgraph = d i s p l a y (x=340 , y=150 , width =500 , he ight =300 , t i t l e = ’Ground State ’)
wvplot = curve (x = range (0 , 100) , d i s p l a y = wvgraph)
wvfax = curve (co lo r = co lo r . cyan)

de f wvfaxs () : # Axis for probab i l i t y
wvfax = curve (pos =[(−600 ,−155) ,(800 , −155)] ,

d i s p l a y=wvgraph , co lo r=co lo r . cyan)
curve (pos = [(0 , −150) , (0 , 400)] , d i s p l a y=wvgraph , co l o r=co lo r . cyan)
l a b e l (pos = (−80 ,450) , t e x t= ’ Probabi l i ty ’ , box = 0 , d i s p l a y = wvgraph)
l a b e l (pos = (600 , −220) , t e x t= ’x ’ , box=0 , d i s p l a y=wvgraph)
l a b e l (pos = (0 , −220) , t e x t= ’ 0 ’ , box=0 , d i s p l a y=wvgraph)

t r j a x s () ; wvfaxs () # Plot axes

de f energy (path) : # HO energy
sums = 0 .
f o r i in range (0 ,N−2) : sums += (path [i +1]−path [i]) * (path [i +1]−path [i])
sums += path [i +1]* path [i +1] ;
re turn sums

de f p lo tpa th (path) : # Plot t ra j e c to ry
f o r j in range (0 , N) :

t r p l o t . x [j] = 20* path [j]
t r p l o t . y [j] = 2* j − 100

de f plotwv f (prob) : # Plot prob
f o r i in range (0 , 100) :

wvplot . co l o r = co lo r . ye l low
wvplot . x [i] = 8* i − 400 # For centered f i g

oldE = energy (path)

whi le True : # Pick random element
r a t e (10) # Slow paint ings
element = i n t (N*random . random ()) # Metropolis algorithm
change = 2 . 0 * (random . random () − 0 . 5)

440 17 Thermodynamic Simulations and Feynman Path Integrals

path [element] += change # Change path
newE = energy (path) ; # Find new E
i f newE > oldE and math . exp (− newE + oldE)<= random . random () :

path [element] −= change # Reject
p lo tpa th (path) # Plot t ra j e c to ry

elem = i n t (path [element] *16 + 50) # i f path = 0 , elem = 50

elem = m *path [element] + b i s the l inea r transformation
i f path=−3, elem=2 i f path=3. , elem=98 => b=50, m=16 l inea r TF .
th i s way x = 0 correspond to prob [50]

i f elem < 0 : elem = 0 ,
i f elem > 100 : elem = 100 # I f exceed max
prob [elem] += 1 # increase probab i l i t y
plotwv f (prob) # Plot prob
oldE = newE

17.8.4
Assessment and Exploration

1. Plot some of the actual space–time paths used in the simulation along with
the classical trajectory.

2. For amore continuous picture of the wave function, make the x lattice spacing
smaller; for a more precise value of the wave function at any particular lattice
site, sample more points (run longer) and use a smaller time step ε.

3. Because there are no sign changes in a ground-state wave function, you can
ignore the phase, assume ψ(x) =

√
ψ2(x), and then estimate the energy via

E =
⟨ψ|H|ψ⟩⟨ψ|ψ⟩ = ω

2⟨ψ|ψ⟩
+∞

∫
−∞

ψ∗(x)
(
− d2

dx2
+ x2

)
ψ(x)dx , (17.77)

where the space derivative is evaluated numerically.
4. Explore the effect of making ℏ larger and thus permitting greater fluctuations

around the classical trajectory. Do this by decreasing the value of the exponent
in the Boltzmann factor. Determine if this makes the calculation more or less
robust in its ability to find the classical trajectory.

5. Test your ψ for the gravitational potential (see quantum bouncer below):

V (x) = mg|x| , x(t) = x0 + v0t +
1
2
gt2 . (17.78)

17.9
Exploration: Quantum Bouncer’s Paths⊙

Another problem for which the classical trajectory is well known is that of a quan-
tum bouncer.6) Here we have a particle dropped in a uniform gravitational field,
hitting a hard floor, and then bouncing. When treated quantum mechanically,

6) Oscar A. Restrepo assisted in the preparation of this section.

44117.9 Exploration: Quantum Bouncer’s Paths⊙

quantized levels for the particle result (Gibbs, 1975; Goodings and Szeredi, 1992;
Whineray, 1992; Banacloche, 1999; Vallée, 2000). In 2002, an experiment to dis-
cern this gravitational effect at the quantum level was performed byNesvizhevsky
et al. (2002) and described by Shaw (1992). It consisted of dropping ultracold neu-
trons from a height of 14 μm unto a neutron mirror and watching them bounce.
It found a neutron ground state at 1.4 peV.
We start by determining the analytic solution to this problem for stationary

states and then generalize it to include time dependence. The time-independent
Schrödinger equation for a particle in a uniform gravitation potential is

− ℏ2

2m
d2ψ(x)
dx2

+ mxgψ(x) = Eψ(x) , (17.79)

ψ(x ≤ 0) = 0 (boundary condition) . (17.80)

The boundary condition (17.80) is a consequence of the hard floor at x = 0. A
change of variables converts (17.79) to a dimensionless form

d2ψ
dz2

− (z − zE)ψ = 0 , (17.81)

z = x
(
2gm2

ℏ2

)1∕3

, zE = E
(

2
ℏ2mg2

)1∕3

. (17.82)

This equation has an analytic solution in terms of Airy functions Ai(z):

ψ(z) = Nn Ai(z − zE) , (17.83)

whereNn is a normalization constant and zE is the scaled value of the energy. The
boundary condition ψ(0) = 0 implies that

ψ(0) = NE Ai(−zE) = 0 , (17.84)

which means that the allowed energies of the system are discrete and correspond
to the zeros zn of the Airy functions (Press et al., 1994) at negative argument. To
simplify the calculation, we take ℏ = 1, g = 2, and m = 1∕2, which leads to z = x
and zE = E.
The time-dependent solution for the quantum bouncer is constructed by form-

ing the infinite sum over all the discrete eigenstates, each with a time dependence
appropriate to its energy:

ψ(z , t) =
∞∑
n=1

CnNnAi(z − zn)e−iEn t∕ℏ , (17.85)

where the Cn ’s are constants.
Figure 17.10 shows the results of solving for the quantum bouncer’s ground-

state probability |ψ0(z)|2 using Feynman’s path integration.The time increment dt
and the total time t were selected by trial and error in such a way as to make

442 17 Thermodynamic Simulations and Feynman Path Integrals

z

QMC

Analytic

(z)Ψ
2

0.6

0.4

0.2

0
0 62 4

Figure 17.10 The analytic and quantum Monte Carlo solution for the quantum bouncer. The
continuous line is the Airy function squared and the dashed line |ψ0(z)|2 after a million trajec-
tories.

|ψ(0)|2 ≃ 0 (the boundary condition). To account for the fact that the potential is
infinite for negative x values, we selected trajectories that have positive x values
over all their links. This incorporates the fact that the particle can never pene-
trate the floor. Our program is given in Listing 17.4, and it yields the results in
Figure 17.10 after using 106 trajectories and a time step ε = dτ = 0.05. Both re-
sults were normalized via a trapezoid integration. As can be seen, the agreement
between the analytic result and the path integration is satisfactory.

Listing 17.4 QMCbouncer.py uses Feynman path integration to compute the path of a quan-
tum particle in a gravitational field.

QMCbouncer . py : g . s . wavefunction v ia path integrat ion

from v i s u a l import *
import random
from v i s u a l . graph import *

Parameters
N = 100 ; dt = 0 . 0 5 ; g = 2 . 0 ; h = 0 . 0 0 ; maxel = 0
path = zeros ([1 0 1] , f l o a t) ; a r r = path ; prob = zeros ([2 0 1] , f l o a t)

t r a j e c = d i s p l a y (width = 300 , he ight =500 , t i t l e = ’ Spacetime Trajectory ’)
t r p l o t = curve (y = range (0 , 100) , co l o r=co lo r . magenta , d i s p l a y = t r a j e c)

de f t r j a x s () : # plot axis for t r a j e c t o r i e s
t r ax=curve (pos=[(−97 ,−100) ,(100 , −100)] , co lo r=co lo r . cyan , d i s p l a y= t r a j e c)
curve (pos = [(−65 , −100) ,(−65 , 100)] , co l o r=co lo r . cyan , d i s p l a y= t r a j e c)
l a b e l (pos = (−65 ,110) , t e x t = ’ t ’ , box = 0 , d i s p l a y = t r a j e c)
l a b e l (pos = (−85 , −110) , t e x t = ’ 0 ’ , box = 0 , d i s p l a y = t r a j e c)
l a b e l (pos = (60 , −110) , t e x t = ’x ’ , box = 0 , d i s p l a y = t r a j e c)

wvgraph = d i s p l a y (x=350 , y=80 , width =500 , he ight =300 , t i t l e = ’GS Prob ’)
wvplot = curve (x = range (0 , 50) , d i s p l a y = wvgraph) # wave function plot
wvfax = curve (co lo r = co lo r . cyan)

de f wvfaxs () : # plot axis for wavefunction
wvfax = curve (pos

=[(−200 ,−155) ,(800 , −155)] , d i s p l a y=wvgraph , co lo r=co lo r . cyan)
curve (pos = [(−200 ,−150) ,(−200 ,400)] , d i s p l a y=wvgraph , co l o r=co lo r . cyan)
l a b e l (pos = (−70 , 420) , t e x t = ’ Probabi l i ty ’ , box = 0 , d i s p l a y=wvgraph)
l a b e l (pos = (600 , −220) , t e x t = ’x ’ , box = 0 , d i s p l a y = wvgraph)
l a b e l (pos = (−200 , −220) , t e x t = ’ 0 ’ , box = 0 , d i s p l a y = wvgraph)

44317.9 Exploration: Quantum Bouncer’s Paths⊙

t r j a x s () ; wvfaxs () # plot axes

de f energy (a r r) : # Energy of path
esum = 0 .
f o r i in range (0 ,N) :

esum += 0 . 5 * ((a r r [i +1]− a r r [i]) / dt) **2+g * (a r r [i]+ ar r [i +1]) /2
re turn esum

de f p lo tpa th (path) : # Plot xy t ra j e c to ry
f o r j in range (0 , N) :

t r p l o t . x [j] = 20* path [j] − 65
t r p l o t . y [j] = 2* j − 100

de f plotwv f (prob) : # Plot wave function
f o r i in range (0 , 50) :

wvplot . co l o r = co lo r . ye l low
wvplot . x [i] = 20* i − 200
wvplot . y [i] = 0 . 5 * prob [i] − 150

oldE = energy (path)
counter = 1
norm = 0 . # plot ps i every 100
maxx = 0 .0

whi le 1 : # " In f in i t e " loop
r a t e (100)
element = i n t (N*random . random ())
i f element != 0 and element != N: # Ends not allowed

change = ((random . random () − 0 . 5) * 2 0 .) / 1 0 .
i f path [element] + change > 0 . : # No negative paths

path [element] += change
newE = energy (path) # New tra j e c to ry E
i f newE > oldE and exp (− newE + oldE) <= random . random () :

path [element] −= change # Link re jected
p lo tpa th (path)

e l e = i n t (path [element] * 1 2 5 0 . / 1 0 0 .) # Scale changed
i f e l e >= maxel : maxel = e l e # Scale change 0 to N
i f element != 0 : prob [e l e] += 1
oldE = newE ;

i f counter%100 == 0 : # plot ps i every 100
f o r i in range (0 , N) : # max x of path

i f path [i] >= maxx : maxx = path [i]
h = maxx /maxel # space step
f i r s t l a s t = h * 0 . 5 * (prob [0] + prob [maxel]) # for trap . extremes
f o r i in range (0 , maxel + 1) : norm = norm + prob [i] # norm
norm = norm*h + f i r s t l a s t # Trap rule
plotwv f (prob) # plot probab i l i t y

counter += 1

445

18
Molecular Dynamics Simulations

You may have seen in introductory chemistry or physics classes that the ideal gas
law can be derived fromfirst principleswhen the interactions of themoleculeswith
each other are ignored, and only reflections off the walls of the surrounding box
are considered. We extend that model so that we can solve for themotion of every
molecule in abox interactingwith everyothermolecule in thebox (butnotwith the
walls). While our example is a simple one, molecular dynamics is of key importance
in many fields, includingmaterial science and biology.

Your problem is to determine whether a collection of argon molecules placed in a
box will form an ordered structure at low temperature.

18.1
Molecular Dynamics (Theory)

Molecular dynamics (MD) is a powerful simulation technique for studying the
physical and chemical properties of solids, liquids, amorphous materials, and
biological molecules. Although we know that quantum mechanics is the proper
theory for molecular interactions, MD uses Newton’s laws as the basis of the
technique and focuses on bulk properties, which do not depend much on small-r
behaviors. In 1985, Car and Parrinello showed how MD can be extended to in-
clude quantum mechanics by applying density functional theory to calculate the
force (Car and Parrinello, 1985). This technique, known as quantumMD, is an ac-
tive area of research but is beyond the realm of this chapter.1) For those with more
interest in the subject, there are full texts (Allan and Tildesley, 1987; Rapaport,
1995; Hockney, 1988) on MD and good discussions (Gould et al., 2006; Thijssen,
1999; Fosdick et al., 1996), as well as primers (Ercolessi, 1997) and codes, (Nelson
et al., 1996; Refson, 2000; Anderson et al., 2008) available online.
MD’s solution of Newton’s laws is conceptually simple, yet when applied to

a very large number of particles becomes the “high school physics problem
from hell.” Some approximations must be made in order not to have to solve

1) We thank Satoru S. Kano for pointing this out to us.

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

446 18 Molecular Dynamics Simulations

the 1023−1025 equations of motion describing a realistic sample, but instead to
limit the problem to ∼ 106 particles for protein simulations, and ∼ 108 particles
for materials simulations. If we have some success, then it is a good bet that the
model will improve if we incorporatemore particles ormore quantummechanics,
something that becomes easier as computing power continues to increase.
In a number of ways, MD simulations are similar to the thermal Monte Carlo

simulations we studied in Chapter 17. Both typically involve a large number N
of interacting particles that start out in some set configuration and then equili-
brate into some dynamic state on the computer. However, in MD we have what
statistical mechanics calls a microcanonical ensemble in which the energy E and
volume V of the N particles are fixed.We then use Newton’s laws to generate the
dynamics of the system. In contrast, Monte Carlo simulations do not start with
first principles, but instead, incorporate an element of chance and have the sys-
tem in contact with a heat bath at a fixed temperature rather than keeping the
energy E fixed. This is called a canonical ensemble.
Because a system of molecules in an MD simulation is dynamic, the velocities

and positions of the molecules change continuously. After the simulation has run
long enough to stabilize, we will compute time averages of the dynamic quantities
in order to deduce the thermodynamic properties. We apply Newton’s laws with
the assumption that the net force on each molecule is the sum of the two-body
forces with all other (N − 1)molecules:

m
d2ri
dt2

= F i(r0,… , rN−1) , (18.1)

m
d2ri
dt2

=
N−1∑
i< j=0

f i j , i = 0,… , (N − 1) . (18.2)

In writing these equations, we have ignored the fact that the force between ar-
gon atoms really arises from the particle–particle interactions of the 18 electrons
and the nucleus that constitute each atom (Figure 18.1). Although it may be pos-
sible to ignore this internal structure when deducing the long-range properties of
inert elements, it matters for systems such as polyatomic molecules that display
rotational, vibrational, and electronic degrees of freedom as the temperature is
raised.2)
The force onmolecule i derives from the sum ofmolecule–molecule potentials:

F i(r0, r1,… , rN−1) = −𝛁ri U(r0, r1,… , rN−1) , (18.3)

U(r0, r1,… , rN−1) =
∑
i< j

u(ri j) =
N−2∑
i=0

N−1∑
j=i+1

u(ri j) (18.4)

⇒ f i j = −
du(ri j)
dri j

(
xi − x j

ri j
êx +

yi − y j
ri j

ê y +
zi − z j
ri j

êz

)
. (18.5)

2) We thank Saturo Kano for clarifying this point.

44718.1 Molecular Dynamics (Theory)

Figure 18.1 The molecule–molecule effec-
tive interaction arises from the many-body
interaction of the electrons and nucleus in
one molecule (circle) with the electrons and

nucleus in another molecule (other circle).
Note, the size of the nucleus at the center of
each molecule is highly exaggerated, and real
electrons have no size.

Here ri j = |ri − r j| = r ji is the distance between the centers of molecules i and j,
and the limits on the sums are such that no interaction is counted twice. Because
we have assumed a conservative potential, the total energy of the system, that is,
the potential plus kinetic energies summed over all particles, should be conserved
over time. Nonetheless, in a practical computation we “cut the potential off” (as-
sume u(ri j) = 0) when the molecules are far apart. Because the derivative of the
potential produces an infinite force at this cutoff point, energy will no longer be
precisely conserved. Yet because the cutoff radius is large, the cutoff occurs only
when the forces areminuscule, and so the violation of energy conservation should
be small relative to approximation and round-off errors.
In a first-principles calculation, the potential between any two argon atoms

arises from the sum over approximately 1000 electron–electron and electron–
nucleus Coulomb interactions. A more practical calculation would derive an ef-
fective potential based on a form of many-body theory, such as Hartree–Fock or
density functional theory.Our approach is simpler yet.Weuse the Lennard–Jones
potential,

u(r) = 4𝜖
[(σ

r

)12
−

(σ
r

)6
]
, (18.6)

f (r) = −du
dr

r
r
= 48𝜖

r2

[(σ
r

)12
− 1

2

(σ
r

)6
]
r . (18.7)

Here the parameter 𝜖 governs the strength of the interaction, and σ determines
the length scale. Both are deduced by fits to data, which is why this potential is
called a “phenomenological” potential.
Some typical values for the parameters and scales for the variables are given in

Table 18.1. In order to make the program simpler and to avoid under- and over-
flows, it is helpful to measure all variables in the natural units formed by these
constants. The interparticle potential and force then take the forms

u(r) = 4
[1
r12

− 1
r6

]
, f (r) = 48

r

[1
r12

− 1
2r6

]
. (18.8)

448 18 Molecular Dynamics Simulations

Table 18.1 Parameter and scales for the Lennard–Jones potential.

Quantity Mass Length Energy Time Temperature

Unit m σ 𝝐

√
mσ2∕𝝐 𝝐∕kB

Value 6.7 × 10−26 kg 3.4 × 10−10 m 1.65 × 10−21 J 4.5 × 10−12 s 119K

repulsive

attraction

u(r)

r

Lennard-Jones

Figure 18.2 The Lennard–Jones effective potential used in many MD simulations. Note the
sign change at r = 1 and the minimum at r ≃ 1.1225 (natural units). Also note that because
the r-axis does not extend to r = 0, the infinitely high central repulsion is not shown.

The Lennard–Jones potential is seen in Figure 18.2 to be the sum of a long-range
attractive interaction ∝ 1∕r6 and a short-range repulsive one∝ 1∕r12. The change
from repulsion to attraction occurs at r = σ. The minimum of the potential oc-
curs at r = 21∕6σ = 1.1225σ, which would be the atom–atom spacing in a solid
bound by this potential. The repulsive 1∕r12 term in the Lennard–Jones poten-
tial (18.6) arises when the electron clouds from two atoms overlap, in which case
the Coulomb interaction and the Pauli exclusion principle force the electrons
apart. The 1∕r12 term dominates at short distances and makes atoms behave like
hard spheres. The precise value of 12 is not of theoretical significance (although
it being large is) and was probably chosen because it is 2 × 6.
The 1∕r6 term that dominates at large distances models the weak van derWaals

induced dipole–dipole attraction between two molecules. The attraction arises
from fluctuations in which at some instant in time a molecule on the right tends
to be more positive on the left side, like a dipole⇐. This in turn attracts the neg-
ative charge in a molecule on its left, thereby inducing a dipole ⇐ in it. As long
as the molecules stay close to each other, the polarities continue to fluctuate in
synchronization ⇐⇐ so that the attraction is maintained. The resultant dipole–
dipole attraction behaves like 1∕r6, and although much weaker than a Coulomb
force, it is responsible for the binding of neutral, inert elements, such as argon for
which the Coulomb force vanishes.

44918.1 Molecular Dynamics (Theory)

18.1.1
Connection to Thermodynamic Variables

We assume that the number of particles is large enough to use statistical mechan-
ics to relate the results of our simulation to the thermodynamic quantities. The
simulation is valid for any number of particles, but the use of statistics requires
large numbers. The equipartition theorem tells us that, on the average, for mol-
ecules in thermal equilibrium at temperature T , each degree of freedom has an
energy kBT∕2 associated with it, where kB = 1.38 × 10−23 J∕K is Boltzmann’s con-
stant. A simulation provides the kinetic energy of translation3):

KE = 1
2

⟨N−1∑
i=0

v2i

⟩
. (18.9)

The time average of KE (three degrees of freedom) is related to temperature by

⟨KE⟩ = N 3
2
kBT ⇒ T =

2⟨KE⟩
3kBN

. (18.10)

The system’s pressure P is determined by a version of the Virial theorem,

PV = NkBT + w
3

, w =

⟨N−1∑
i< j

ri j ⋅ f i j

⟩
, (18.11)

where the Virial w is a weighted average of the forces. Note that because ideal
gases have no intermolecular forces, their Virial vanishes and we have the ideal
gas law. The pressure is thus

P =
ρ
3N

(2⟨KE⟩ + w) , (18.12)

where ρ = N∕V is the density of the particles.

18.1.2
Setting Initial Velocities

Although we start the system off with a velocity distribution characteristic of a
definite temperature, this is not a true temperature of the system because the sys-
tem is not in equilibrium initially, and therewill a redistribution of energy between
KE and PE (Thijssen, 1999). Note that this initial randomization is the only place
where chance enters into our MD simulation, and it is there to speed the simu-
lation along. Indeed, in Figure 18.3 we show results of simulations in which the
molecules are initially at rest and equally spaced. Once started, the time evolution
is determined byNewton’s laws, in contrast toMonteCarlo simulations which are
inherently stochastic. We produce a Gaussian (Maxwellian) velocity distribution
with the methods discussed in Chapter 4. In our sample code, we take the aver-
age 1∕12

∑12
i=1 ri of uniform random numbers 0 ≤ ri ≤ 1 to produce a Gaussian

distribution with mean ⟨r⟩ = 0.5. We then subtract this mean value to obtain a
distribution about 0.

3) Unless the temperature is very high, argon atoms, being inert spheres, have no rotational
energy.

450 18 Molecular Dynamics Simulations

Figure 18.3 (a) Two frames from an animation
showing the results of a 1D MD simulation
that starts with uniformly spaced atoms. Note
the unequal spacing resulting from an image
atommoving in from the left after an atom
left from the right. (b) Two frames from the

animation of a 2D MD simulation showing the
initial and an equilibrated state. Note how the
atoms start off in a simple cubic arrangement
but then equilibrate to a face-centered-cubic
lattice. In both the cases, the atoms remain
confined as a result of the interatomic forces.

18.1.3
Periodic Boundary Conditions and Potential Cutoff

It is easy to believe that a simulation of 1023 molecules shouldpredict bulk proper-
ties well, but with typical MD simulations employing only 103−106 particles, one
must be clever to make less seem like more. Furthermore, because computers are
finite, the molecules in the simulation are constrained to lie within a finite box,
which inevitably introduces artificial surface effects arising from thewalls. Surface
effects are particularly significant when the number of particles is small because
then a large fraction of the molecules reside near the walls. For example, if 1000
particles are arranged in a 10 × 10 × 10 × 10 cube, there are 103 − 83 = 488 parti-
cles one unit from the surface, that is, 49% of themolecules, while for 106 particles
this fraction falls to 6%.
The imposition of periodic boundary conditions (PBCs) strives to minimize the

shortcomings of both the small numbers of particles and of artificial boundaries.
Although we limit our simulation to an Lx × Ly × Lz box, we imagine this box
being replicated to infinity in all directions (Figure 18.4). Accordingly, after each
time-integration step we examine the position of each particle and check if it has
left the simulation region. If it has, then we bring an image of the particle back
through the opposite boundary (Figure 18.4):

x ⇒

{
x + Lx , if x ≤ 0 ,
x − Lx , if x > Lx .

(18.13)

Consequently, each box looks the same and has continuous properties at the
edges. As shown by the one-headed arrows in Figure 18.4, if a particle exits the
simulation volume, its image enters from the other side, and so balance is main-
tained.
In principle, a molecule interacts with all others molecules and their images, so

despite the fact that there is a finite number of atoms in the interaction volume,
there is an effective infinite number of interactions (Ercolessi, 1997). Nonetheless,
because the Lennard–Jones potential falls off so rapidly for large r, V (r = 3σ) ≃

45118.2 Verlet and Velocity–Verlet Algorithms

4
5

32

14
5

32

1 4
5

32

1

4
5

32

14
5

32

1 4
5

32

1

4
5

32

14
5

32

1 4
5

32

1

Figure 18.4 The infinite space generated by
imposing periodic boundary conditions on
the particles within the simulation volume
(shaded box). The two-headed arrows indi-
cate how a particle interacts with the nearest

version of another particle, be that within the
simulation volume or an image. The vertical
arrows indicate how the image of particle 4
enters when the actual particle 4 exits.

V (1.13σ)∕200, far-off molecules do not contribute significantly to the motion of
a molecule, and we pick a value rcut ≃ 2.5σ beyond which we ignore the effect of
the potential:

u(r) =

{
4(r−12 − r−6) , for r < rcut ,
0 , for r > rcut .

(18.14)

Accordingly, if the simulation region is large enough for u(r > Li∕2) ≃ 0, an atom
interacts with only the nearest image of another atom.
As already indicated, a shortcoming with the cutoff potential (18.14) is that be-

cause the derivative du∕dr is singular at r = rcut, the potential is no longer con-
servative and thus energy conservation is no longer ensured. However, because
the forces are already very small at rcut, the violation will also be very small.

18.2
Verlet and Velocity–Verlet Algorithms

A realistic MD simulation may require integration of the 3D equations of motion
for 1010 time steps for each of 103−106 particles. Althoughwe could use our stan-
dard rk4 ODE solver for this, time is saved by using a simple rule embedded in the
program. The Verlet algorithm uses the central-difference approximation (Chap-
ter 5) for the second derivative to advance the solutions by a single time step h for

452 18 Molecular Dynamics Simulations

all N particles simultaneously:

F i[r(t), t] =
d2ri
dt2

≃
ri(t + h) + ri(t − h) − 2ri(t)

h2
(18.15)

⇒ ri(t + h) ≃ 2ri(t) − ri(t − h) + h2F i(t) + O(h4) , (18.16)

where we have setm = 1. (Improved algorithmsmay vary the time step depending
upon the speed of the particle.) Note that although the atom–atom force does not
have an explicit time dependence, we include a t dependence in it as a way of
indicating its dependence upon the atoms’ positions at a particular time. Because
this is really an implicit time dependence, energy remains conserved.
Part of the efficiency of the Verlet algorithm (18.16) is that it solves for the po-

sition of each particle without requiring a separate solution for the particle’s ve-
locity. However, once we have deduced the position for various times, we can use
the central-difference approximation for the first derivative of ri to obtain the ve-
locity:

vi(t) =
dri
dt

≃
ri(t + h) − ri(t − h)

2h
+ O(h2) . (18.17)

Finally, note that because the Verlet algorithm needs r from two previous steps,
it is not self-starting and so we start it with the forward difference

r(t = −h) ≃ r(0) − hv(0) + h2
2
F(0) . (18.18)

Velocity–VerletAlgorithm Another version of the Verlet algorithm, which we rec-
ommend because of its increased stability, uses a forward-difference approxima-
tion for the derivative to advance both the position and velocity simultaneously:

ri(t + h) ≃ ri(t) + hvi(t) +
h2
2
F i(t) + O(h3) , (18.19)

vi(t + h) ≃ vi(t) + ha(t) + O(h2) (18.20)

≃ vi(t) + h
[
F i(t + h) + F i(t)

2

]
+ O(h2) . (18.21)

Although this algorithm appears to be of lower order than (18.16), the use of up-
dated positions when calculating velocities, and the subsequent use of these ve-
locities, make both algorithms of similar precision.
Of interest is that (18.21) approximates the average force during a time step as

[F i(t + h) + F i(t)]∕2. Updating the velocity is a little tricky because we need the
force at time t+ h, which depends on the particle positions at t+ h. Consequently,
we must update all the particle positions and forces to t + h before we update any
velocities, while saving the forces at the earlier time for use in (18.21). As soon as
the positions are updated, we impose periodic boundary conditions to establish
that we have not lost any particles, and then we calculate the forces.

45318.3 1D Implementationand Exercise

18.3
1D Implementation and Exercise

In the supplementary materials to this book, you will find a number of 2D ani-
mations (movies) of solutions to the MD equations. Some frames from these ani-
mations are shown in Figure 18.3. We recommend that you look at the movies in
order to better visualize what the particles do during anMD simulation. In partic-
ular, these simulations use a potential and temperature that should lead to a solid
or liquid system, and so you should see the particles binding together.

Listing 18.1 MD.py performs a 2D MD simulation with a small number of rather large time
steps for just a few particles. To be realistic the user should change the parameters and the
number of random numbers added to form the Gaussian distribution.

MD. py : Molecular dynamics in 2D

from v i s u a l import *
from v i s u a l . graph import *
import random

scene = d i s p l a y (x=0 , y=0 , width =350 , he ight =350 , t i t l e = ’ Molecular Dynamics ’ ,
range=10)

sceneK = gd i sp l ay (x=0 , y=350 , width =600 , he ight =150 , t i t l e = ’ Average KE’ ,
ymin=0 .0 , ymax=5.0 , xmin=0 ,xmax=500 , x t i t l e = ’ time ’ , y t i t l e = ’KE avg ’)

Kavegraph=gcurve (co l o r= co lo r . red)
sceneT = gd i sp l ay (x=0 , y=500 , width =600 , he ight =150 , t i t l e = ’ Average PE ’ ,

ymin=−60,ymax=0. , xmin=0 ,xmax=500 , x t i t l e = ’ time ’ , y t i t l e = ’PE avg ’)
Tcurve = gcurve (co lo r=co lo r . cyan)
Natom = 25
Nmax = 25
Tin i t = 2 .0

dens = 1 .0 # Density (1 .20 for fcc)
t1 = 0
x = zeros ((Nmax) , f l o a t)
y = zeros ((Nmax) , f l o a t)
vx = zeros ((Nmax) , f l o a t)
vy = zeros ((Nmax) , f l o a t)
f x = zeros ((Nmax, 2) , f l o a t)
f y = zeros ((Nmax, 2) , f l o a t)
L = i n t (1 . * Natom * * 0 . 5) # Side of l a t t i c e
atoms =[]

de f twe lveran () : # Average 12 rands for Gaussian
s =0.0
f o r i in range (1 , 13) :

s += random . random ()
re turn s /12 .0 −0 .5

de f i n i t i a l p o s v e l () : # In i t i a l i z e
i = −1
f o r i x in range (0 , L) : # x−> 0 1 2 3 4

f o r i y in range (0 , L) : # y=0 0 5 10 15 20
i = i + 1 # y=1 1 6 11 16 21
x [i] = ix # y=2 2 7 12 17 22
y [i] = i y # y=3 3 8 13 18 23
vx [i] = twe lveran () # y=4 4 9 14 19 24
vy [i] = twe lveran () # numbering of 25 atoms
vx [i] = vx [i] * sq r t (T in i t)
vy [i] = vy [i] * sq r t (T in i t)

f o r j in range (0 ,Natom) :

454 18 Molecular Dynamics Simulations

xc = 2* x [j] − 4
yc = 2* y [j] − 4
atoms . append (sphere (pos=(xc , yc) , r ad iu s =0 .5 , co l o r=co lo r . red))

de f s i gn (a , b) :
i f (b >= 0 . 0) :

re turn abs (a)
e l s e :

re turn − abs (a)

de f Forces (t , w, PE , PEorW) : # Forces
invr2 = 0.
r2cu t = 9 . # Switch : PEorW = 1 for PE
PE = 0 .
f o r i in range (0 , Natom) :

f x [i] [t] = f y [i] [t] = 0 . 0
f o r i in range (0 , Natom−1) :

f o r j in range (i + 1 , Natom) :
dx = x [i] − x [j]
dy = y [i] − y [j]
i f (abs (dx) > 0 .50 *L) :

dx = dx − s i gn (L , dx) # Interact with c loser image
i f (abs (dy) > 0 .50 *L) :

dy = dy − s i gn (L , dy)
r2 = dx * dx + dy * dy
i f (r2 < r2cut) :

i f (r2 == 0 .) : # To avoid 0 denominator
r2 = 0 .0001

invr2 = 1 . / r2
w i j = 4 8 . * (invr2 * *3 − 0 . 5) * invr2 * *3
f i j x = w i j * invr2 * dx
f i j y = w i j * invr2 * dy
fx [i] [t] = fx [i] [t] + f i j x
f y [i] [t] = f y [i] [t] + f i j y
f x [j] [t] = fx [j] [t] − f i j x
f y [j] [t] = f y [j] [t] − f i j y
PE = PE + 4 . * (invr2 * * 3) * ((invr2 * * 3) − 1 .)
w = w + wi j

i f (PEorW == 1) :
re turn PE

e l s e :
re turn w

de f t imevo lu t ion () :
avT = 0 .0
avP = 0 .0
Pavg = 0 .0
avKE = 0 .0
avPE = 0 .0
t1 = 0
PE = 0 .0
h = 0.031 # step
hover2 = h / 2 . 0
i n i t i a l KE & PE via Forces
KE = 0 .0
w = 0 .0
i n i t i a l p o s v e l ()
f o r i in range (0 , Natom) :

KE = KE+(vx [i] * vx [i]+ vy [i] * vy [i]) / 2 . 0
System . out . pr int ln (" "+ t +" PE= "+PE+" KE = "+KE+" PE+KE = "+(PE+KE)) ;

PE = Forces (t1 ,w, PE , 1)
time =1
whi le 1 :

r a t e (100)
f o r i in range (0 , Natom) :

PE = Forces (t1 ,w, PE , 1)
x [i] = x [i] + h * (vx [i] + hover2 * f x [i] [t1])

45518.3 1D Implementationand Exercise

y [i] = y [i] + h * (vy [i] + hover2 * f y [i] [t1]) ;
i f x [i] <= 0 . :

x [i] = x [i] + L # Periodic boundary condit ions
i f x [i] >= L :

x [i] = x [i] − L
i f y [i] <= 0 . :

y [i] = y [i] + L
i f y [i] >= L :

y [i] = y [i] − L
xc = 2* x [i] − 4
yc = 2* y [i] − 4
atoms [i] . pos=(xc , yc)

PE = 0 .
t2=1
PE = Forces (t2 , w, PE , 1)
KE = 0 .
w = 0 .
f o r i in range (0 , Natom) :

vx [i] = vx [i] + hover2 * (f x [i] [t1] + fx [i] [t2])
vy [i] = vy [i] + hover2 * (f y [i] [t1] + fy [i] [t2])
KE = KE + (vx [i] * vx [i] + vy [i] * vy [i]) /2

w = Forces (t2 , w, PE , 2)
P=dens * (KE+w)
T=KE/ (Natom)
increment averages
avT = avT + T
avP = avP + P
avKE = avKE + KE
avPE = avPE + PE
time += 1
t=time
i f (t ==0) :

t=1
Pavg = avP / t
eKavg = avKE / t
ePavg = avPE / t
Tavg = avT / t
pre = (i n t) (Pavg *1000)
Pavg = pre /1000 .0
kener = (i n t) (eKavg *1000)
eKavg = kener /1000 .0
Kavegraph . p l o t (pos=(t , eKavg))
pener = (i n t) (ePavg *1000)
ePavg = pener /1000 .0
tempe = (i n t) (Tavg *1000000)
Tavg = tempe /1000000 .0
Tcurve . p l o t (pos=(t , ePavg) , d i s p l a y=sceneT)

t imevo lu t ion ()

The program MD.py in Listings 18.1 implements anMD simulation in 1D using
the velocity-Verlet algorithm. Use it as a model and do the following:

1. Establish that you can run and visualize the 1D simulation.
2. Place the particles initially at the sites of a simple cubic lattice. The equilib-

rium configuration for a Lennard–Jones system at low temperature is a face-
centered-cubic, and if your simulation is running properly, then the particles
should migrate from SC to FCC. An FCC lattice has four quarters of a parti-
cle per unit cell, so an L3 box with a lattice constant L∕N contains (parts of)
4N3 = 32, 108, 256,… particles.

456 18 Molecular Dynamics Simulations

3. To save computing time, assign initial particle velocities corresponding to a
fixed-temperature Maxwellian distribution.

4. Print the code and indicate on it which integration algorithm is used, where
the periodic boundary conditions are imposed, where the nearest image in-
teraction is evaluated, and where the potential is cut off.

5. A typical time step is Δt = 10−14 s, which in our natural units equals 0.004.
You probably will need to make 104−105 such steps to equilibrate, which cor-
responds to a total time of only 10−9 s (a lot can happen to a speedy molecule
in 10−9 s). Choose the largest time step that provides stability and gives results
similar to Figure 18.5.

6. The PE and KE change with time as the system equilibrates. Even after that,
there will be fluctuations because this is a dynamic system. Evaluate the time-
averaged energies for an equilibrated system.

7. Compare the final temperature of your system to the initial temperature.
Change the initial temperature and look for a simple relation between it and
the final temperature (Figure 18.6).

18.4
Analysis

1. Modify your program so that it outputs the coordinates and velocities of a few
particles throughout the simulation. Note that you do not need as many time
steps to follow a trajectory as you do to compute it, and so you may want to
use themod operator %100 for output.
a) Start your assessment with a 1D simulation at zero temperature. The par-

ticles should remain in place without vibration. Increase the temperature
and note how the particles begin to move about and interact.

b) Try starting off all your particles at the minima in the Lennard–Jones po-
tential. The particles should remain bound within the potential until you
raise the temperature.

c) Repeat the simulations for a 2D system. The trajectories should resemble
billiard ball-like collisions.

d) Create an animation of the time-dependent locations of several particles.
e) Calculate and plot the root-mean-square displacement of molecules as a

function of temperature:

Rrms =
√⟨|r(t + Δt) − r(t)|2⟩ , (18.22)

where the average is over all the particles in the box. Determine the ap-
proximate time dependence of Rrms.

f) Test your system for time-reversal invariance. Stop it at a fixed time, re-
verse all velocities, and see if the system retraces its trajectories back to
the initial configuration after this same fixed time.

45718.4 Analysis

1.50E 19

1.00E–19

5.00E–20

0.00E+00

E
n

e
rg

y
 (
J
)

E
n
e
rg

y
 (
J
)

0 2E–12 4E–12 6E–12

Energy vs Time

for 36 particles in a 2D box, initially at 150 K

Time (s) (5000 steps)

Energy vs Time

for 300 particles 2D box, initally at 150 K

Time (s) (568 steps)

8E–12 1E–11 1.2E–11

0 2E–13 4E–13 6E–13 8E–13 1E–12 1.4E–121.2E–12

–1.00E–19

–1.50E–19

2.00E 19

–1.40E–18

–1.20E–18

–1.00E–18

–8.00E–19

–6.00E–19

–4.00E–19

–2.00E–19

0.00E+00

2.00E–19

4.00E–19

6.00E–19

8.00E–19

–5.00E–20

(a)

(b)

Figure 18.5 The kinetic, potential, and to-
tal energy as a function of time or number of
steps for a 2D MD simulation with 36 particles
(a), and 300 particles (b), both with an initial

temperature of 150 K. The potential energy is
negative, the kinetic energy is positive, and
the total energy is seen to be conserved (flat).

2. Hand Computation We wish to make an MD simulation by hand of the po-
sitions of particles 1 and 2 that are in a 1D box of side 8. For an origin lo-
cated at the center of the box, the particles are initially at rest and at loca-

458 18 Molecular Dynamics Simulations

0

100

200

300

F
in

a
l
T

e
m

p
e
ra

tu
re

 (
K

)

200 E–19100 E–19

Initial KE (J)

P

1

2

0

T

0 0.1 0.2 0.3

(a) (b)

Figure 18.6 (a) The temperature after equili-
bration as a function of initial kinetic energy
for a 2D MD simulation with 36 particles. The
two are nearly proportional. (b) The pressure

vs. temperature for a simulation with several
hundred particles. An ideal gas (noninter-
acting particles) would yield a straight line
(courtesy of J. Wetzel).

Figure 18.7 A simulation of a projectile shot into a group of particles. The energy introduced
by the projectile is seen to lead to evaporation of the particles (courtesy of J. Wetzel).

tions xi(0) = −x2(0) = 1. The particles are subject to the force

F(x) =
⎧⎪⎨⎪⎩
10 , for |x1 − x2| ≤ 1 ,
−1 , for 1 ≤ |x1 − x2| ≤ 3 ,
0 , otherwise .

(18.23)

Use a simple algorithm to determine the positions of the particles up until the
time they leave the box. Make sure to apply periodic boundary conditions.
Hint: Because the configuration is symmetric, you know the location of par-
ticle 2 by symmetry and do not need to solve for it. We suggest the Verlet
algorithm (no velocities) with a forward-difference algorithm to initialize it.
To speed things along, use a time step of h = 1∕

√
2.

45918.4 Analysis

3. Diffusion It is well known that light molecules diffuse more quickly than heav-
ier ones. See if you can simulate diffusion with your MD simulation using a
Lennard–Jones potential and periodic boundary conditions (Satoh, 2011).
a) Generalize the velocity-Verlet algorithm so that it can be used for mole-

cules of different masses.
b) Modify the simulation code so that it can be used for five heavy molecules

of mass M = 10 and five light molecules of mass m = 1.
c) Start with the molecules placed randomly near the center of the square

simulation region.
d) Assign random initial velocities to the molecules.
e) Run the simulation several times and verify visually that the lighter mole-

cules tend to diffuse more quickly than the heavier ones.
f) For each ensemble of molecules, calculate the RMS velocity at regular in-

stances of time, and then plot the RMS velocities as functions of time. Do
the lighter particles have a greater RMS velocity?

4. As shown in Figure 18.7, simulate the impact of a projectile with a block of
material.

461

19
PDE Review and Electrostatics via Finite Differences and
Electrostatics via Finite Differences

This chapter is the first of several dealing with partial differential equations (PDEs);
several because PDEs aremore complex than ODEs, and because each type of PDE
requires its own algorithm. We start the chapter with a discussion of PDEs in gen-
eral, and the requirements for a unique solution of each type to exist. Then we get
down to business and examine the simple, but powerful, finite-differencesmethod
for solving Poisson’s and Laplace’s equations on a lattice in space. Chapter 23 cov-
ers themore complicated, but ultimatelymore efficient, finite elementsmethod for
solving the same equations.

19.1
PDE Generalities

Physical quantities such as temperature and pressure vary continuously in both
space and time. Such being our world, the function or field U(x , y, z , t) used to
describe these quantities must contain independent space and time variations.
As time evolves, the changes in U(x , y, z , t) at any one position affect the field at
neighboring points. Thismeans that the dynamic equations describing the depen-
dence ofU on four independent space–time variables must be written in terms of
partial derivatives, and therefore the equations must be partial differential equa-
tions (PDEs), in contrast to ordinary differential equations (ODEs).
The most general form for a two-independent variable PDE is

A 𝜕2U
𝜕x2

+ 2B 𝜕2U
𝜕x𝜕 y

+ C 𝜕2U
𝜕 y2

+ D 𝜕U
𝜕x

+ E 𝜕U
𝜕 y

= F , (19.1)

whereA, B, C, and F are arbitrary functions of the variables x and y. In Table 19.1,
we define the classes of PDEs by the value of the discriminant d = AC − B2 in row
two (Arfken andWeber, 2001), and give examples in rows three and four.
We usually think of an elliptic equation as containing the second-order deriva-
tives of all the variables, with all having the same sign when placed on the same
side of the equal sign; a parabolic equation as containing a first-order derivative
in one variable and a second-order derivative in the other; and a hyperbolic equa-

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

462 19 PDE Review and Electrostatics via Finite Differences and Electrostatics via Finite Differences

Table 19.1 Three categories of PDE based on the value of their discriminant d.

Elliptic Parabolic Hyperbolic

d = AC − B2 > 0 d = AC − B2 = 0 d = AC − B2 < 0
∇2U(x) = −4πρ(x) ∇2U(x, t) = a𝜕U∕𝜕t ∇2U(x, t) = c−2𝜕2U∕𝜕t2

Poisson’s Heat Wave

tion as containing second-order derivatives of all the variables, with opposite signs
when placed on the same side of the equal sign.
After solving enough problems, one often develops some physical intuition as

to whether one has sufficient boundary conditions for there to exist a unique solu-
tion for a given physical situation (this, of course, is in addition to requisite initial
conditions). Table 19.2 gives the requisite boundary conditions for a unique so-
lution to exist for each type of PDE. For instance, a string tied at both ends and
a heated bar placed in an infinite heat bath are physical situations for which the
boundary conditions are adequate. If the boundary condition is the value of the
solution on a surrounding closed surface, we have aDirichlet boundary condition.
If the boundary condition is the value of the normal derivative on the surrounding
surface, we have aNeumann boundary condition. If the value of both the solution
and its derivative are specified on a closed boundary, we have a Cauchy bound-
ary condition. Although having an adequate boundary condition is necessary for
a unique solution, having too many boundary conditions, for instance, both Neu-
mann and Dirichlet, may be an overspecification for which no solution exists.1)
Solving PDEs numerically differs from solvingODEs in a number of ways. First,

because we are able to write all ODEs in a standard form

d y(t)
dt

= f (y, t) , (19.2)

with t the single independent variable, we are able to use a standard algorithm
such as rk4 to solve all such equations. Yet because PDEs have several independent
variables, for example, ρ(x , y, z , t), we would have to apply (19.2) simultaneously
and independently to each variable, which would be very complicated. Second,
because there are more equations to solve with PDEs than with ODEs, we need
more information than just the two initial conditions [x(0), ẋ(0)]. In addition, be-
cause each PDE often has its own particular set of boundary conditions, we have
to develop a special algorithm for each particular problem.

1) Although conclusions drawn for exact PDEs may differ from those drawn for the finite-
difference equations, we use for our algorithms, they are usually the same. In fact, Morse and
Feshbach (Morse and Feshbach, 1953) use the finite-difference form to derive the relations
between boundary conditions and uniqueness for each type of equation shown in Table 19.2
(Jackson, 1988).

46319.2 Electrostatic Potentials

19.2
Electrostatic Potentials

Your problem is to find the electric potential for all points inside the charge-free
square shown in Figure 19.1. The bottom and sides of the region are made up of
wires that are “grounded” (kept at 0V). The top wire is connected to a voltage
source that keeps it at a constant 100V.

19.2.1
Laplace’s Elliptic PDE (Theory)

We consider the entire square in Figure 19.1 as our boundary with the voltages
prescribed upon it. If we imagine infinitesimal insulators placed at the top cor-
ners of the box, then we will have a closed boundary. Because the values of the
potential are given on all sides, we have Neumann conditions on the boundary
and, according to Table 19.2, a unique and stable solution.

Table 19.2 The relation between boundary conditions and uniqueness for PDEs.

Boundary Elliptic Hyperbolic Parabolic
Condition (Poisson equation) (Wave equation) (Heat equation)

Dirichlet open surface Underspecified Underspecified Unique and stable (1D)
Dirichlet closed surface Unique and stable Overspecified Overspecified
Neumann open surface Underspecified Underspecified Unique and stable (1D)
Neumann closed surface Unique and stable Overspecified Overspecified
Cauchy open surface Nonphysical Unique and stable Overspecified
Cauchy closed surface Overspecified Overspecified Overspecified

x

y
V(x,y)

x y

v

(a) (b)

Figure 19.1 (a) The shaded region of space
within a square in which we determine the
electric potential by solving Laplace’s equa-
tion. There is a wire at the top kept at a con-
stant 100 V and a grounded wire (dashed)

at the sides and bottom. (b) The computed
electric potential as a function of x and y.
The projections onto the shaded xy plane are
equipotential (contour) lines.

464 19 PDE Review and Electrostatics via Finite Differences and Electrostatics via Finite Differences

It is known from classical electrodynamics that the electric potential U(x) aris-
ing from static charges satisfies Poisson’s PDE (Jackson, 1988):

∇2U(x) = −4πρ(x) , (19.3)

where ρ(x) is the charge density. In charge-free regions of space, that is, regions
where ρ(x) = 0, the potential satisfies Laplace’s equation:

∇2U(x) = 0 . (19.4)

Both these equations are elliptic PDEs of a form that occurs in various applica-
tions. We solve them in 2D rectangular coordinates:

𝜕2U(x , y)
𝜕x2

+
𝜕2U(x , y)

𝜕 y2
= 0 , Laplace’s equation , (19.5)

𝜕2U(x , y)
𝜕x2

+
𝜕2U(x , y)

𝜕 y2
= −4πρ(x) , Poisson’s equation . (19.6)

In both cases, we see that the potential depends simultaneously on x and y. For
Laplace’s equation, the charges, which are the source of the field, enter indirectly
by specifying the potential values in some region of space; for Poisson’s equation
they enter directly.

19.3
Fourier Series Solution of a PDE

For the simple geometry of Figure 19.1, an analytic solution of Laplace’s equa-
tion (19.5) exists in the form of an infinite series. If we assume that the solution
is the product of independent functions of x and y and substitute the product
into (19.5), we obtain

U(x , y) = X(x)Y (y) ⇒
d2X(x)∕dx2

X(x)
+

d2Y (y)∕dy2

Y (y)
= 0 . (19.7)

Because X(x) is a function of only x, and Y (y) is a function of only y, the deriva-
tives in (19.7) are ordinary as opposed to partial derivatives. Because X(x)
and Y (y) are assumed to be independent, the only way (19.7) can be valid for
all values of x and y is for each term in (19.7) to be equal to a constant:

d2Y (y)∕dy2

Y (y)
= −

d2X(x)∕dx2

X(x)
= k2 (19.8)

⇒
d2X(x)
dx2

+ k2X(x) = 0 ,
d2Y (y)
dy2

− k2Y (y) = 0 . (19.9)

We shall see that this choice of sign for the constant matches the boundary con-
ditions and gives us periodic behavior in x. The other choice of sign would give
periodic behavior in y, and that would not work with these boundary conditions.

46519.3 Fourier Series Solution of a PDE

The solutions for X(x) are periodic, and those for Y (y) are exponential:

X(x) = A sin kx + B cos kx , Y (y) = Cek y + De−k y . (19.10)

The x = 0 boundary conditionU(x = 0, y) = 0 can bemet only if B = 0. The x = L
boundary condition U(x = L , y) = 0 can be met only for

kL = nπ , n = 1, 2,… (19.11)

Such being the case, for each value of n there is the solution

Xn(x) = An sin
(nπ

L
x
)

. (19.12)

For each value of kn , Y (y) must satisfy the y boundary condition U(x , 0) = 0,
which requires D = −C:

Yn(y) = C(ekn y − e−kn y) ≡ 2C sinh
(nπ

L
y
)

. (19.13)

Because we are solving linear equations, the principle of linear superposition
holds, which means that the most general solution is the sum of the products:

U(x , y) =
∞∑
n=1

En sin
(nπ

L
x
)
sinh

(nπ
L

y
)

. (19.14)

The En values are arbitrary constants and are fixed by requiring the solution to
satisfy the remaining boundary condition at y = L, U(x , y = L) = 100V:

∞∑
n=1

En sin
nπ
L

x sinh nπ = 100V . (19.15)

We determine the constants En by projection: multiply both sides of the equation
by sinmπ∕Lx, with m an integer, and integrate from 0 to L:

∞∑
n

En sinh nπ

L

∫
0

dx sin nπ
L

x sin mπ
L

x =
L

∫
0

dx100 sin mπ
L

x . (19.16)

The integral on the LHS is nonzero only for n = m, which yields

En =

{
0 , for n even ,

4(100)
nπ sinh nπ

, for n odd .
(19.17)

Finally, we obtain an infinite series (analytic solution) for the potential at any point
(x , y):

U(x , y) =
∞∑

n=1,3,5,…

400
nπ

sin
(nπx

L

) sinh(nπ y∕L)
sinh(nπ)

. (19.18)

466 19 PDE Review and Electrostatics via Finite Differences and Electrostatics via Finite Differences

19.3.1
Polynomial Expansion as an Algorithm

If we try to use (19.18) as an algorithm, wemust terminate the sum at some point.
Yet in practice the convergence of the series is so painfully slow that many terms
are needed for good accuracy, and so the round-off error may become a prob-
lem. In addition, the sinh functions in (19.18) overflow for large n, which can be
avoided somewhat by expressing the quotient of the two sinh functions in terms
of exponentials and then taking a large n limit:

sinh(nπ y∕L)
sinh(nπ)

= enπ(y∕L−1) − e−nπ(y∕L+1)
1 − e−2nπ

←←←←←←←←←←←←←←←←←←←←→
n→∞

enπ(y∕L−1) . (19.19)

A third problemwith the “analytic” solution is that a Fourier series converges only
in the mean square (Figure 19.2). This means that it converges to the average of
the left- and right-hand limits in the regions where the solution is discontinuous
(Kreyszig, 1998), such as in the corners of the box. Explicitly, what you see in
Figure 19.2 is a phenomenon known as the Gibbs overshoot that occurs when a
Fourier series with a finite number of terms is used to represent a discontinuous
function. Rather than fall off abruptly, the series develops large oscillations that
tend to overshoot the function at the corner. To obtain a smooth solution, we had
to sum 40000 terms, where, in contrast, the numerical solution required only
several hundred steps.

0

0

100

0

20

20

40

x y

V(x,y)

Figure 19.2 The analytic (Fourier series) solution of Laplace’s equation summing 21 terms.
Gibbs overshoot leads to the oscillations near x = 0, and persist even if a large number of
terms is summed.

46719.4 Finite-DifferenceAlgorithm

19.4
Finite-Difference Algorithm

To solve our 2D PDE numerically, we divide space up into a lattice (Figure 19.3)
and solve for U at each site on the lattice. Because we will express derivatives in
terms of the finite differences in the values of U at the lattice sites, this is called
a finite-difference method. A numerically more efficient method, but with more
complicated set up, is the finite-element method (FEM) that solves the PDE for
small geometric elements and then matches the solution over the elements. We
discuss FEM in Chapter 23.
To derive the finite-difference algorithm for the numeric solution of (19.5), we

follow the same path taken in Section 5.1 to derive the forward-difference al-
gorithm for differentiation. We start by adding the two Taylor expansions of the
potential to the right and left of (x , y) and the two for above and below (x , y):

U(x + Δx , y) = U(x , y) + 𝜕U
𝜕x

Δx + 1
2
𝜕2U
𝜕x2

(Δx)2 +⋯ , (19.20)

U(x − Δx , y) = U(x , y) − 𝜕U
𝜕x

Δx + 1
2
𝜕2U
𝜕x2

(Δx)2 −⋯ , (19.21)

U(x , y + Δ y) = U(x , y) + 𝜕U
𝜕 y

Δ y + 1
2
𝜕2U
𝜕 y2

(Δ y)2 +⋯ , (19.22)

U(x , y − Δ y) = U(x , y) − 𝜕U
𝜕 y

Δ y + 1
2
𝜕2U
𝜕 y2

(Δ y)2 −⋯ . (19.23)

i, j + 1

i – 1, j

i, j – 1

i, j i + 1, j

y

x

Figure 19.3 The algorithm for Laplace’s
equation in which the potential at the point
(x , y) = (i, j)Δ equals the average of the po-
tential values at the four nearest-neighbor

points. The nodes with white centers corre-
spond to fixed values of the potential along
the boundaries.

468 19 PDE Review and Electrostatics via Finite Differences and Electrostatics via Finite Differences

All odd terms cancel when we add these equations in pairs, and we obtain a
central-difference approximation for the second partial derivative good to or-
der Δ4:

𝜕2U(x , y)
𝜕x2

≃
U(x + Δx , y) + U(x − Δx , y) − 2U(x , y)

(Δx)2
, (19.24)

𝜕2U(x , y)
𝜕 y2

≃
U(x , y + Δ y) + U(x , y − Δ y) − 2U(x , y)

(Δ y)2
. (19.25)

Substitution of both these approximations in Poisson’s equation (19.6) leads us to
a finite-difference form of the PDE:

U(x + Δx , y) + U(x − Δx , y) − 2U(x , y)
(Δx)2

(19.26)

+
U(x , y + Δ y) + U(x , y − Δ y) − 2U(x , y)

(Δ y)2
= −4πρ . (19.27)

We take the x and y grids to be of equal spacings Δx = Δ y = Δ, and thus obtain
a simple form for the equation

U(x+Δ, y)+U(x−Δ, y)+U(x , y+Δ)+U(x , y−Δ)−4U(x , y) = −4πρ .
(19.28)

The reader will notice that this equation shows a relation among the solutions at
five points in space. When U(x , y) is evaluated for the Nx x values on the lattice
and for the Ny y values, we obtain a set of Nx × Ny simultaneous linear algebraic
equations for U[i,j] to solve. One approach is to solve these equations explicitly as
a (big) matrix problem. This is attractive, as it is a direct solution, but it requires
a great deal of memory and accounting. The approach we use follows from the
algebraic solution of (19.28) for U(x , y):

4U(x , y) ≃ U(x + Δ, y) + U(x − Δ, y) + U(x , y + Δ) + U(x , y − Δ)
+ 4πρ(x , y)Δ2 , (19.29)

where we would omit the ρ(x) term for Laplace’s equation. In terms of discrete
locations on our lattice, the x and y variables are

x = x0 + iΔ, y = y0 + jΔ , i, j = 0,… ,Nmax−1 , (19.30)

where we have placed our lattice in a square of side L. The finite-difference algo-
rithm (19.29) becomes

Ui, j =
1
4
[
Ui+1, j + Ui−1, j + Ui, j+1 + Ui, j−1

]
+ πρ(iΔ, jΔ)Δ2 . (19.31)

This equation says thatwhenwe have a proper solution, it will be the average of the
potential at the four nearest neighbors (Figure 19.3) plus a contribution from the

46919.4 Finite-DifferenceAlgorithm

local charge density. As an algorithm, (19.31) does not provide a direct solution to
Poisson’s equation, but rather must be repeated many times to converge upon the
solution. We start with an initial guess for the potential, improve it by sweeping
through all space taking the average over nearest neighbors at each node, and
keep repeating the process until the solution no longer changes to some level of
precision or until failure is evident. When converged, the initial guess is said to
have relaxed into the solution.
A reasonable questionwith this simple an approach is, “Does it always converge,

and if so, does it converge fast enough to be useful?” In some sense, the answer
to the first question is not an issue; if the method does not converge, then we will
know it; otherwise we have ended up with a solution and the path we followed
to get there is no body’s business! The answer to the question of speed is that re-
laxation methodsmay converge slowly (although still faster than a Fourier series),
yet we will show you two clever tricks to accelerate the convergence.
At this point, it is important to remember that our algorithm arose from ex-

pressing the Laplacian∇2 in rectangular coordinates.While this does not restrict
us from solving problemswith circular symmetry, theremay be geometries where
it is better to develop an algorithm based on expressing the Laplacian in cylindri-
cal or spherical coordinates in order to have grids that fit the geometry better.

19.4.1
Relaxation and Over-relaxation

There are a number of ways in which algorithm (19.31) can be iterated so as to
convert the boundary conditions to a solution. Its most basic form is the Jacobi
method and is one in which the potential values are not changed until an entire
sweep of applying (19.31) at each point is completed. This maintains the symme-
try of the initial guess and boundary conditions. A rather obvious improvement on
the Jacobi method utilizes the updated guesses for the potential in (19.31) as soon
as they are available. As a case in point, if the sweep starts in the upper left-hand
corner of Figure 19.3, then the leftmost U([–1, j] and topmost U[i,j – 1] values of
the potential used will be from the present generation of guesses, while the other
two values of the potential will be from the previous generation: (Gauss–Seidel
method)

U(new)
i, j = 1

4

[
U(old)

i+1, j + U(new)
i−1, j + U(old)

i, j+1 + U(new)
i, j−1

]
. (19.32)

This technique, known as the Gauss–Seidel method, usually leads to accelerated
convergence, which in turn leads to less round-off error. It also uses less memory
as there is no need to store two generations of guesses. However, it does distort
the symmetry of the boundary conditions, which one hopes is insignificant when
convergence is reached.
A less obvious improvement in the relaxation technique, known as successive

over-relaxation (SOR), starts by writing algorithm (19.31) in a form that deter-
mines the new values of the potential U(new) as the old values U(old) plus a correc-

470 19 PDE Review and Electrostatics via Finite Differences and Electrostatics via Finite Differences

tion or residual r:

U(new)
i, j = U(old)

i, j + ri, j . (19.33)

While the Gauss–Seidel technique may still be used to incorporate the updated
values in U(old) to determine r, we rewrite the algorithm here in the general form

ri, j ≡ U(new)
i, j − U(old)

i, j

= 1
4

[
U(old)

i+1, j + U(new)
i−1, j + U(old)

i, j+1 + U(new)
i, j−1

]
− U(old)

i, j . (19.34)

The successive over-relaxation technique (Press et al., 1994; Garcia, 2000) pro-
poses that if convergence is obtained by adding r to U, then more rapid conver-
gence might be obtained by adding more or less of r:

U(new)
i, j = U(old)

i, j + ωri, j (SOR) , (19.35)

where ω is a parameter that amplifies or reduces the residual. The nonacceler-
ated relaxation algorithm (19.32) is obtained with ω = 1, accelerated convergence
(over-relaxation) is obtained with ω ≥ 1, and underrelaxation is obtainedwith ω <

1. Values of 1 ≤ ω ≤ 2 often work well, yet ω > 2 may lead to numerical instabili-
ties. Although a detailed analysis of the algorithm is needed to predict the optimal
value for ω, we suggest that you explore different values for ω to see which one
works best for your particular problem.

19.4.2
Lattice PDE Implementation

In Listing 19.1, we present the code LaplaceLine.py that solves the square-wire
problem (Figure 19.1). Here we have kept the code simple by setting the length
of the box L = NmaxΔ = 100 and by taking Δ = 1:

U(i,Nmax) = 99 (top) , U(1, j) = 0 (left) ,
U(Nmax , j) = 0 (right) , U(i, 1) = 0 (bottom) .

(19.36)

We run algorithm (10.19) for a fixed 1000 iterations. A better code would vary Δ
and the dimensions and would quit iterating once the solution converges to some
tolerance. Study, compile, and execute the basic code.

Listing 19.1 LaplaceLine.py solves Laplace’s equation via relaxation. Various parameters
should be adjusted for an accurate solution.

LaplaceLine . py : Solve Laplace ’ s eqtn , 3D matplot , c lose she l l to quit

import matp lo t l i b . py lab as p ;
from mpl_ too l k i t s . mplot3d import Axes3D
from numpy import * ;
import numpy ;

47119.6 Alternate Capacitor Problems

pr in t (" I n i t i a l i z i n g ")
Nmax = 100 ; Niter = 70 ; V = zeros ((Nmax, Nmax) , f l o a t)

pr in t ("Working hard , wait f o r the f i g ur e while I count to 60")
f o r k in range (0 , Nmax−1) : V[k , 0] = 100 .0 # Line at 100V

f o r i t e r in range (N iter) :
i f i t e r%10 == 0 : pr in t (i t e r)
f o r i in range (1 , Nmax−2) :

f o r j in range (1 ,Nmax−2) :
V[i , j] = 0 . 2 5 * (V[i +1 , j]+V[i −1 , j]+V[i , j +1]+V[i , j −1])

x = range (0 , Nmax−1 , 2) ; y = range (0 , 50 , 2)
X, Y = p . meshgrid (x , y)

de f functz (V) : # V(x , y)
z = V[X,Y]
re turn z

Z = functz (V)
f i g = p . f i g u r e () # Create f igure
ax = Axes3D (f i g) # Plot axes
ax . p lot_wire frame (X, Y , Z , co l o r = ’ r ’) # Red wireframe
ax . s e t _ x l a b e l (’X ’)
ax . s e t _ y l a b e l (’Y ’)
ax . s e t _ z l a b e l (’ Potent ia l ’)
p . show () # Show f i g

19.5
Assessment via Surface Plot

After executing LaplaceLine.py, you should see a surface plot like Figure 19.1. Study
this file in order to understand how to make surface plots with Matplotlib in
Python. It is important to visualize your output as a surface plot to establish the
reasonableness of the solution.

19.6
Alternate Capacitor Problems

We give you (or your instructor) a choice now. You can carry out the assessment
using our wire-plus-grounded-box problem, or you can replace that problemwith
a more interesting one involving a realistic capacitor or nonplanar capacitors. We
now describe the capacitor problem and thenmove on to the assessment and ex-
ploration.

Elementary textbooks solve the capacitor problem for the uniform field confined
between two infinite plates. The field in a finite capacitor varies near the edges
(edge effects) and extends beyond the edges of the capacitor (fringe fields). We
model the realistic capacitor in a grounded box (Figure 19.4) as two plates (wires)
of finite length. Write your simulation such that it is convenient to vary the grid
spacing Δ and the geometry of the box and plate. We pose three versions of this

472 19 PDE Review and Electrostatics via Finite Differences and Electrostatics via Finite Differences

100 V

100

0

0
20

40
60

80
100 0

20
40

60
80

–100
–100 V

(X,Y)

d

w

L

L

V(x,y)

xy(a) (b)

Figure 19.4 (a) A simple model of a parallel-
plate capacitor within a box. A realistic model
would have the plates close together, in or-
der to condense the field, and the enclosing
grounded box so large that it has no effect on

the field near the capacitor. (b) A numerical
solution for the electric potential for this ge-
ometry. The projection on the xy plane gives
the equipotential lines.

problem, each displaying somewhat different physics. In each case, the boundary
condition U = 0 on the surrounding box must be imposed for all iterations in
order to obtain a unique solution.

1. For the simplest version, assume that the plates are very thin sheets of con-
ductors, with the top plate maintained at 100V and the bottom at −100V.
Because the plates are conductors, they must be equipotential surfaces, and
a battery can maintain them at constant voltages. Write or modify the given
program to solve Laplace’s equation such that the plates have fixed voltages.

2. For the next version of this problem, assume that the plates are composed of a
line of dielectricmaterial with uniformcharge densities ρ on the top and−ρ on
the bottom. Solve Poisson’s equation (19.3) in the region including the plates,
and Laplace’s equation elsewhere. Experiment until you find a numerical value
for ρ that gives a potential similar to that shown in Figure 19.6 for plates with
fixed voltages.

3. For the final version of this problem investigate how the charges on a capaci-
torwith finite-thickness conducting plates (Figure 19.5) distribute themselves.
Because the plates are conductors, they are still equipotential surfaces at 100
and−100V, only now you shouldmake themhave a thickness of at least 2Δ (so
we can see the difference between the potential near the top and the bottom
surfaces of the plates). Such being the case, we solve Laplace’s equation (19.4)
much as before to determine U(x , y). Once we have U(x , y), we substitute
it into Poisson’s equation (19.3) and determine how the charge density dis-
tributes itself along the top and bottom surfaces of the plates. Hint: Because
the electric field is no longer uniform, we know that the charge distribution
also will no longer be uniform. In addition, because the electric field now ex-
tends beyond the ends of the capacitor and because field lines begin and end
on charge, some charge may end up on the edges and outer surfaces of the
plates (Figure 19.4).

47319.6 Alternate Capacitor Problems

–

– –

–

100 V

–100 V

+
+ + + + + + + + + + + + + + + + + + + +

+

Figure 19.5 A guess as to how charge may rearrange itself on finite conducting plates.

(a) (b)

Figure 19.6 (a) A visualization of the com-
puted electric potential for a capacitor with
finite width plates. (b) A visualization of the
charge distribution along one plate deter-

mined by evaluating∇2U(x , y) (courtesy of
J. Wetzel). Note the “lightening rod” effect of
charge accumulating at corners and points.

4. The numerical solution to our PDE can be applied to arbitrary boundary con-
ditions. Two boundary conditions to explore are triangular and sinusoidal:

U(x) =

{
200x∕w , x ≤ w∕2 ,
100(1 − x∕w) , x ≥ w∕2 ,

or U(x) = 100 sin
(2πx

w

)
.

(19.37)

5. Square conductors: You have designed a piece of equipment consisting of a
small metal box at 100V within a larger grounded one (Figure 19.7). You find
that sparking occurs between the boxes, which means that the electric field
is too large. You need to determine where the field is greatest so that you can
change the geometry and eliminate the sparking. Modify the program to sat-
isfy these boundary conditions and to determine the field between the boxes.
Gauss’s law tells us that the field vanishes within the inner box because it con-
tains no charge. Plot the potential and equipotential surfaces and sketch in
the electric field lines. Deduce where the electric field is most intense and try
redesigning the equipment to reduce the field.

6. Cracked cylindrical capacitor: You have designed the cylindrical capacitor
containing a long outer cylinder surrounding a thin inner cylinder (Fig-
ure 19.7b). The cylinders have a small crack in them in order to connect

474 19 PDE Review and Electrostatics via Finite Differences and Electrostatics via Finite Differences

(a) (b)

Figure 19.7 (a) The geometry of a capacitor formed by placing two long, square cylinders
within each other. (b) The geometry of a capacitor formed by placing two long, circular cylin-
ders within each other. The cylinders are cracked on the side so that wires can enter the region.

them to the battery that maintains the inner cylinder at −100V and outer
cylinder at 100V. Determine how this small crack affects the field configu-
ration. In order for a unique solution to exist for this problem, place both
cylinders within a large grounded box. Note that because our algorithm is
based on expansion of the Laplacian in rectangular coordinates, you cannot
just convert it to a radial and angle grid.

19.7
Implementation and Assessment

1. Write or modify the program to find the electric potential for a capacitor
within a grounded box. Use the labeling scheme as shown in Figure 19.4a.

2. To start, have your program undertake 1000 iterations and then quit. During
debugging, examine how the potential changes in some key locations as you
iterate toward a solution.

3. Repeat the process for different step sizes Δ and draw conclusions regarding
the stability and accuracy of the solution.

4. Once your program produces reasonable solutions, modify it so that it stops
iterating after convergence is reached, or if the number of iterations becomes
too large. Rather than trying to discern small changes in highly compressed
surface plots, use a numerical measure of precision, for example,

trace =
∑
i

|U[i,i]| , (19.38)

which samples the solution along the diagonal. Remember, this is a simple
algorithm and so may require many iterations for high precision. You should
be able to obtain changes in the trace that are less than 1 part in 104. (The
break command or a while loop is useful for this type of test.)

5. Equation 19.35 expresses the successive over-relaxation technique in which
convergence is accelerated by using a judicious choice of ω. Determine by trial
and error a best value of ω. This should let you double the speed of the algo-
rithm.

47519.8 Electric Field Visualization (Exploration)

6. Now that your code is accurate, modify it to simulate amore realistic capacitor
in which the plate separation is approximately 1/10 of the plate length. You
should find the field more condensed and more uniform between the plates.

7. If you areworkingwith thewire-in-the-boxproblem, compare your numerical
solution to the analytic one (19.18). Do not be surprised if you need to sum
thousands of terms before the analytic solution converges!

19.8
Electric Field Visualization (Exploration)

Plot the equipotential surfaces on a separate 2D plot. Start with a crude, hand-
drawn sketch of the electric field by drawing curves orthogonal to the equipoten-
tial lines, beginning and ending on the boundaries (where the charges lie). The
regions of high density are regions of high electric field. Physics tells us that the
electric field E is the negative gradient of the potential:

E = −∇U(x , y) = −
𝜕U(x , y)

𝜕x
�̂�x −

𝜕U(x , y)
𝜕 y

�̂�y , (19.39)

where �̂�i is a unit vector in the i direction. While at first it may seem that some
work is involved in determining these derivatives, once you have a solution
for U(x , y) on a grid, it is simple to use the central-difference approximation
for the derivative to determine the field, for example:

Ex ≃
U(x + Δ, y) − U(x − Δ, y)

2Δ
=

Ui+1, j − Ui−1, j

2Δ
. (19.40)

Once you have a data file representing such a vector field, it can be visualized by
plotting arrows of varying lengths and directions, or with just lines (Figure 19.8).
In Section 1.5.6, we have shown how to do this with Mayavi.

Figure 19.8 (a) Computed equipotential surfaces and electric field lines for a realistic capaci-
tor. (b) Equipotential surfaces and electric field lines mapped onto the surface for a 3D capaci-
tor constructed from two tori.

476 19 PDE Review and Electrostatics via Finite Differences and Electrostatics via Finite Differences

19.9
Review Exercise

You are given a simple Laplace-type equation

𝜕u
𝜕x

+ 𝜕u
𝜕 y

= −ρ(x , y) , (19.41)

where x and y are the Cartesian spatial coordinates and ρ(x , y) is the charge den-
sity in space.

1. Develop a simple algorithm that will permit you to solve for the potential u be-
tween two square conductors kept at fixed u, with a charge density ρ between
them.

2. Make a simple sketch that shows with arrows how your algorithm works.
3. Make sure to specify how you start and terminate the algorithm.
4. Thinking outside the box⊙: Find the electric potential for all points outside the

charge-free square shown in Figure 19.1. Is your solution unique?

477

20
Heat Flow via Time Stepping

As the present now
Will later be past
The order is
Rapidly fadin’

And the first one now
Will later be last
For the times they are a-changin’.

Bob Dylan

This chapter examines theheat equationanddevelops the leapfrogmethod for solving
it on a space–time lattice. We also develop an improved Crank–Nicolson method that
determines the solution over all of space in a single step. Time stepping is simple, yet
important, and wewill see it again when we attack various wave equations.

20.1
Heat Flow via Time-Stepping (Leapfrog)

Problem You are given an aluminum bar of length L = 1m and width w aligned
along the x-axis (Figure 20.1). It is insulated along its length but not at its ends.
Initially the bar is at a uniform temperature of 100 °C, and then both ends are
placed in contact with ice water at 0 °C. Heat flows out of the noninsulated ends
only. Your problem is to determine how the temperature will vary as we move
along the length of the bar at later times.

100 °C

Figure 20.1 A metallic bar insulated along its length with its ends in contact with ice. The bar
is displayed in dark gray and the insulation is of lighter gray.

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

478 20 Heat Flow via Time Stepping

20.2
The Parabolic Heat Equation (Theory)

A basic fact of nature is that heat flows from hot to cold, that is, from regions
of high temperature to regions of low temperature. We give these words math-
ematical expression by stating that the rate of heat flow H through a material is
proportional to the gradient of the temperature T across the material:

H = −K∇T(x, t) , (20.1)

where K is the thermal conductivity of thematerial. The total amount of heatQ(t)
in the material at any one time is proportional to the integral of the temperature
over the material’s volume:

Q(t) = ∫ dxCρ(x)T(x, t) , (20.2)

where C is the specific heat of the material and ρ is its density. Because energy
is conserved, the rate of decrease in Q with time must equal the amount of heat
flowing out of the material. After this energy balance is struck and the divergence
theorem applied, there results the heat equation

𝜕T(x, t)
𝜕t

= K
Cρ

∇2T(x, t) . (20.3)

The heat equation (20.3) is a parabolic PDEwith space and time as independent
variables. The specification of this problem implies that there is no temperature
variation in directions perpendicular to the bar (y and z), and so we have only one
spatial coordinate in the Laplacian:

𝜕T(x , t)
𝜕t

= K
Cρ

𝜕2T(x , t)
𝜕x2

. (20.4)

As given, the initial temperature of the bar and the boundary conditions are

T(x , t = 0) = 100 °C , T(x = 0, t) = T(x = L , t) = 0 °C . (20.5)

20.2.1
Solution: Analytic Expansion

Analogous to Laplace’s equation, the analytic solution starts with the assumption
that the solution separates into the product of functions of space and time:

T(x , t) = X(x) (t) . (20.6)

When (20.6) is substituted into the heat equation (20.4) and the resulting equation
is divided by X(x) (t), two noncoupled ODEs result:

d2X(x)
dx2

+ k2X(x) = 0 , d (t)
dt

+ k2 C
Cρ

 (t) = 0 , (20.7)

47920.2 The Parabolic Heat Equation (Theory)

where k is a constant still to be determined. The boundary condition that the
temperature equals zero at x = 0 requires a sine function for X:

X(x) = A sin kx . (20.8)

The boundary condition that the temperature equals zero at x = L requires the
sine function to vanish there:

sin kL = 0 ⇒ k = kn = nπ
L

, n = 1, 2,… (20.9)

To avoid blow up, the time function must be a decaying exponential with k in the
exponent:

 (t) = e−k2n t∕Cρ ⇒ T(x , t) = An sin knxe−k
2
n t∕Cρ , (20.10)

where n can be any integer and An is an arbitrary constant. Because (20.4) is a
linear equation, the most general solution is a linear superposition of Xn(x)Tn(t)
products for all values of n:

T(x , t) =
∞∑
n=1

An sin knxe−k
2
n t∕Cρ . (20.11)

The coefficients An are determined by the initial condition that at time t = 0 the
entire bar has temperature T = 100K:

T(x , t = 0) = 100 ⇒
∞∑
n=1

An sin knx = 100 . (20.12)

Projecting the sine functions determines An = 4T0∕nπ for n odd, and so

T(x , t) =
∞∑

n=1,3,…

4T0

nπ
sin knxe−k

2
nKt∕(Cρ) . (20.13)

20.2.2
Solution: Time Stepping

As we did with Laplace’s equation, the numerical solution is based on convert-
ing the differential equation to a finite-difference (“difference”) equation. We dis-
cretize space and time on a lattice (Figure 20.2) and solve for solutions on the
lattice sites. The sites along the top with white centers correspond to the known
values of the temperature for the initial time, while the sites with white centers
along the sides correspond to the fixed temperature along the boundaries. If we
also knew the temperature for times along the bottom row, then we could use a
relaxation algorithm as we did for Laplace’s equation. However, with only the top
and side rows known,we shall end upwith an algorithm that steps forward in time
one row at a time, as in the children’s game leapfrog.

480 20 Heat Flow via Time Stepping

x

t
i,ji – 1,j i + 1,j

i,j + 1

Figure 20.2 The algorithm for the heat equa-
tion in which the temperature at the loca-
tion x= iΔx and time t= (j+1)Δt is computed
from the temperature values at three points of

an earlier time. The nodes with white centers
correspond to known initial and boundary
conditions (the boundaries are placed artifi-
cially close for illustrative purposes).

As is often the case with PDEs, the algorithm is customized for the equation
being solved and for the constraints imposed by the particular set of initial and
boundary conditions.With only one row of times to start with, we use a forward-
difference approximation for the time derivative of the temperature:

𝜕T(x , t)
𝜕t

≃ T(x , t + Δt) − T(x , t)
Δt

. (20.14)

Because we know the spatial variation of the temperature along the entire top row
and the left and right sides, we are less constrained with the space derivative as
with the time derivative. Consequently, as we did with the Laplace equation, we
use the more accurate central-difference approximation for the space derivative:

𝜕2T(x , t)
𝜕x2

≃ T(x + Δx , t) + T(x − Δx , t) − 2T(x , t)
(Δx)2

. (20.15)

Substitution of these approximations into (20.4) yields the heat difference equa-
tion

T(x , t + Δt) − T(x , t)
Δt

= K
Cρ

T(x + Δx , t) + T(x − Δx , t) − 2T(x , t)
Δx2

.

(20.16)

We reorder (20.16) into a form in which T can be stepped forward in t:

Ti, j+1 = Ti, j + η
[
Ti+1, j + Ti−1, j − 2Ti, j

]
, η = KΔt

CρΔx2
, (20.17)

where x = iΔx and t = jΔt. This algorithm is explicit because it provides a so-
lution in terms of known values of the temperature. If we tried to solve for the
temperature at all lattice sites in Figure 20.2 simultaneously, then we would have
an implicit algorithm that requires us to solve equations involving unknown val-
ues of the temperature. We see that the temperature at space–time point (i, j + 1)

48120.2 The Parabolic Heat Equation (Theory)

is computed from the three temperature values at an earlier time j and at adja-
cent space values i ± 1, i. We start the solution at the top row, moving it forward
in time for as long as we want and keeping the temperature along the ends fixed
at 0K (Figure 20.2).

20.2.3
von Neumann Stability Assessment

When we solve a PDE by converting it to a difference equation, we hope that the
solution of the latter is a good approximation to the solution of the former. If the
difference-equation solution diverges, then we know we have a bad approxima-
tion, but if it converges, then we may feel confident that we have a good approxi-
mation to the PDE. The von Neumann stability analysis is based on the assump-
tion that eigenmodes of the difference equation can be expressed as

Tm, j = ξ(k) jeikmΔx , (20.18)

where x=mΔx and t = jΔt, and i=
√
−1 is the imaginary number. The constant k

in (20.18) is an unknown wave vector (2π∕λ), and ξ(k) is an unknown complex
function. View (20.18) as a basis function that oscillates in space (the exponential)
with an amplitude or amplification factor ξ(k) j that increases by a power of ξ for
each time step. If the general solution to the difference equation can be expanded
in terms of these eigenmodes, then the general solution will be stable if the eigen-
modes are stable. Clearly, for an eigenmode to be stable, the amplitude ξ cannot
grow in time j, which means |ξ(k)| < 1 for all values of the parameter k (Press et
al., 1994; Ancona, 2002).
Application of a stability analysis is more straightforward than it might appear.

We just substitute expression (20.18) into the difference equation (20.17):

ξ j+1eikmΔx = ξ j+eikmΔx

+ η
[
ξ jeik(m+1)Δx + ξ j+eik(m−1)Δx − 2ξ j+eikmΔx] . (20.19)

After canceling some common factors, it is easy to solve for ξ:

ξ(k) = 1 + 2η[cos(kΔx) − 1] . (20.20)

In order for |ξ(k)| < 1 for all possible k values, we must have

η = KΔt
CρΔx2

<
1
2
. (20.21)

This equation tells us that if we make the time step Δt smaller, we will always
improve the stability, as we would expect. But if we decrease the space step Δx
without a simultaneous quadratic increase in the time step, we will worsen the
stability. The lack of space–time symmetry arises fromour use of stepping in time,
but not in space.

482 20 Heat Flow via Time Stepping

In general, you should perform a stability analysis for every PDE you have to
solve, although it can get complicated (Press et al., 1994). Yet even if you do
not, the lesson here is that you may have to try different combinations of Δx
and Δt variations until a stable, reasonable solution is obtained. You may expect,
nonetheless, that there are choices for Δx and Δt for which the numerical solu-
tion fails and that simply decreasing an individual Δx or Δt, in the hope that this
will increase precision, may not improve the solution.

Listing 20.1 EqHeat.py solves the 1D space heat equation on a lattice by leapfrogging (time-
stepping) the initial conditions forward in time. You will need to adjust the parameters to ob-
tain a solution like those in the figures.

EqHeat . py : so lves heat equation v ia f i n i t e d if ferences , 3D plot

from numpy import *
import matp lo t l i b . py lab as p
from mpl_ too l k i t s . mplot3d import Axes3D

Nx = 101 ; Nt = 3000 ; Dx = 0 . 0 3 ; Dt = 0 .9
KAPPA = 210 . ; SPH = 900 . ; RHO = 2700 . # Conductivity , specf heat , density
T = zeros ((Nx, 2) , f l o a t) ; Tpl = zeros ((Nx, 31) , f l o a t)

pr in t ("Working , wait f o r f i g ur e a f t e r count to 10")

f o r i x in range (1 , Nx − 1) : T[ix , 0] = 100 . 0 ; # I n i t i a l T
T[0 , 0] = 0 .0 ; T[0 , 1] = 0 . # 1 s t & l a s t T = 0
T[Nx−1 ,0] = 0 . ; T[Nx−1 ,1] = 0 .0
cons = KAPPA/ (SPH*RHO) *Dt / (Dx*Dx) ; # constant
m = 1 # counter

f o r t in range (1 , Nt) :
f o r i x in range (1 , Nx − 1) :

T[ix , 1] = T[ix , 0] + cons * (T[i x +1 , 0] + T[ix −1 , 0] − 2 . *T[ix , 0])
i f t%300 == 0 or t == 1 : # Every 300 steps

f o r i x in range (1 , Nx − 1 , 2) : Tpl [ix , m] = T[ix , 1]
pr in t (m)
m = m + 1

f o r i x in range (1 , Nx − 1) : T[ix , 0] = T[ix , 1]
x = l i s t (range (1 , Nx − 1 , 2)) # Plot a l t e rna t e pts
y = l i s t (range (1 , 30))
X, Y = p . meshgrid (x , y)

de f functz (Tpl) :
z = Tpl [X, Y]
re turn z

Z = functz (Tpl)
f i g = p . f i g u r e () # Create f igure
ax = Axes3D (f i g)
ax . p lot_wire frame (X, Y , Z , co l o r = ’ r ’)
ax . s e t _ x l a b e l (’ Pos i t ion ’)
ax . s e t _ y l a b e l (’ time ’)
ax . s e t _ z l a b e l (’ Temperature ’)
p . show ()
pr in t (" f in i shed ")

48320.3 Assessment and Visualization

20.2.4
Heat Equation Implementation

Recall that we want to solve for the temperature distribution within an aluminum
bar of length L = 1 m subject to the boundary and initial conditions

T(x = 0, t) = T(x = L , t) = 0K , T(x , t = 0) = 100K . (20.22)

The thermal conductivity, specific heat, and density for Al are

K = 237W∕(mK) , C = 900 J∕(kgK) , ρ = 2700 kg∕m3 . (20.23)

1. Write or modify EqHeat.py in Listing 20.1 to solve the heat equation.
2. Define a 2D array T[101,2] for the temperature as a function of space and time.

The first index is for the 100 space divisions of the bar, and the second index is
for present and past times (because you may have to make thousands of time
steps, you save memory by saving only two times).

3. For time t = 0 (j = 1), initialize T so that all points on the bar except the ends
are at 100K. Set the temperatures of the ends to 0K.

4. Apply (20.14) to obtain the temperature at the next time step.
5. Assign the present-time values of the temperature to the past values: T[i,1] =

T[i,2], i = 1,...,101.
6. Start with 50 time steps.Once you are confident the program is running prop-

erly, use thousands of steps to see the bar cool smoothlywith time. For approx-
imately every 500 time steps, print the time and temperature along the bar.

20.3
Assessment and Visualization

1. Check that yourprogramgives a temperature distribution that varies smoothly
along the bar and agrees with the boundary conditions, as in Figure 20.3.

80

80

40

010

0

0

t

T

x

Figure 20.3 A numerical calculation of the temperature vs. position and vs. time, with
isotherm contours projected onto the horizontal plane.

484 20 Heat Flow via Time Stepping

2. Check that yourprogramgives a temperature distribution that varies smoothly
with time and reaches equilibrium. You may have to vary the time and space
steps to obtain stable solutions.

3. Compare the analytic and numeric solutions (and the wall times needed to
compute them). If the solutions differ, suspect the one that does not appear
smooth and continuous.

4. Make a surface plot of temperature vs. position vs. time.
5. Plot the isotherms (contours of constant temperature).
6. Stability test: Verify the stability condition (20.21) by observing how the tem-

perature distribution diverges if η > 1∕4.
7. Material dependence: Repeat the calculation for iron. Note that the stability

condition requires you to change the size of the time step.
8. Initial sinusoidal distribution sin(πx∕L): Compare to the analytic solution,

T(x , t) = sin
(πx

L

)
e−π2Kt∕(L2Cρ) . (20.24)

9. Two bars in contact:Two identical bars 0.25m long are placed in contact along
one of their ends with their other ends kept at 0 K. One is kept in a heat bath
at 100K, and the other at 50K. Determine how the temperature varies with
time and location (Figure 20.4).

10. Radiating bar (Newton’s cooling): Imagine now that instead of being insulated
along its length, a bar is in contact with an environment at a temperature Te.
Newton’s law of cooling (radiation) says that the rate of temperature change
as a result of radiation is

𝜕T
𝜕t

= −h(T − Te) , (20.25)

where h is a positive constant. This leads to the modified heat equation

𝜕T(x , t)
𝜕t

= K
Cρ

𝜕2T
𝜕2x

− hT(x , t) . (20.26)

Modify the algorithm to includeNewton’s cooling and compare the cooling of
a radiating bar with that of the insulated bar.

20.4
Improved Heat Flow: Crank–Nicolson Method

The Crank–Nicolson method (Crank and Nicolson, 1946) provides a higher de-
gree of precision for the heat equation (20.3) than the simple leapfrogmethod we
have just discussed. This method calculates the time derivative with a central-
difference approximation, in contrast to the forward-difference approximation
used previously. In order to avoid introducing error for the initial time step where

48520.4 Improved Heat Flow: Crank–NicolsonMethod

0

40

80 0

20

40
0

50

100

x

t

T(x,t)

Figure 20.4 Temperature vs. position and time when two bars at differing temperatures are
placed in contact at t = 0. The projected contours show the isotherms.

only a single time value is known, the method uses a split time step,1) so that time
is advanced from time t to t + Δt∕2:

𝜕T
𝜕t

(
x , t + Δt

2

)
≃ T(x , t + Δt) − T(x , t)

Δt
+ O(Δt2) . (20.27)

Yes, we know that this looks just like the forward-difference approximation for
the derivative at time t + Δt, for which it would be a bad approximation; re-
gardless, it is a better approximation for the derivative at time t + Δt∕2, al-
though it makes the computation more complicated. Likewise, in (20.14) we gave
the central-difference approximation for the second space derivative for time t.
For t = t + Δt∕2, that becomes

2(Δx)2 𝜕
2T
𝜕x2

(
x , t + Δt

2

)
≃ + [T(x − Δx , t) − 2T(x , t) + T(x + Δx , t)]

+ [T(x − Δx , t + Δt) − 2T(x , t + Δt) + T(x + Δx , t + Δt)] + O(Δx2) .
(20.28)

In terms of these expressions, the heat difference equation is

Ti, j+1 − Ti, j =
η
2
[
Ti−1, j+1 − 2Ti, j+1 + Ti+1, j+1 + Ti−1, j − 2Ti, j + Ti+1, j

]
,

x = iΔx , t = jΔt , η = KΔt
CρΔx2

. (20.29)

We group together terms involving the same temperature to obtain an equation
with future times on the LHS and present times on the RHS:

−Ti−1, j+1 +
(
2
η
+ 2

)
Ti, j+1 − Ti+1, j+1 = Ti−1, j +

(
2
η
− 2

)
Ti, j + Ti+1, j .

(20.30)

1) In Section 22.2.1 we develop a different split-time algorithm for the solution of the Schrödinger
equation. There the real and imaginary parts of the wave function are computed at times that
differ by Δt∕2.

486 20 Heat Flow via Time Stepping

This equation represents an implicit scheme for the temperature Ti, j , where the
word “implicit” means that we must solve simultaneous equations to obtain the
full solution for all space. In contrast, an explicit scheme requires iteration to ar-
rive at the solution. It is possible to solve (20.30) simultaneously for all unknown
temperatures (1≤ i ≤ N) at times j and j+1.We start with the initial temperature
distribution throughout all of space, the boundary conditions at the ends of the
bar for all times, and the approximate values from the first derivative:

Ti,0 , known , T0, j , known , TN , j , known ,

T0, j+1 = T0, j = 0 , TN , j+1 = 0 , TN , j = 0 . (20.31)

We rearrange (20.30) so that we can use these known values of T to step the j =
0 solution forward in time by expressing (20.30) as a set of simultaneous linear
equations (in the matrix form):

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
2
η
+ 2

)
−1

−1
(

2
η
+ 2

)
−1

−1
(

2
η
+ 2

)
−1

⋱ ⋱ ⋱

−1
(

2
η
+ 2

)
−1

−1
(

2
η
+ 2

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

T1, j+1

T2, j+1

T3, j+1)

⋮

Tn−2, j+1

Tn−1, j+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T0, j+1 + T0, j +
(

2
η
− 2

)
T1, j + T2, j

T1, j +
(

2
η
− 2

)
T2, j + T3, j

T2, j +
(

2
η
− 2

)
T3, j + T4, j

⋮

Tn−3, j +
(

2
η
− 2

)
Tn−2, j + Tn−1, j

Tn−2, j +
(

2
η
− 2

)
Tn−1, j + Tn, j + Tn, j+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(20.32)

Observe that the Ts on the RHS are all at the present time j for various posi-
tions, and at future time j + 1 for the two ends (whose Ts are known for all times
via the boundary conditions). We start the algorithm with the Ti, j=0 values of the
initial conditions, then solve amatrix equation to obtainTi, j=1.With thatwe know
all the terms on the RHS of the equations (j = 1 throughout the bar and j = 2 at
the ends) and so can repeat the solution of the matrix equations to obtain the
temperature throughout the bar for j = 2. So again, we time-step forward, only
now we solve matrix equations at each step. That gives us the spatial solution at
all locations directly.
Not only is the Crank–Nicolsonmethodmore precise than the low-order time-

stepping method, but it also is stable for all values of Δt and Δx. To prove that,
we apply the von Neumann stability analysis discussed in Section 20.2.3 to the

48720.4 Improved Heat Flow: Crank–NicolsonMethod

Crank–Nicolson algorithm by substituting (20.17) into (20.30). This determines
an amplification factor

ξ(k) =
1 − 2η sin2(kΔx∕2)
1 + 2η sin2(kΔx∕2)

. (20.33)

Because sin2() is positive definite, this proves that |ξ| ≤ 1 for all Δt, Δx, and k.

20.4.1
Solution of Tridiagonal Matrix Equations⊙

The Crank–Nicolson equations (20.32) are in the standard [A]x = b form for lin-
ear equations, and so we can use our previous methods to solve them. Nonethe-
less, because the coefficientmatrix [A] is tridiagonal (zero elements except for the
main diagonal and two diagonals on either side of it),

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 c1 0 0 ⋯ ⋯ ⋯ 0
a2 d2 c2 0 ⋯ ⋯ ⋯ 0
0 a3 d3 c3 ⋯ ⋯ ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋯ aN−1 dN−1 cN−1

0 0 0 0 ⋯ 0 aN dN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
⋱

xN−1

xN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
b2
b3
⋱

bN−1

bN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(20.34)

a more robust and faster solution exists that makes this implicit method as fast as
an explicit one. Because tridiagonal systems occur frequently, we now outline the
specialized technique for solving them (Press et al., 1994). If we store the matrix
elements ai, j using both subscripts, then we will need N2 locations for elements
and N2 operations to access them. However, for a tridiagonal matrix, we need
to store only the vectors {di}i=1,N , {ci}i=1,N , and {ai}i=1,N , along, above, and be-
low the diagonals. The single subscripts on ai , di , and ci reduce the processing
from N2 to (3N − 2) elements.
We solve thematrix equation bymanipulating the individual equations until the

coefficient matrix is upper triangular with all the elements of the main diagonal
equal to 1. We start by dividing the first equation by d1, then subtract a2 times
the first equation,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 c1
d1

0 0 ⋯ ⋯ ⋯ 0

0 d2 −
a2c1
d1

c2 0 ⋯ ⋯ ⋯ 0

0 a3 d3 c3 ⋯ ⋯ ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋯ aN−1 dN−1 cN−1

0 0 0 0 ⋯ 0 aN dN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
⋱

⋯

xN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
d1

b2 −
a2b1
d1

b3
⋱

⋯

bN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(20.35)

488 20 Heat Flow via Time Stepping

and then dividing the second equation by the second diagonal element,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 c1
d1

0 0 ⋯ ⋯ ⋯ 0

0 1 c2
d2−a2

c1
a1

0 ⋯ ⋯ ⋯ 0

0 a3 d3 c3 ⋯ ⋯ ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 ⋯ aN−1 dN−1 cN−1

0 0 0 0 ⋯ 0 aN dN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
⋱

⋯

xN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
d1

b2−a2
b1
d1

d2−a2
c1
d1

b3
⋱

⋯

bN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(20.36)

Assuming that we can repeat these stepswithout ever dividing by zero, the system
of equations will be reduced to upper triangular form,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 h1 0 0 ⋯ 0
0 1 h2 0 ⋯ 0
0 0 1 h3 ⋯ 0
0 ⋯ ⋯ ⋱ ⋱ ⋯

0 0 0 0 ⋯ ⋯

0 0 0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
⋱

⋯

xN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1
p2
p3
⋱

⋯

pN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (20.37)

where h1 = c1∕d1 and p1 = b1∕d1. We then recur for the others elements:

hi =
ci

di − aihi−1
, pi =

bi − ai pi−1
di − aihi−1

. (20.38)

Finally, back substitution leads to the explicit solution for the unknowns:

xi = pi − hixi−1 ; i = n − 1, n − 2,… , 1 , xN = pN . (20.39)

In Listing 20.2, we give the programHeatCNTridiag.py that solves the heat equation
using the Crank–Nicolson algorithm via a triadiagonal reduction.

Listing 20.2 HeatCNTridiag.py is the complete program for solution of the heat equation in
one space dimension and time via the Crank–Nicolsonmethod. The resulting matrix equations
are solved via a technique specialized to tridiagonal matrices.

HeatCNTridiag . py : so lut ion of heat eqtn v ia CN method

import matp lo t l i b . py lab as p ;
from mpl_ too l k i t s . mplot3d import Axes3D ;
from numpy import * ;
import numpy ;

Max = 51 ; n = 50 ; m = 50
Ta = zeros ((Max) , f l o a t) ; Tb =zeros ((Max) , f l o a t) ; Tc = zeros ((Max) , f l o a t)
Td = zeros ((Max) , f l o a t) ; a = zeros ((Max) , f l o a t) ; b = zeros ((Max) , f l o a t)
c = zeros ((Max) , f l o a t) ; d = zeros ((Max) , f l o a t) ; x = zeros ((Max) , f l o a t)

48920.4 Improved Heat Flow: Crank–NicolsonMethod

t = zeros ((Max , Max) , f l o a t)

de f Tr id i ag (a , d , c , b , Ta , Td , Tc , Tb , x , n) :
Max = 51
h = zeros ((Max) , f l o a t)
p = zeros ((Max) , f l o a t)
f o r i in range (1 , n+1) :

a [i] = Ta [i]
b [i] = Tb[i]
c [i] = Tc [i]
d [i] = Td[i]

h [1] = c [1] / d [1]
p [1] = b [1] / d [1]
f o r i in range (2 , n+1) :

h [i] = c [i] / (d [i]−a [i] * h [i −1])
p [i] = (b [i] − a [i] * p [i −1]) / (d [i]−a [i] * h [i −1])

x [n] = p [n]
f o r i in range (n − 1 , 1 ,−1) : x [i] = p [i] − h [i] * x [i +1]

width = 1 . 0 ; he ight = 0 . 1 ; c t = 1 .0
f o r i in range (0 , n) : t [i , 0] = 0 .0
f o r i in range (1 , m) : t [0] [i] = 0 .0
h = width / (n − 1)
k = he ight / (m − 1)
r = c t * c t * k / (h * h)

f o r j in range (1 ,m+1) :
t [1 , j] = 0 .0
t [n , j] = 0 .0 # BCs

f o r i in range (2 , n) : t [i] [1] = s in (p i * h * i) # ICs
f o r i in range (1 , n+1) : Td[i] = 2 . + 2 . / r
Td [1] = 1 . ; Td[n] = 1 .
f o r i in range (1 , n) : Ta [i] = −1 .0 ; Tc [i] = −1 .0 ; # Off diagonal
Ta[n−1] = 0 . 0 ; Tc [1] = 0 . 0 ; Tb [1] = 0 . 0 ; Tb[n] = 0 .0
pr in t (" I ’m working hard , wait f o r f i g while I count to 50")

f o r j in range (2 ,m+1) :
pr in t (j)
f o r i in range (2 , n) : Tb[i] = t [i −1][j −1] + t [i +1][j −1] \

+ (2 / r−2) * t [i] [j −1]
Tr id i ag (a , d , c , b , Ta , Td , Tc , Tb , x , n) # Solve system
f o r i in range (1 , n+1) : t [i] [j] = x [i]

pr in t (" Finished ")
x = l i s t (range (1 , m+1)) # Plot every other x
y = l i s t (range (1 , n+1)) # every other y
X, Y = p . meshgrid (x , y)

de f functz (t) : # Potent ia l
z = t [X, Y]
re turn z

Z = functz (t)
f i g = p . f i g u r e ()
ax = Axes3D (f i g)
ax . p lot_wire frame (X, Y , Z , co l o r= ’ r ’)
ax . s e t _ x l a b e l (’ t ’)
ax . s e t _ y l a b e l (’x ’)
ax . s e t _ z l a b e l (’T ’)
p . show () # Display f igure

490 20 Heat Flow via Time Stepping

20.4.2
Crank–Nicolson Implementation, Assessment

1. Write a program using the Crank–Nicolson method to solve for the heat flow
in the metal bar of Section 20.1 for at least 100 time steps.

2. Solve the linear systemof equations (20.32) using eitherMatplotlib or the spe-
cial tridiagonal algorithm.

3. Check the stability of your solution by choosing different values for the time
and space steps.

4. Construct a contoured surface plot of temperature vs. position and vs. time.
5. Compare the implicit and explicit algorithms used in this chapter for relative

precision and speed. Youmay assume that a stable answer that uses very small
time steps is accurate.

491

21
Wave Equations I: Strings and Membranes

In this chapter and in the next, we explore the numerical solution of several PDEs
that yield waves as solutions. If you have skipped the discussion of the heat equa-
tion in Chapter 20, then this chapter will be the first example of how initial condi-
tions are propagated forward in time with a time-stepping or leapfrog algorithm.
An important aspect of this chapter is its demonstration that once you have a
working algorithm for solving awave equation, you can include considerablymore
physics than is possible with analytic treatments. First, we deal with a number of
aspects of 1D waves on a string, and then with 2D waves on a membrane. In the
next chapter, we look at quantum wave packets and E&M waves. In Chapter 24, we
look at shock and solitary waves.

21.1
A Vibrating String

Problem Recall the demonstration from elementary physics in which a string
tied down at both ends is plucked “gently” at one location and a pulse is observed
to travel along the string. Likewise, if the string has one end free and you shake
it just right, a standing-wave pattern is set up in which the nodes remain in place
and the antinodes move just up and down. Your problem is to develop an accurate
model for wave propagation on a string, and to see if you can set up traveling- and
standing-wave patterns.1)

21.2
The Hyperbolic Wave Equation (Theory)

Consider a string of length L tied down at both ends (Figure 21.1a). The string
has a constant density ρ per unit length, a constant tension T , no frictional forces
acting on it, and a tension that is so high that we may ignore sagging as a result of

1) Some similar but independent studies can also be found in Rawitscher et al. (1996).

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

492 21 Wave Equations I: Strings andMembranes

L

T

T

y(x,t)

x

Δx

Δy

θ

(a) (b)

Figure 21.1 (a) A stretched string of length L
tied down at both ends and under high
enough tension so that we can ignore grav-
ity. The vertical disturbance of the string from

its equilibrium position is y(x , t). (b) A differ-
ential element of the string showing how the
string’s displacement leads to the restoring
force.

gravity.We assume that the displacement of the string from its rest position y(x , t)
is in the vertical direction only and that it is a function of the horizontal location
along the string x and the time t.
To obtain a simple linear equation of motion (nonlinear wave equations are

discussed in Chapters 24 and 25, we assume that the string’s relative displace-
ment y(x , t)∕L and slope 𝜕 y∕𝜕x are small. We isolate an infinitesimal section Δx
of the string (Figure 21.1b) and see that the difference in the vertical components
of the tension at either end of the string produces the restoring force that acceler-
ates this section of the string in the vertical direction. By applying Newton’s laws
to this section, we obtain the familiar wave equation:∑

Fy = ρΔx
𝜕2 y
𝜕t2

, (21.1)

= T sin θ(x + Δx) − T sin θ(x) (21.2)

= T
𝜕 y
𝜕x

||||x+Δx − T
𝜕 y
𝜕x

||||x ≃ T
𝜕2 y
𝜕x2

(21.3)

⇒
𝜕2 y(x , t)

𝜕x2
= 1

c2
𝜕2 y(x , t)

𝜕t2
, c =

√
T
ρ

, (21.4)

where we have assumed that θ is small enough for sin θ ≃ tan θ = 𝜕 y∕𝜕x. The
existence of two independent variables x and t makes this a PDE. The constant c
is the velocity with which a disturbance travels along the wave, and is seen to
decrease for a denser string and increase for a tighter one. Note that this signal
velocity c is not the same as the velocity of a string element 𝜕 y∕𝜕t.
The initial condition for our problem is that the string is plucked gently and

released. We assume that the “pluck” places the string in a triangular shape with
the center of triangle 8/10 of the way down the string and with a height of 1:

y(x , t = 0) =

{
1.25x∕L , x ≤ 0.8L ,
(5 − 5x∕L) , x > 0.8L ,

(initial condition 1) . (21.5)

Because (21.4) is second order in time, a second initial condition (beyond initial
displacement) is needed to determine the solution. We interpret the “gentleness”

49321.2 TheHyperbolic Wave Equation (Theory)

of the pluck to mean that the string is released from rest:

𝜕 y
𝜕t

(x , t = 0) = 0 (initial condition 2) . (21.6)

The boundary conditions have both ends of the string tied down for all times:

y(0, t) ≡ 0 , y(L , t) ≡ 0 (boundary conditions). (21.7)

21.2.1
Solution via Normal-Mode Expansion

The analytic solution to (21.4) is obtained via the familiar separation-of-variables
technique. We assume that the solution is the product of a function of space and
a function of time:

y(x , t) = X(x)T(t) . (21.8)

We substitute (21.8) into (21.4), divide by y(x , t), and are left with an equation
that has a solution only if there are solutions to the two ODEs:

d2T(t)
dt2

+ ω2T(t) = 0 , d2X(x)
dx2

+ k2X(x) = 0 , k
def
= ω

c
. (21.9)

The angular frequency ω and the wave vector k are determined by demanding
that the solutions satisfy the boundary conditions. Specifically, the string being
attached at both ends demands

X(x = 0, t) = X(x = l, t) = 0 (21.10)

⇒ Xn(x) = An sin knx , kn = π(n + 1)
L

, n = 0, 1,… (21.11)

The time solution is

Tn(t) = Cn sin ωnt + Dn cosωnt , ωn = nck0 = n2πc
L

, (21.12)

where the frequency of this nth normal mode is also fixed. In fact, it is the single
frequency of oscillation that defines a normal mode. The initial condition (21.5)
of zero velocity, 𝜕 y∕𝜕t(t = 0) = 0, requires the Cn values in (21.12) to be zero.
Putting the pieces together, the normal-mode solutions are

yn(x , t) = sin knx cosωnt , n = 0, 1,… (21.13)

Because the wave equation (21.4) is linear in y, the principle of linear superpo-
sition holds and the most general solution for waves on a string with fixed ends
can be written as the sum of normal modes:

y(x , t) =
∞∑
n=0

Bn sin knx cosωnt . (21.14)

494 21 Wave Equations I: Strings andMembranes

(Yet wewill lose linear superposition once we include nonlinear terms in the wave
equation.) The Fourier coefficient Bn is determined by the second initial condi-
tion (21.5), which describes how the wave is plucked:

y(x , t = 0) =
∞∑
n

Bn sin nk0x . (21.15)

We multiply both sides by sinmk0x, substitute the value of y(x , 0) from (21.5),
and integrate from 0 to l to obtain

Bm = 6.25 sin(0.8mπ)
m2π2 . (21.16)

You will be asked to compare the Fourier series (21.14) to our numerical solution.
While it is in the nature of the approximation that the precision of the numerical
solution depends on the choice of step sizes, it is also revealing to realize that
the precision of the so-called analytic solution depends on summing an infinite
number of terms, which can be carried out only approximately.

21.2.2
Algorithm: Time Stepping

As with Laplace’s equation and the heat equation, we look for a solution y(x , t)
only for discrete values of the independent variables x and t on a grid (Figure 21.2):

x = iΔx , i = 1,… ,Nx , t = jΔt , j = 1,… ,Nt , (21.17)

y(x , t) = y(iΔx , iΔt)
def
= yi, j . (21.18)

In contrast to Laplace’s equation where the grid was in two space dimensions, the
grid in Figure 21.2 is in both space and time. That being the case, moving across
a row corresponds to increasing x values along the string for a fixed time, while
moving down a column corresponds to increasing time steps for a fixed position.
Although the grid in Figure 21.2 may be square, we cannot use a relaxation tech-
nique like we did for the solution of Laplace’s equation because we do not know
the solution on all four sides. The boundary conditions determine the solution
along the right- and left-sides, while the initial time condition determines the so-
lution along the top.
As with the Laplace equation, we use the central-difference approximation to

discretize the wave equation into a difference equation. First, we express the sec-
ond derivatives in terms of finite differences:

𝜕2 y
𝜕t2

≃
yi, j+1 + yi, j−1 − 2yi, j

(Δt)2
,

𝜕2 y
𝜕x2

≃
yi+1, j + yi−1, j − 2yi, j

(Δx)2
. (21.19)

Substituting (21.19) in the wave equation (21.4) yields the difference equation

yi, j+1 + yi, j−1 − 2yi, j
c2(Δt)2

=
yi+1, j + yi−1, j − 2yi, j

(Δx)2
. (21.20)

49521.2 TheHyperbolic Wave Equation (Theory)

X

i, j
t

i – 1, j i + 1, j

i, j – 1

i, j + 1

Figure 21.2 The solutions of the wave equation for four earlier space–time points are used to
obtain the solution at the present time. The boundary and initial conditions are indicated by
the white-centered dots.

Note that this equation contains three time values: j + 1 = the future, j = the
present, and j − 1 = the past. Consequently, we rearrange it into a form that per-
mits us to predict the future solution from the present and past solutions:

yi, j+1 = 2yi, j − yi, j−1 +
c2
c′ 2

[
yi+1, j + yi−1, j − 2yi, j

]
, c′

def
= Δx

Δt
. (21.21)

Here c′ is a combination of numerical parameters with the dimension of veloc-
ity whose size relative to c determines the stability of the algorithm. The algo-
rithm (21.21) propagates the wave from the two earlier times, j and j − 1, and
from three nearby positions, i − 1, i, and i + 1, to a later time j + 1 and a single
space position i (Figure 21.2).
As you have seen in our discussion of the heat equation, a leapfrog method is

quite different from a relaxation technique. We start with the solution along the
topmost row and then move down one step at a time. If we write the solution
for present times to a file, then we need to store only three time values on the
computer, which savesmemory. In fact, because the time stepsmust be quite small
to obtain high precision, you may want to store the solution only for every fifth or
tenth time.
Initializing the recurrence relation is a bit tricky because it requires displace-

ments from two earlier times, whereas the initial conditions are for only one time.
Nonetheless, the rest condition (21.5) when combined with the central-difference
approximation lets us extrapolate to negative time:

𝜕 y
𝜕t

(x , 0) ≃
y(x , Δt) − y(x ,−Δt)

2Δt
= 0 ⇒ yi,0 = yi,2 . (21.22)

Here we take the initial time as j = 1, and so j = 0 corresponds to t = −Δt. Sub-
stituting this relation into (21.21) yields for the initial step

yi,2 = yi,1 +
c2
2c′ 2

[yi+1,1 + yi−1,1 − 2yi,1] (for j = 2 only) . (21.23)

496 21 Wave Equations I: Strings andMembranes

Equation 21.23 uses the solution throughout all space at the initial time t = 0 to
propagate (leapfrog) it forward to a time Δt. Subsequent time steps use (21.21)
and are continued for as long as you like.
As is also true with the heat equation, the success of the numerical method de-

pends on the relative sizes of the time and space steps. If we apply a vonNeumann
stability analysis to this problem by substituting ym, j = ξ j exp(ikm Δx), as we did
in Section 20.2.3, a complicated equation results. Nonetheless, Press et al. (1994)
shows that the difference-equation solution will be stable for the general class of
transport equations if (Courant et al., 1928)

c ≤ c′ = Δx
Δt

(Courant condition) . (21.24)

Equation 21.24 means that the solution gets better with smaller time steps but
gets worse for smaller space steps (unless you simultaneously make the time step
smaller). Having different sensitivities to the time and space stepsmay appear sur-
prising because thewave equation (21.4) is symmetric in x and t; yet the symmetry
is broken by the nonsymmetric initial and boundary conditions.

Exercise Figure out a procedure for solving for the wave equation for all times in
just one step. Estimate how much memory would be required.

Exercise Try to figure out a procedure for solving for the wave motion with a
relaxation technique. What would you take as your initial guess, and how would
you know when the procedure has converged?

21.2.3
Wave Equation Implementation

The program EqStringAnimate.py in Listing 21.1 solves the wave equation for a
string of length L = 1 m with its ends fixed and with the gently plucked initial
conditions. Note that our use of L = 1 violates our assumption that y∕L ≪ 1 but
makes it easy to display the results; you should try L = 1000 to be realistic. The
values of density and tension are entered as constants, ρ = 0.01 kg∕m and T =
40N, with the space grid set at 101 points, corresponding to Δ = 0.01 cm.

Listing 21.1 EqStringAnimate.py solves the wave equation via time stepping for a string of
length L = 1mwith its ends fixed and with the gently plucked initial conditions. You will need
to modify this code to include new physics.

EqStringAnimate . py : Animated leapfrog solut ion of wave equation

from v i s u a l import *

Set up curve
g = d i s p l a y (width = 600 , he ight = 300 , t i t l e = ’ Vibrating s t r ing ’)
v i b s t = curve (x = l i s t (range (0 , 100)) , co l o r = co lo r . ye l low)
b a l l 1 = sphere (pos = (100 , 0) , co lo r = co lo r . red , r ad iu s = 2)
b a l l 2 = sphere (pos = (− 100 , 0) , co lo r = co lo r . red , r ad iu s = 2)
b a l l 1 . pos

49721.2 TheHyperbolic Wave Equation (Theory)

b a l l 2 . pos
v i b s t . r ad iu s = 1 .0

Parameters
rho = 0.01
ten = 40 .
c = sq r t (ten / rho)
c1 = c # CFL criterium
r a t i o = c * c / (c1 * c1)

In i t i a l i z a t i on
x i = zeros ((1 0 1 , 3) , f l o a t)
f o r i in range (0 , 81) : x i [i , 0] = 0 .00125* i ;
f o r i in range (81 , 101) : x i [i , 0] = 0 .1 − 0 . 0 0 5 * (i − 80)
f o r i in range (0 , 100) : # 1s t t step

v i b s t . x [i] = 2 . 0 * i − 100 .0
v i b s t . y [i] = 300 . * x i [i , 0]

v i b s t . pos # Draw s t r ing

Later time steps
f o r i in range (1 , 100) : x i [i , 1] = x i [i , 0] +

0 . 5 * r a t i o * (x i [i +1 ,0]+ x i [i −1 ,0]−2* x i [i , 0])
whi le 1 :

r a t e (50) # Plot t ing delay
f o r i in range (1 , 100) :

x i [i , 2] = 2 . * x i [i , 1] − x i [i , 0] + r a t i o *
(x i [i +1 ,1]+ x i [i −1 ,1]−2* x i [i , 1])

f o r i in range (1 , 100) :
v i b s t . x [i] = 2 . * i − 100 .0 # Scale for plot
v i b s t . y [i] = 300 . * x i [i , 2]

v i b s t . pos
f o r i in range (0 , 101) :

x i [i , 0] = x i [i , 1]
x i [i , 1] = x i [i , 2]

pr in t ("Done ! ")

21.2.4
Assessment, Exploration

1. Solve the wave equation and make a surface plot of displacement vs. time and
position.

2. Explore a number of space and time step combinations. In particular, try steps
that satisfy and that do not satisfy the Courant condition (21.24). Does your
exploration confirm the stability condition?

3. Compare the analytic and numeric solutions, summing at least 200 terms in
the analytic solution.

4. Use the plotted time dependence to estimate the peak’s propagation velocity c.
Compare the deduced c to (21.4).

5. Our solution of the wave equation for a plucked string leads to the formation
of a wave packet that corresponds to the sum of multiple normal modes of
the string. On the right in Figure 21.3 we show the motion resulting from the
string initially placed in a single normal mode (standing wave),

y(x , t = 0) = 0.001 sin 2πx ,
𝜕 y
𝜕t

(x , t = 0) = 0 , (21.25)

498 21 Wave Equations I: Strings andMembranes

Figure 21.3 The vertical displacement as a function of position x and time t for a string ini-
tially placed in a standing mode when friction is included. Notice how the wave moves up and
down with time (courtesy of J. Wiren).

but with friction (to be discussed soon) included.
Modify your program to incorporate this initial condition and see if a normal
mode results.

6. Observe the motion of the wave for initial conditions corresponding to the
sum of two adjacent normal modes. Does beating occur?

7. When a string is plucked near its end, a pulse reflects off the ends and bounces
back and forth. Change the initial conditions of the model program to one
corresponding to a string plucked exactly in its middle and see if a traveling
or a standing wave results.

8. Figure 21.4 shows the wave packets that result as a function of time for initial
conditions corresponding to the double pluck. Verify that initial conditions of
the form

y(x , t = 0)
0.005

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 , 0.0 ≤ x ≤ 0.1 ,
10x − 1 , 0.1 ≤ x ≤ 0.2 ,
−10x + 3 , 0.2 ≤ x ≤ 0.3 ,
0 , 0.3 ≤ x ≤ 0.7 ,
10x − 7 , 0.7 ≤ x ≤ 0.8 ,
−10x + 9 , 0.8 ≤ x ≤ 0.9 ,
0 , 0.9 ≤ x ≤ 1.0

(21.26)

lead to this type of a repeating pattern. In particular, observe whether the
pulses move or just oscillate up and down.

49921.3 Stringswith Friction (Extension)

y(x,t)

t

x

0

Initial Pulses

Figure 21.4 The vertical displacement as a
function of position and time of a string ini-
tially plucked simultaneously at two points, as
shown by arrows. Note that each initial peak
breaks up into waves traveling to the right

and to the left. The traveling waves invert on
reflection from the fixed ends. As a conse-
quence of these inversions, the t ≃ 12 wave is
an inverted t = 0 wave.

21.3
Strings with Friction (Extension)

The string problemwe have investigated so far can be handled by either a numer-
ical or an analytic technique. We now wish to extend the theory to include some
more realistic physics. These extensions have only numerical solutions.

Plucked strings do not vibrate forever because there is friction in the real world.
Consider again the element of a string between x and x + dx (Figure 21.1b) but
now imagine that this element is moving in a viscous fluid such as air. An ap-
proximatemodel for the frictional force has it pointing in a direction opposite the
vertical velocity of the string and proportional to that velocity, as well as propor-
tional to the length of the string element:

Ff ≃ −2κΔx
𝜕 y
𝜕t

, (21.27)

where κ is a constant that is proportional to the viscosity of the medium in which
the string is vibrating. Including this force in the equation of motion changes the
wave equation to

𝜕2 y
𝜕t2

= c2
𝜕2 y
𝜕x2

− 2κ
ρ

𝜕 y
𝜕t

. (21.28)

500 21 Wave Equations I: Strings andMembranes

In Figure 21.3, we show the resulting motion of a string plucked in the middle
when friction is included. Observe how the initial pluck breaks up into waves
traveling to the right and to the left that are reflected and inverted by the fixed
ends. Because those parts of the wave with the higher velocity experience greater
friction, the peak tends to be smoothed out the most as time progresses.

Exercise Generalize the algorithm used to solve the wave equation now to in-
clude friction and check if the wave’s behavior seems physical (damps in time).
Start with T = 40N and ρ = 10 kg∕m, and pick a value of κ large enough to cause
a noticeable effect but not so large as to stop the oscillations. As a check, reverse
the sign of κ and see if the wave grows in time (which would eventually violate our
assumption of small oscillations).

21.4
Strings with Variable Tension and Density

We have derived the propagation velocity for waves on a string as c =
√
T∕ρ.

This says that waves move slower in regions of high density and faster in regions
of high tension. If the density of the string varies, for instance, by having the ends
thicker in order to support the weight of the middle, then c will no longer be
a constant and our wave equation will need to be extended. In addition, if the
density increases, so will the tension because it takes greater tension to accelerate
a greater mass. If gravity acts, then we will also expect the tension at the ends
of the string to be higher than in the middle because the ends must support the
entire weight of the string.
To derive the equation for wave motion with variable density and tension, con-

sider again the element of a string (Figure 21.1b) used in our derivation of thewave
equation. If we do not assume the tensionT is constant, thenNewton’s second law
gives

F = ma (21.29)

⇒
𝜕

𝜕x

[
T(x)

𝜕 y(x , t)
𝜕x

]
Δx = ρ(x)Δx 𝜕

2u(x , t)
𝜕t2

(21.30)

⇒
𝜕T(x)
𝜕x

𝜕 y(x , t)
𝜕x

+ T(x)
𝜕2 y(x , t)

𝜕x2
= ρ(x)

𝜕2 y(x , t)
𝜕t2

. (21.31)

If ρ(x) and T(x) are known functions, then these equations can be solved with
just a small modification of our algorithm.
In Section 21.4.1, we will solve for the tension in a string as a result of gravity.

Readers interested in an alternate easier problem that still shows the new physics
may assume that the density and tension are proportional:

ρ(x) = ρ0eαx , T(x) = T0eαx . (21.32)

50121.4 Stringswith Variable Tension and Density

Whilewewould expect the tension to be greater in regions of higher density (more
mass to move and support), being proportional is clearly just an approximation.
Substitution of these relations into (21.31) yields the new wave equation:

𝜕2 y(x , t)
𝜕x2

+ α
𝜕 y(x , t)

𝜕x
= 1

c2
𝜕2 y(x , t)

𝜕t2
, c2 =

T0

ρ0
. (21.33)

Here c is a constant that would be the wave velocity if α = 0. This equation is
similar to the wave equation with friction; only now the first derivative is with
respect to x and not t. The corresponding difference equation follows from using
central-difference approximations for the derivatives:

yi, j+1 = 2yi, j − yi, j−1 +
αc2(Δt)2

2Δx
[yi+1, j − yi, j]

+ c2
c′ 2

[yi+1, j + yi−1, j − 2yi, j] ,

yi,2 = yi,1 +
c2
c′ 2

[yi+1,1 + yi−1,1 − 2yi,1] +
αc2(Δt)2

2Δx
[yi+1,1 − yi,1] .

(21.34)

21.4.1
Waves on Catenary

Up until this point we have been ignoring the effect of gravity upon our string’s
shape and tension. This is a good approximation if there is very little sag in the
string, as might happen if the tension is very high and the string is light. Even if
there is some sag, our solution for y(x , t) could still be used as the disturbance
about the equilibrium shape. However, if the string is massive, say, like a chain
or heavy cable, then the sag in the middle caused by gravity could be quite large
(Figure 21.5), and the resulting variation in shape and tension needs to be incor-
porated into the wave equation. Because the tension is no longer uniform, waves
travel faster near the ends of the string, which are under greater tension because
they must support the entire weight of the string.

21.4.2
Derivation of Catenary Shape

Consider a string of uniform density ρ acted upon by gravity. To avoid confusion
with our use of y(x) to describe a disturbance on a string, we call u(x) the equi-
librium shape of the string (Figure 21.5). The statics problem we need to solve is
to determine the shape u(x) and the tension T(x). The inset in Figure 21.5 is a
free-body diagram of the midpoint of the string and shows that the weight W of
this section of arc length s is balanced by the vertical component of the tension T .
The horizonal tension T0 is balanced by the horizontal component of T :

T(x) sin θ = W = ρgs , T(x) cos θ = T0 , (21.35)

502 21 Wave Equations I: Strings andMembranes

x

u

D

T

T0

W

dx

ds

ds

(a) (b)

Figure 21.5 (a) A uniform string suspended
from its ends in a gravitational field assumes
a catenary shape. (b) A force diagram of a
section of the catenary at its lowest point. Be-

cause the ends of the string must support the
entire weight of the string, the tension now
varies along the string.

⇒ tan θ =
ρgs
T0

. (21.36)

The trick is to convert (21.36) to a differential equation that we can solve. We do
that by replacing the slope tan θ by the derivative du∕dx, and taking the derivative
with respect to x:

du
dx

=
ρg
T0

s , ⇒
d2u
dx2

=
ρg
T0

ds
dx

. (21.37)

Yet because ds =
√
dx2 + du2, we have our differential equation

d2u
dx2

= 1
D

√
dx2 + du2

dx
= 1

D

√
1 +

(
du
dx

)2

, (21.38)

D =
T0

ρg
, (21.39)

where D is a combination of constants with the dimension of length. Equa-
tion 21.38 is the equation for the catenary and has the solution (Becker, 1954)

u(x) = D cosh x
D

. (21.40)

Here we have chosen the x-axis to lie a distance D below the bottom of the cate-
nary (Figure 21.5) so that x = 0 is at the center of the string where y = D and T =
T0. Equation 21.37 tells us the arc length s = D du∕dx, so we can solve for s(x)
and for the tension T(x) via (21.35):

s(x) = D sinh x
D

⇒ T(x) = T0
ds
dx

= ρgu(x) = T0 cosh
x
D

. (21.41)

It is this variation in tension that causes the wave velocity to change for different
positions on the string.

50321.4 Stringswith Variable Tension and Density

21.4.3
Catenary and Frictional Wave Exercises

We have given you the program EqStringAnimate.py (Listing 21.1) that solves the
wave equation. Modify it to produce waves on a catenary including friction, or
for the assumed density and tension given by (21.32) with α = 0.5, T0 = 40N,
and ρ0 = 0.01 kg∕m. (The instructor’s site contains the programs CatFriction.py
and CatString.py that do this.)

1. Look for some interesting cases and create surface plots of the results.
2. Describe in words how the waves dampen and how a wave’s velocity appears

to change.
3. Normal modes: Search for normal-mode solutions of the variable-tension

wave equation, that is, solutions that vary as

u(x , t) = A cos(ωt) sin(γx) . (21.42)

Try using this form to start your program and see if you can find standing
waves. Use large values for ω.

4. When conducting physics demonstrations, we set up standing-wave patterns
by driving one end of the string periodically. Try doing the same with your
program; that is, build into your code the condition that for all times

y(x = 0, t) = A sinωt . (21.43)

Try to vary A and ω until a normal mode (standing wave) is obtained.
5. (For the exponential density case.) If you were able to find standing waves,

then verify that this string acts like a high-frequency filter, that is, there is a
frequency below which no waves occur.

6. For the catenary problem, plot your results showing both the disturbance
u(x , t) about the catenary and the actual height y(x , t) above the horizontal
for a plucked string initial condition.

7. Try the first two normal modes for a uniform string as the initial conditions
for the catenary. These should be close to, but not exactly, normal modes.

8. We derived the normal modes for a uniform string after assuming that k(x) =
ω∕c(x) is a constant. For a catenary without too much x variation in the ten-
sion, we should be able to make the approximation

c(x)2 ≃ T(x)
ρ

=
T0 cosh(x∕d)

ρ
. (21.44)

See if you get a better representation of the first two normal modes if you
include some x dependence in k.

504 21 Wave Equations I: Strings andMembranes

21.5
Vibrating Membrane (2D Waves)

Problem An elastic membrane is stretched across the top of a square box of
sides π and attached securely. The tension per unit length in the membrane is T .
Initially, the membrane is placed in the asymmetrical shape

u(x , y, t = 0) = sin 2x sin y , 0 ≤ x ≤ π , 0 ≤ y ≤ π , (21.45)

where u is the vertical displacement fromequilibrium. Your problem is to describe
the motion of the membrane when it is released from rest (Kreyszig, 1998).
The description of wave motion on a membrane is basically the same as that

of 1D waves on a string discussed in Section 21.2, only now we have wave prop-
agation in two directions. Consider Figure 21.6 showing a square section of the
membrane under tension T . The membrane moves only vertically in the z direc-
tion, yet because the restoring force arising from the tension in the membrane
varies in both the x and y directions, there is wave motion along the surface of
the membrane.
Although the tension is constant over the small area in Figure 21.6, there will be

a net vertical force on the segment if the angle of incline of the membrane varies
as we move through space. Accordingly, the net force on the membrane in the z
direction as a result of the change in y is∑

Fz(x) = TΔx sin θ − TΔx sin φ , (21.46)

where θ is the angle of incline at y + Δ y and φ is the angle at y. Yet if we assume
that the displacements and the angles are small, then we can make the approxi-
mations:

sin θ ≈ tan θ = 𝜕u
𝜕 y

|||| y+Δ y
, sin φ ≈ tan φ = 𝜕u

𝜕 y
||||y , (21.47)

⇒
∑

Fz(xfixed) = TΔx

(
𝜕u
𝜕 y

||||y+Δ y
− 𝜕u

𝜕 y
||||y
)

≈ TΔx 𝜕
2u
𝜕 y2

Δ y . (21.48)

TΔy
TΔy

TΔx

TΔx

x

x
x + Δx

y + Δyy

y

θ

φ

z

Figure 21.6 A small part of an oscillating membrane and the forces that act on it.

50521.6 Analytical Solution

Similarly, the net force in the z direction as a result of the variation in y is∑
Fz(yfixed) = TΔ y

(
𝜕u
𝜕x

||||x+Δx − 𝜕u
𝜕x

||||x
)

≈ TΔ y 𝜕
2u
𝜕x2

Δx . (21.49)

The membrane section has mass ρΔxΔ y, where ρ is the membrane’s mass per
unit area.We now applyNewton’s second law to determine the acceleration of the
membrane section in the z direction as a result of the sum of the net forces arising
from both the x and y directions:

ρΔxΔ y 𝜕
2u
𝜕t2

= TΔx 𝜕
2u
𝜕 y2

Δ y + TΔ y 𝜕
2u
𝜕x2

Δx , (21.50)

⇒
1
c2

𝜕2u
𝜕t2

= 𝜕2u
𝜕x2

+ 𝜕2u
𝜕 y2

, c =
√
T∕ρ . (21.51)

This is the 2D version of the wave equation (21.4) that we studied previously in
one dimension. Here c, the propagation velocity, is still the square root of tension
over density; only now it is tension per unit length and mass per unit area.

21.6
Analytical Solution

The analytic or numerical solution of the partial differential equation (21.51) re-
quires us to know both the boundary and the initial conditions. The boundary
conditions hold for all times and were given when we were told that the mem-
brane is attached securely to a square box of side π:

u(x = 0, y, t) = u(x = π, y, t) = 0 , (21.52)

u(x , y = 0, t) = u(x , y = π, t) = 0 . (21.53)

As required for a second-order equation, the initial conditions has two parts, the
shape of the membrane at time t = 0, and the velocity of each point of the mem-
brane. The initial configuration is

u(x , y, t = 0) = sin 2x sin y , 0 ≤ x ≤ π , 0 ≤ y ≤ π . (21.54)

Second, we are told that the membrane is released from rest, which means

𝜕u
𝜕t

||||t=0 = 0 , (21.55)

where we write partial derivative because there are also spatial variations.
The analytic solution is based on the guess that because the wave equa-

tion (21.51) has separate derivatives with respect to each coordinate and time,
the full solution u(x , y, t) is the product of separate functions of x, y, and t:

u(x , y, t) = X(x)Y (y)T(t) . (21.56)

506 21 Wave Equations I: Strings andMembranes

After substituting this into (21.51) and dividing by X(x)Y (y)T(t), we obtain

1
c2

1
T(t)

d2T(t)
dt2

= 1
X(x)

d2X(x)
dx2

+ 1
Y (y)

d2Y (y)
dy2

. (21.57)

The only way that the LHS of (21.57) can be true for all time while the RHS is also
true for all coordinates, is if both sides are constant:

1
c2

1
T(t)

d2T(t)
dt2

= −ξ2 = 1
X(x)

d2X(x)
dx2

+ 1
Y (y)

d2Y (y)
dy2

(21.58)

⇒
1

X(x)
d2X(x)
dx2

= −k2 , (21.59)

1
Y (y)

d2Y (y)
dy2

= −q2 , (q2 = ξ2 − k2) . (21.60)

In (21.59) and (21.60), we have included further deduction that because each term
on the RHS of (21.58) depends on either x or y, then the only way for their sum to
be constant is if each term is a constant, in this case −k2. The solutions of these
equations are standing waves in the x and y directions, which of course are all
sinusoidal function,

X(x) = A sin kx + B cos kx , (21.61)

Y (y) = C sin q y + D cos q y , (21.62)

T(t) = E sin cξt + F cos cξt . (21.63)

We now apply the boundary conditions:

u(x = 0, y, t) = u(x = π, y, z) = 0 ⇒ B = 0 , k = 1, 2,… ,
u(x , y = 0, t) = u(x , y = π, t) = 0 ⇒ D = 0 , q = 1, 2,… ,
⇒ X(x) = A sin kx , Y (y) = C sin q y . (21.64)

The fixed values for the eigenvaluesm and n describing themodes for the x and y
standing waves are equivalent to fixed values for the constants q2 and k2. Yet be-
cause q2 + k2 = ξ2, we must also have a fixed value for ξ2:

ξ2 = q2 + k2 ⇒ ξkq = π
√
k2 + q2 . (21.65)

The full space–time solution now takes the form

ukq =
[
Gkq cos cξt + Hkq sin cξt

]
sin kx sin q y , (21.66)

where k and q are integers. Because the wave equation is linear in u, its most
general solution is a linear combination of the eigenmodes (21.66):

u(x , y, t) =
∞∑
k=1

∞∑
q=1

[
Gkq cos cξt + Hkq sin cξt

]
sin kx sin q y . (21.67)

50721.6 Analytical Solution

While an infinite series is not a good algorithm, the initial and boundary condi-
tionsmeans that only the k = 2, q = 1 term contributes, andwe have a closed form
solution:

u(x , y, t) = cos c
√
5 sin 2x sin y , (21.68)

where c is thewave velocity. You should verify that initial and boundary conditions
are indeed satisfied.

Listing 21.2 Waves2D.py solves the wave equation numerically for a vibrating membrane.

Waves2D . py : Solve Helmholtz equation for rectangular v ibrat ing membrane

import matp lo t l i b . py lab as p ; from numpy import *
from mpl_ too l k i t s . mplot3d import Axes3D

#
tim = 15 ; N = 71
c = sq r t (1 8 0 . / 3 9 0) # Speed = sqrt (ten [] / den[kg /m2;])
u = zeros ((N,N,N) , f l o a t) ; v = zeros ((N,N) , f l o a t)
inc rx = pi /N; inc ry = pi /N
cprime = c ;
covercp = c / cprime ; r a t i o = 0 . 5 * covercp * covercp # c / c ’ 0.5 for s t ab le

de f v i b r a t i on (tim) :
y = 0 .0
f o r j in range (0 ,N) : # I n i t i a l pos it ion

x = 0 .0
f o r i in range (0 ,N) :

u [i] [j] [0] = 3* s in (2 . 0 * x) * s in (y) # I n i t i a l shape
x += inc rx

y += inc ry

f o r j in range (1 ,N−1) : # Fir s t time step
f o r i in range (1 ,N−1) :

u [i] [j] [1] = u [i] [j] [0] + 0 . 5 * r a t i o * (u [i +1][j] [0]+ u [i −1][j] [0]
+ u [i] [j +1][0]+ u [i] [j −1][0] −4 .* u [i] [j] [0])

f o r k in range (1 , tim) : # Later time steps
f o r j in range (1 ,N−1) :

f o r i in range (1 ,N−1) :
u [i] [j] [2] = 2 . * u [i] [j] [1] − u [i] [j] [0] + r a t i o * (u [i +1][j] [1]
+ u [i −1][j] [1] +u [i] [j +1][1]+ u [i] [j −1][1] − 4 . * u [i] [j] [1])

u [:] [:] [0] = u [:] [:] [1] # Reset past
u [:] [:] [1] = u [:] [:] [2] # Reset present
f o r j in range (0 ,N) :

f o r i in range (0 ,N) :
v [i] [j] = u [i] [j] [2] # Convert to 2D for matplotlib

re turn v

v = v i b r a t i on (tim)
x1 = range (0 , N)
y1 = range (0 , N)
X, Y = p . meshgrid (x1 , y1)

de f functz (v) :
z = v [X,Y] ; re turn z

Z = functz (v)
f i g = p . f i g u r e ()
ax = Axes3D (f i g)
ax . p lot_wire frame (X, Y , Z , co l o r = ’ r ’)
ax . s e t _ x l a b e l (’x ’)

508 21 Wave Equations I: Strings andMembranes

ax . s e t _ y l a b e l (’y ’)
ax . s e t _ z l a b e l (’u(x , y) ’)
p . show ()

21.7
Numerical Solution for 2D Waves

The development of an algorithm for the solution of the 2Dwave equation (21.51)
follows that of the 1D equation in Section 21.2.2. We start by expressing the sec-
ond derivatives in terms of central differences:

𝜕2u(x , y, t)
𝜕t2

=
u(x , y, t + Δt) + u(x , y, t − Δt) − 2u(x , y, t)

(Δt)2
, (21.69)

𝜕2u(x , y, t)
𝜕x2

=
u(x + Δx , y, t) + u(x − Δx , y, t) − 2u(x , y, t)

(Δx)2
, (21.70)

𝜕2u(x , y, t)
𝜕 y2

=
u(x , y + Δ y, t) + u(x , y − Δ y, t) − 2u(x , y, t)

(Δ y)2
. (21.71)

After discretizing the variables, u(x = iΔ, y = iΔ y, t = kΔt) ≡ uk
i, j , we obtain our

time-stepping algorithm by solving for the future solution in terms of the present
and past ones:

uk+1
i, j = 2uk

i, j − uk−1
i, j

c2

c′ 2

[
uk
i+1, j + uk

i−1, j − 4uk
i, j + uk

i, j+1 + uk
i, j−1

]
, (21.72)

where as before c′
def
= Δx∕Δt.Whereas the present (k) and past (k−1) solutions are

known after the first step, to initiate the algorithm we need to know the solution
at t = −Δt, that is, before the initial time. To find that, we use the fact that the
membrane is released from rest:

0 = 𝜕u(t = 0)
𝜕t

≈
u1
i, j − u−1

i, j

2Δt
⇒ u−1

i, j = u1
i, j . (21.73)

 20 40
0

 20

 40

–1

0

1
t = 45t = 20

–1

0

1

0

 20

 40

 20 40y

–1

0

1 t = 3

0

 20

 40

 20 40

x

Figure 21.7 The standing wave pattern on a square box top at three different times.

50921.7 Numerical Solution for 2D Waves

After substituting (21.73) into (21.72) and solving for u1, we obtain the algorithm
for the first step:

u1
i, j = u0

i, j +
c2
2c′ 2

[
u0
i+1, j + u0

i−1, j − 4u0
i, j + u0

i, j+1 + u0
i, j−1

]
. (21.74)

Because the displacement u0
i, j is known at time t = 0 (k = 0), we compute the

solution for the first time step with (21.74) and for subsequent steps with (21.72).
The program Wave2D.py in Listing 21.2 solves the 2D wave equation using the

time-stepping (leapfrog) algorithm. The program Waves2Danal.py computes the
analytic solution. The shape of the membrane at three different times are shown
in Figure 21.7.

511

22
Wave Equations II: Quantum Packets and Electromagnetic

This chapter continues the discussion of the numerical solution of wave equations
begun in Chapter 21, now to equations that require algorithms with a bit more
sophistication. First, we explore quantum wave packets, which have their real and
imaginary parts solved for at slightly differing (split) times. Then, we explore elec-
tromagnetic waves, which have the extra complication of being vector waves with
interconnected E andH fields, which also get solved for at split times.

22.1
Quantum Wave Packets

Problem An experiment places an electron with a definite momentum and po-
sition in a 1D region of space the size of an atom. It is confined to that region
by some kind of attractive potential. Your problem is to determine the resultant
electron behavior in time and space.

22.2
Time-Dependent Schrödinger Equation (Theory)

Because the region of confinement is the size of an atom, we must solve this
problem quantummechanically. Because the particle has both a definite momen-
tum and position, it is best described as a wave packet, which implies that we
must now solve the time-dependent Schrödinger equation for both the spatial
and time dependence of the wave packet. Accordingly, this is a different problem
from the bound state one of a particle confined to a box, considered in Chap-
ters 7 and 9, where we solved the eigenvalue problem for stationary states of the
time-independent Schrödinger equation.
We model an electron initially localized in space at x = 5 with momentum k0

(ℏ = 1 in our units) by a wave function that is a wave packet consisting of a Gaus-

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

512 22 Wave Equations II: Quantum Packets and Electromagnetic

0

t

x

Figure 22.1 The position as a function of time
of a localized electron confined to a square
well (computed with the code SqWell.py
available in the instructor’s site). The electron

is initially on the left with a Gaussian wave
packet. In time, the wave packet spreads out
and collides with the walls.

0

10

x

t

x 8
10

0

1
0

2
0

6
0

7
0

8
0

10

10

6

4

2

0

T
im

e

8

Position0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

10

5
08

0

00
5

t

(a) (b)

Figure 22.2 The probability density as a function of time for an electron confined to a 1D
harmonic oscillator potential well. (a) A conventional surface plot, (b) a color visualization.

sian multiplying a plane wave:

ψ(x , t = 0) = exp

[
−1
2

(
x − 5
σ0

)2
]
eik0x . (22.1)

To solve the problem, we must determine the wave function for all later times.
If (22.1) was an eigenstate of the Hamiltonian, its exp(−iωt) time dependence
can be factored out of the Schrödinger equation (as is usually carried out in
textbooks). However, H̃ψ ≠ Eψ for this ψ, and so we must solve the full time-
dependent Schrödinger equation. To show you where we are going, the resulting
wave packet behavior is shown in Figures 22.1 and 22.2.

51322.2 Time-Dependent Schrödinger Equation (Theory)

The time and space evolutionof a quantum particle is described by the 1D time-
dependent Schrödinger equation,

i
𝜕ψ(x , t)

𝜕t
= H̃ψ(x , t) , (22.2)

i
𝜕ψ(x , t)

𝜕t
= − 1

2m
𝜕2ψ(x , t)

𝜕x2
+ V (x)ψ(x , t) , (22.3)

where we have set 2m = 1 to keep the equations simple. Because the initial wave
function is complex (in order to have a definite momentum associated with it),
the wave function will be complex for all times. Accordingly, we decompose the
wave function into its real and imaginary parts:

ψ(x , t) = R(x , t) + iI(x , t) , (22.4)

ψ(x , t) = R(x , t) + iI(x , t) , (22.5)

⇒
𝜕R(x , t)

𝜕t
= − 1

2m
𝜕2I(x , t)
𝜕x2

+ V (x)I(x , t) , (22.6)

𝜕I(x , t)
𝜕t

= + 1
2m

𝜕2R(x , t)
𝜕x2

− V (x)R(x , t) , (22.7)

where V (x) is the potential acting on the particle.

22.2.1
Finite-Difference Algorithm

The time-dependent Schrödinger equation can be solved with both implicit
(large-matrix) and explicit (leapfrog) methods. The extra challenge with the
Schrödinger equation is to establish that the integral of the probability den-
sity ∫ +∞−∞ dxρ(x , t) remains constant (conserved) to a high level of precision for
all time. For our project, we use an explicit method that improves the numerical
conservation of probability by solving for the real and imaginary parts of the
wave function at slightly different or “staggered” times (Askar and Cakmak, 1977;
Visscher, 1991; Maestri et al., 2000). Explicitly, the real part R is determined at
times 0, Δt ,…, and the imaginary part I at 1∕2Δt, 3∕2Δt ,…. The algorithm is
based on (what else?) the Taylor expansions of R and I:

R
(
x , t + 1

2
Δt

)
= R

(
x , t − 1

2
Δt

)
+ [4α + V (x)Δt]I(x , t)

− 2α[I(x + Δx , t) + I(x − Δx , t)] , (22.8)

514 22 Wave Equations II: Quantum Packets and Electromagnetic

where α = Δt∕2(Δx)2 . In the discrete form with Rt=nΔt
x=iΔx , we have

Rn+1
i = Rn

i − 2
{
α
[
Ini+1 + Ini−1

]
− 2

[
α + ViΔt

]
Ini
}

, (22.9)

In+1i = Ini + 2
{
α
[
Rn
i+1 + Rn

i−1
]
− 2

[
α + ViΔt

]
Rn
i
}

, (22.10)

where the superscript n indicates the time and the subscript i the position.
The probability density ρ is defined in terms of the wave function evaluated at

three different times:

ρ(t) =
⎧⎪⎨⎪⎩
R2(t) + I

(
t + Δt

2

)
I
(
t − Δt

2

)
, for integer t ,

I2(t) + R
(
t + Δt

2

)
R
(
t − Δt

2

)
, for half-integer t .

(22.11)

Although probability is not conserved exactly with this algorithm, the error is two
orders higher than that in the wave function, and this is usually quite satisfactory.
If it is not, then we need to use smaller steps.While this definition of ρmay seem
strange, it reduces to the usual one for Δt → 0 and so can be viewed as part of the
art of numerical analysis. We will ask you to investigate just how well probability
is conserved.We refer the reader to Koonin (1986) and Visscher (1991) for details
on the stability of the algorithm.

22.2.2
Wave Packet Implementation, Animation

In Listing 22.1, youwill find the programHarmosAnimate.py that solves for themo-
tion of the wave packet (22.1) inside a harmonic oscillator potential. The program
Slit.py on the instructor’s site solves for the motion of a Gaussian wave packet as
it passes through a slit (Figure 22.3). You should solve for a wave packet confined
to the square well:

V (x) =

{
∞ , x < 0 , or x > 15 ,
0 , 0 ≤ x ≤ 15 .

1. Define arrays psr[751,2] and psi[751,2] for the real and imaginary parts of ψ, and
Rho[751] for the probability. The first subscript refers to the x position on the
grid, and the second to the present and future times.

2. Use the values σ0 = 0.5, Δx = 0.02, k0 = 17π, and Δt = 1∕2Δx2.

Figure 22.3 The probability density as a function of position and time for an electron incident
upon and passing through a slit. Significant reflection is seen to occur.

51522.2 Time-Dependent Schrödinger Equation (Theory)

3. Use (22.1) for the initial wave packet to define psr[j,1] for all j at t = 0 and to
define psi[j,1] at t = 1∕2Δt.

4. Set Rho[1] = Rho[751] = 0.0 because the wave function must vanish at the in-
finitely high well walls.

5. Increment time by 1∕2Δt. Use (22.9) to compute psr[j,2] in terms of psr[j,1],
and (22.10) to compute psi[j,2] in terms of psi[j,1].

6. Repeat the steps through all of space, that is, for i = 2−750.
7. Throughout all of space, replace the present wave packet (second index equal

to 1) by the future wave packet (second index 2).
8. After you are sure that the program is running properly, repeat the time-

stepping for ∼ 5000 steps.

Listing 22.1 HarmosAnimate.py solves the time-dependent Schrödinger equation for a parti-
cle described by a Gaussian wave packet moving within a harmonic oscillator potential.

HarmonsAnimate : Soltn of t−dependent Sch Eqt fro HO with animation

from v i s u a l import *

dx = 0 . 0 4 ; dx2 = dx *dx ; k0 = 5 . 5 * p i ; dt = dx2 / 2 0 . 0 ; xmax = 6 .0
xs = arange (−xmax , xmax+dx /2 , dx)

g = d i s p l a y (width =500 , he ight =250 , t i t l e = ’Wave packet in HO Well ’)
PlotObj = curve (x=xs , co l o r=co lo r . yel low , r ad iu s =0 .1)
g . center = (0 , 2 , 0) # Scene center
psr = exp (−0 . 5 * (xs / 0 . 5) * * 2) * cos (k0 * xs) # I n i t i a l RePsi
ps i = exp (−0 . 5 * (xs / 0 . 5) * * 2) * s in (k0 * xs) # I n i t i a l ImPsi
v = 15 .0 * xs * *2

whi le True :
r a t e (500)
psr [1 : −1] = psr [1 : −1] − (dt / dx2) * (p s i [2 :] + ps i [: −2] \

− 2* p s i [1 : −1]) + dt * v [1 : −1] * p s i [1 : −1]
p s i [1 : −1] = ps i [1 : −1] + (dt / dx2) * (psr [2 :] + psr [: −2] \

− 2* psr [1 : −1]) − dt * v [1 : −1] * psr [1 : −1]
PlotObj . y = 4 * (psr * *2 + ps i * * 2)

1. Animation:Output the probability density after every 200 steps for use in an-
imation.

2. Make a surface plot of probability vs. position vs. time. This should look like
Figure 22.1 or 22.2.

3. Make an animation showing the wave function as a function of time.
4. Check how well the probability is conserved for early and late times by deter-

mining the integral of the probability over all of space, ∫+∞−∞ dxρ(x), and seeing
by howmuch it changes in time (its specific value doesn’t matter because that
is just normalization).

5. What might be a good explanation of why collisions with the walls cause the
wave packet to broaden and break up? (Hint: The collisions do not appear so
disruptive when a Gaussian wave packet is confined within a harmonic oscil-
lator potential well.)

516 22 Wave Equations II: Quantum Packets and Electromagnetic

x

y

100 300 500

Figure 22.4 The probability density as a
function of x and y at three different times for
an electron confined to a 2D parabolic tube
(infinite in the y direction). The electron is ini-

tially placed in a Gaussian wave packet in both
the x and y directions, and it is to be noted
how there is spreading of the wave packet in
the y direction, but not in the x direction.

22.2.3
Wave Packets in Other Wells (Exploration)

1D Well Now confine the electron to a harmonic oscillator potential:

V (x) = 1
2
x2 (−∞ ≤ x ≤ ∞) . (22.12)

Take the momentum k0 = 3π, the space step Δx = 0.02, and the time step Δt =
1
4
Δx2. Note that the wave packet broadens yet returns to its initial shape!

2D Well Now confine the electron to a 2D parabolic tube (Figure 22.4):

V (x , y) = 0.9x2 , −9.0 ≤ x ≤ 9.0 , 0 ≤ y ≤ 18.0 . (22.13)

The extra degree of freedommeans that we must solve the 2D PDE:

i
𝜕ψ(x , y, t)

𝜕t
= −

(
𝜕2ψ
𝜕x2

+
𝜕2ψ
𝜕 y2

)
+ V (x , y)ψ . (22.14)

Assume that the electron’s initial localization is described by the 2D Gaussian
wave packet:

ψ(x , y, t = 0) = eik0xxeik0y y exp

[
−
(x − x0)2

2σ20

]
exp

[
−
(y − y0)2

2σ20

]
. (22.15)

Note that you can solve the 2D equation by extending the method we just used in
1D or you can look at the next section where we develop a special algorithm.

51722.3 Algorithm for the 2D Schrödinger Equation

22.3
Algorithm for the 2D Schrödinger Equation

One way to develop an algorithm for solving the time-dependent Schrödinger
equation in 2D is to extend the 1D algorithm to another dimension. Rather than
that, we apply quantum theory directly to obtain a more powerful algorithm
(Maestri et al., 2000). First, we note that Equation 22.14 can be integrated in a
formal sense (Landau and Lifshitz, 1976) to obtain the operator solution:

ψ(x , y, t) = U(t)ψ(x , y, t = 0) , (22.16)

U(t) = e−iH̃t , (22.17)

H̃ = −
(

𝜕2

𝜕x2
+ 𝜕2

𝜕 y2

)
+ V (x , y) ,

where U(t) is an operator that translates a wave function by an amount of time t
and H̃ is the Hamiltonian operator. From this formal solution, we deduce that a
wave packet can be translated ahead by time Δt via

ψn+1
i, j = U(Δt)ψn

i, j , (22.18)

where the superscripts denote time t = nΔt and the subscripts denote the two
spatial variables x = iΔx and y = jΔ y. Likewise, the inverse of the time evolution
operator moves the solution back one time step:

ψn−1 = U−1(Δt)ψn = e+iH̃Δtψn . (22.19)

While it would be nice to have an algorithm based on a direct application
of (22.19), the references show that the resulting algorithm would not be sta-
ble. That being so, we base our algorithm on an indirect application (Askar and
Cakmak, 1977), namely, the relation between the difference in ψn+1 and ψn−1:

ψn+1 = ψn−1 + [e−iH̃Δt − e+iH̃Δt]ψn , (22.20)

where the difference in sign of the exponents is to be noted. The algorithmderives
from combining the O(Δx2) expression for the second derivative obtained from
the Taylor expansion,

𝜕2ψ
𝜕x2

≃ −1
2

[
ψn
i+1, j + ψn

i−1, j − 2ψn
i, j

]
, (22.21)

with the corresponding-order expansion of the evolution equation (22.20). Sub-
stituting the resulting expression for the second derivative into the 2D time-

518 22 Wave Equations II: Quantum Packets and Electromagnetic

dependent Schrödinger equation results in1)

ψn+1
i, j = ψn−1

i, j − 2i
[(

4α + 1
2
ΔtVi, j

)
ψn
i, j

−α
(
ψn
i+1, j + ψn

i−1, j + ψn
i, j+1 + ψn

i, j−1

)]
, (22.22)

where α = Δt∕2(Δx)2. We convert this complex equations to coupled real equa-
tions by substituting them into the wave function ψ = R + iI,

Rn+1
i, j = Rn−1

i, j + 2
[(

4α + 1
2
ΔtVi, j

)
Ini, j − α

(
Ini+1, j + Ini−1, j + Ini, j+1 + Ini, j−1

)]
,

(22.23)

In+1i, j = In−1i, j −2
[(

4α + 1
2
ΔtVi, j

)
Rn
i, j + α

(
Rn
i+1, j + Rn

i−1, j + Rn
i, j+1 + Rn

i, j−1

)]
.

(22.24)

This is the algorithm we use to integrate the 2D Schrödinger equation. To deter-
mine the probability, we use the same expression (22.11) used in 1D.

22.3.1
Exploration: Bound and Diffracted 2D Packet

1. Determine the motion of a 2D Gaussian wave packet within a 2D harmonic
oscillator potential:

V (x , y) = 0.3(x2 + y2) , −9.0 ≤ x ≤ 9.0 , −9.0 ≤ y ≤ 9.0 . (22.25)

2. Center the initial wave packet at (x , y) = (3.0,−3) and give it momentum
(k0x , k0y) = (3.0, 1.5).

3. Young’s single-slit experiment has a wave passing through a small slit with
the transmitted wave showing interference effects. In quantum mechanics,
wherewe represent a particle by a wave packet, thismeans that an interference
pattern should be formed when a particle passes through a small slit. Pass a
Gaussian wave packet of width 3 through a slit of width 5 (Figure 22.3), and
look for the resultant quantum interference.

22.4
Wave Packet–Wave Packet Scattering2)

We have just seen how to represent a quantum particle as a wave packet and how
to compute the interaction of that wave packet/particle with an external potential.

1) For reference sake, note that the constants in the equation change as the dimension of the
equation changes; that is, there will be different constants for the 3D equation, and therefore
our constants are different from the references!

2) This section is based on the Master of Science thesis of Jon Maestri. It is included in his
memory.

51922.4 Wave Packet–Wave Packet Scattering

Although external potentials do exist in nature, realistic scattering often involves
the interaction of one particle with another, which in turn would be represented
as the interaction of a wave packet with a different wave packet. We have already
done the hard work needed to compute wave packet–wave packet scattering in
our implementation of wave packet–potential scattering even in 2D.Wenowneed
only to generalize it a bit.
Two interacting particles are described by the time-dependent Schrödinger

equation in the coordinates of the two particles

i
𝜕ψ(x1 , x2 , t)

𝜕t
= − 1

2m1

𝜕2ψ(x1 , x2 , t)
𝜕x21

− 1
2m2

𝜕2ψ(x1 , x2 , t)
𝜕x22

+ V (x1 , x2)ψ(x1 , x2 , t) . (22.26)

where, for simplicity, we assume a one-dimensional space and again set ℏ = 1.
Heremi and xi are themass andpositionof particle i= 1, 2.Knowledge of the two-
particle wavefunction ψ(x1 , x2 , t) at time t permits the calculation of the proba-
bility density of particle 1 being at x1 and particle 2 being at x2:

ρ(x1 , x2 , t) = |ψ(x1 , x2 , t)|2 . (22.27)

The fact that particles 1 and 2 must be located somewhere in space leads to the
normalization constraint on the wavefunction

+∞

∫
−∞

+∞

∫
−∞

dx1 dx2ρ(x1 , x2 , t) = 1 . (22.28)

The description of a particle within a multiparticle system by a single-particle
wavefunction is an approximation unless the system is uncorrelated, in which case
the total wavefunction can be written in product form. However, it is possible to
deduce meaningful one-particle probabilities (also denoted by ρ) from the two-
particle density by integrating over the other particle:

ρ(xi , t) =
+∞

∫
−∞

dx jρ(x1 , x2 , t) , (i ≠ j = 1, 2) . (22.29)

Of course, the true solution of the Schrödinger equation is ψ(x1 , x2 , t), but we
find it hard to unravel the physics in a three-variable complex function, and so
will usually view ρ(x1 , t) and ρ(x2 , t) as two separate wave packets colliding.
If particles 1 and 2 are identical, then their total wavefunction must be sym-

metric (s) or antisymmetric (a) under interchange of the particles. We impose
this condition on our numerical solution ψ(x1 , x2), by forming the combinations

ψs ,a(x1 , x2) =
1√
2
[ψ(x1 , x2) ± ψ(x2 , x1)] ⇒ (22.30)

2ρ(x1 , x2) = |ψ(x1 , x2)|2 + |ψ(x2 , x1)|2 ± 2Re
[
ψ∗(x1 , x2)ψ(x2 , x1)

]
.
(22.31)

The cross term in (22.31) places an additional correlation into the wave packets.

520 22 Wave Equations II: Quantum Packets and Electromagnetic

22.4.1
Algorithm

The algorithm for the solution of the two-particle Schrödinger equation (22.26)
in one dimension x, is similar to the one we outlined for the solution for a single
particle in the two dimensions x and y, only now with x → x1 and y → x2. As
usual, we assume discrete space and time

x1 = lΔx1 , x2 = mΔx2 , t = nΔt . (22.32)

We employ the improved algorithm for the time derivative introduced by Askar
and Cakmak (1977), which uses a central difference algorithm applied to the for-
mal solution (22.16)

ψn+1
l,m − ψn−1

l,m = (e−iΔtH − eiΔtH)ψn
l,m ≃ −2iΔtHψn

l,m , (22.33)

⇒ ψn+1
l,m ≃ ψn−1

l,m − 2i
[{(

1
m1

+ 1
m2

)
4λ + ΔxVl,m

}
ψn
l,m

−λ
{

1
m1

(
ψn
l+l,m + ψn

l−1,m

)
+ 1

m2
(ψn

l,m+1 + ψn
l,m−1)

}]
,

(22.34)

where we have assumed Δx1 = Δx2 = Δx and formed the ratio λ = Δt∕Δx2. Again
we will take advantage of the extra degree of freedom provided by the complexity
of the wavefunction

ψn+1
l,m = Rn+1

l,m + iIn+1l,m , (22.35)

and staggered times to preserve probability better (Visscher, 1991). The algorithm
(22.34) then separates into the pair of coupled equations

Rn+1
l,m = Rn−1

l,m + 2
[{(

1
m1

+ 1
m2

)
4λ + ΔtVl,m

}
Inl,m

−λ
{

1
m1

(Inl+1,m + Inl−1,m) +
1
m2

(Inl,m+1 + Inl,m−1)
}]

, (22.36)

In+1l,m = In−1l,m − 2
[{(

1
m1

+ 1
m2

)
4λ + ΔtVl,m

}
Rn
l,m

− λ
{

1
m1

(Rn
l+1,m + Rn

l−1,m)
1
m2

(Rn
l,m+1 + Rn

l,m−1)
}]

. (22.37)

22.4.2
Implementation

We assume that the particle–particle potential is central and depends only on the
relative distance between particles 1 and 2 (the method can handle any x1 and

52122.4 Wave Packet–Wave Packet Scattering

x2 functional dependences if needed). For example, we have used both a “soft”
potential with a Gaussian dependence and a “hard” potential with a square-well
dependence:

V (x1 , x2) =

{
V0 exp

[
− |x1−x2|2

2α2

]
(Gaussian)

V0θ(α − |x1 − x2|) (Square)
, (22.38)

where α is the range parameter and V0 is the depth parameter.
Because we are solving a PDE, we must specify both initial and boundary con-

ditions. For scattering, we assume that particle 1 is initially at x01 withmomentum
k1, and that particle 2 is initially far away at x02 ≃ ∞ with momentum k2. Since
the particles are initially too far apart to be interacting, we assume that the initial
wave packet is a product of independent wave packets for particles 1 and 2

ψ(x1 , x2 , t = 0) = eik1x1e−
(x1−x01)

2

4σ2 × eik2x2e−
(x2−x02)2

4σ2 . (22.39)

Because of theGaussian factors here, ψ is not an eigenstate of themomentum op-
erator−i𝜕∕𝜕xi for either particle 1 or 2, but instead contains a spread of momenta
about the mean, initial momenta k1 and k2. If the wave packet is made very broad
(σ→∞), wewould obtainmomentumeigenstates, but thenwould have effectively
eliminated the wave packets. Note that while the Schrödinger equation may sep-
arate into one equation in the relative coordinate x = x1 − x2 and another in the
center-of-mass coordinate X = (m1x1 + m2x2)∕(m1 + m2), the initial condition
(22.39), or more general ones, cannot be written as a product of separate func-
tions of x and X, and accordingly, a solution of the partial differential equation in
two variables is required (Landau, 1996).
We start the staggered-time algorithm with the real part the wavefunction

(22.39) at t = 0 and the imaginary part at t = Δt∕2. The initial imaginary part
follows by assuming that Δt∕2 is small enough and σ is large enough for the initial
time dependence of the wave packet to be that of the plane wave parts:

I(x1 , x2 , t =
Δt
2
) ≃ sin

[
k1x1 + k2x2 −

(
k21
2m1

+
k22
2m2

)
Δt
2

]

× exp−

[(
x1 − x01

)2 + (
x2 − x02

)2
2σ2

]
. (22.40)

In an actual scattering experiment, a projectile starts at infinity and the scat-
tered particles are observed also at infinity. We model that by solving our partial
differential equation within a box of side L that in ideal world would be much
larger than both the range of the potential and the width of the initial wave packet.
This leads to the boundary conditions

ψ(0, x2 , t) = ψ(x1 , 0, t) = ψ(L , x2 , t) = ψ(x1 , L , t) = 0 . (22.41)

The largeness of the boxminimizes the effects of the boundary conditions during
the collision of the wave packets, although at large times there will be artificial
collisions with the box that do not correspond to actual experimental conditions.

522 22 Wave Equations II: Quantum Packets and Electromagnetic

Some typical parameters we used are (Δx , Δt) = (0.001, 2.5 × 10−7), (k1 , k2) =
(157,−157), σ = 0.05, (x01 , x

0
2) = (467, 934), N1 = N2 = 1399, (L , T) = (1.401,

0.005), and (V0 , α) = (−100 000, 0.062). The original C code is available on the
Web (Maestri et al., 2000). Note that our space step size is 1∕1400th of the size of
the box L, and 1∕70th of the size of thewave packet.Our time step is 1∕20 000th of
the total timeT , and 1∕2000th of a typical time for thewave packet. In all cases, the
potential andwave packet parameters are chosen to be similar to those used in the
one-particle studies by Goldberg et al. (1967). The time and space step sizes were
determined by trial and error until values were found that provided stability and
precision. Importantly, ripples during interactions found in earlier studies essen-
tially disappear when (more accurate) small values of Δx are employed. In general,
stability is obtained bymaking Δt small enough, with simultaneous changes in Δt
and Δxmade to keep λ = Δt∕Δx2 constant. Total probability, as determined by a
double Simpson’s rule integration of (22.28), is typically conserved to 13 decimal
places, impressively close to machine precision. In contrast, the mean energy, for
which we do not use an optimized algorithm, is conserved only to 3 places.

22.4.3
Results and Visualization

We solve our problem in the center-of-momentum system by taking k2 = −k1
(particle 1 moving to larger x values and particle 2 to smaller x). Because the re-
sults are time dependent, wemakemovies of them, and since themovies show the
physics much better than the still images, we recommend that the reader look at
them (Maestri et al., 2000). We first tested the procedure by emulating the one-
particle collisions with barriers and wells studied by Goldberg et al. (1967) and
presented by Schiff. We made particle 2 ten times heavier than particle 1, which
means that particle 2’s initial wave packetmoves at 1∕10th the speed of particle 1’s,
and so is similar to a barrier. On the left of Fig. 22.5, we see six frames from an an-
imation of the two-particle density ρ(x1 , x2 , t) as a simultaneous function of the
particle positions x1 and x2. On the right of Fig. 22.5 we show, for this same colli-
sion, the single-particle densities ρ1(x1 , t) and ρ2(x2 , t) extracted from ρ(x1 , x2 , t)
by integrating out the dependence on the other particle via (22.29). Because the
mean kinetic energy equals twice the maximum height of the potential barrier,
we expect complete penetration of the packets, and indeed, at time 18 we see on
the right that the wave packets have large overlap, with the repulsive interaction
“squeezing” particle 2 (it gets narrower and taller). During time 22–40, we see part
of wave packet 1 reflecting off wave packet 2 and then moving back to smaller x
(the left). From times 26–55, we also see that a major part of wave packet 1 gets
“trapped” inside of wave packet 2 and then leaks out rather slowly.
When looking at the two-particle density ρ(x1 , x2 , t) on the left of Fig. 22.5, we

see that for times 1-26, the x2 position of the peak of changes very little with time,
which is to be expected since particle 2 is heavy. In contrast, the x1 dependence in
ρ(x1 , x2 , t) gets broader with time, develops into two peaks at time 26, separates
into two distinct parts by time 36, and then, at time 86 after reflecting off the walls,

52322.4 Wave Packet–Wave Packet Scattering

1
18

22 26

36
86

x1x2

0

0

m − 10m, Attractive Vsquare

KE = − V/2

1 18 26

32

40 55 72

28 30

(a)

(b)

Figure 22.5 (a) Six frames from an anima-
tion of the two-particle density ρ(x1 , x2 , t) as
a function of the position of particle 1 with
mass m and of the position of particle 2 with
mass 10m. (b) This same collision as seen
with the single-particle densities ρ(x1 , t) and

ρ(x2 , t). The numbers in the left-hand cor-
ners are the times in units of 100Δt. Note that
each plot ends at the walls of the containing
box, and that particle 1 “bounces off” a wall
between times 36 and 86.

524 22 Wave Equations II: Quantum Packets and Electromagnetic

Symmetrized m − m, Attractive Vsquare

KE = −V/4

641 60

66 78 94

110 150 180

Figure 22.6 A time sequence of two single-particle wave packets scattering from each other.
The particles have equal mass, a mean kinetic energy equal to a quarter of the well’s depth,
and the wavefunction has been symmetrized.

returns to particle 2’s position. We also notice in both these figures that at time
40 and thereafter, particle 2 (our “barrier”) fissions into reflected and transmitted
waves.As this comparison of the visualizations on the right and left of Figures 22.5
demonstrates, it seems easier to understand the physics by superimposing two
single-particle densities (thereby discarding information on correlations) than by
examining the two-particle density.
In Fig. 22.6, we see nine frames from themovie of an attractivem–m collision in

which the mean energy equals one-quarter of the well depth. The initial packets
speed up as they approach each other, and at time 60, the centers have already
passed through each other. After that, a transmitted and reflected wave for each
packet is seen to develop (times 66–78). Although this may be just an artifact of
having two particles of equal mass, from times 110–180, we see that each packet
appears to capture or “pick up” a part of the other packet and move off with it.
Note in Fig. 22.6 that at time 180, the wave packets are seen to be interacting

with the wall (the edges of the frames), as indicated by the interference ripples
between incident and reflected waves. Also note that at time 46 and thereafter
two additional small wave packets are seen to be traveling in opposite directions
to the larger initial wave packets. These small packets are numerical artifacts and
arise because outgoing waves satisfy the same differential equations as incoming
waves.

52522.5 E&M Waves via Finite-DifferenceTimeDomain

22.5
E&M Waves via Finite-Difference Time Domain

Simulations of electromagnetic (EM) waves are of tremendous practical impor-
tance. Indeed, the fields of nanotechnology and spintronics rely heavily on such
simulations. The basic techniques used to solve for EM waves are essentially the
same as those we used for string and quantum waves: set up a grid in space and
time and then step the initial solution forward in time one step at a time. When
used for E&M simulations, this technique is known as the finite difference time do-
main (FDTD) method. What is new for E&M waves is that they are vector fields, with
the variations of one vector field generating the other.Our treatmentof FDTD does
not do justice to the wealth of physics that can occur, and we recommend Sullivan
(2000) for amore complete treatment and Ward et al. (2005) (and theirWeb site) for
modern applications.

Problem You are given a region in space in which the E and H fields are known
to have a sinusoidal spatial variation

Ex(z , t = 0) = 0.1 sin 2πz
100

, (22.42)

Hy(z , t = 0) = 0.1 sin 2πz
100

, 0 ≤ z ≤ 200 , (22.43)

with all other components vanishing. Determine the fields for all z values at all
subsequent times.

22.6
Maxwell’s Equations

The description of EMwaves via Maxwell’s equations is given in many textbooks.
For propagation in just one dimension (z) and for free space with no sinks or
sources, four coupled PDEs result:

𝛁 ⋅ E = 0 ⇒
𝜕Ex(z , t)

𝜕x
= 0 , (22.44)

𝛁 ⋅H = 0 ⇒
𝜕Hy(z , t)

𝜕 y
= 0 , (22.45)

𝜕E
𝜕t

= + 1
𝜖0
𝛁 ×H ⇒

𝜕Ex

𝜕t
= − 1

𝜖0

𝜕Hy(z , t)
𝜕z

, (22.46)

𝜕H
𝜕t

= − 1
μ0

𝛁 × E ⇒
𝜕Hy

𝜕t
= − 1

μ0

𝜕Ex(z , t)
𝜕z

. (22.47)

526 22 Wave Equations II: Quantum Packets and Electromagnetic

x

y

z

Ex
Hy

Ex

Hy

t

Figure 22.7 A single EM pulse traveling along the z-axis. The coupled E and H pulses are indi-
cated by solid and dashed curves, respectively, and the pulses at different z values correspond
to different times.

As indicated in Figure 22.7, we have chosen the electric field E(z , t) to oscillate
(be polarized) in the x direction and the magnetic field H(z , t) to be polarized
in the y direction. As indicated by the bold arrow in Figure 22.7, the direction
of power flow for the assumed transverse electromagnetic (TEM) wave is given
by the right-hand rule applied to E ×H. Note that although we have set the initial
conditions such that theEMwave is traveling in only onedimension (z), its electric
field oscillates in a perpendicular direction (x), and its magnetic field oscillates in
yet a third direction (y); so while some may call this a 1D wave, the vector nature
of the fields means that the wave occupies all three dimensions.

22.7
FDTD Algorithm

We need to solve the two coupled PDEs (22.46) and (22.47) appropriate for our
problem. As is usual for PDEs, we approximate the derivatives via the central-
difference approximation, here in both time and space. For example,

𝜕E(z , t)
𝜕t

≃
E(z , t + Δt

2
) − E(z , t − Δt

2
)

Δt
, (22.48)

𝜕E(z , t)
𝜕z

≃
E(z + Δz

2
, t) − E(z − Δz

2
, t)

Δz
. (22.49)

We next substitute the approximations into Maxwell’s equations and rearrange
the equations into the form of an algorithm that advances the solution through
time. Because only first derivatives occur in Maxwell’s equations, the equations
are simple, although the electric and magnetic fields are intermixed.
As introduced by Yee (Yee, 1966), we set up a space–time lattice (Figure 22.8)

in which there are half-integer time steps as well as half-integer space steps. The
magnetic field will be determined at integer time sites and half-integer space sites
(open circles), and the electric field will be determined at half-integer time sites

52722.7 FDTD Algorithm

t

n

n + 1

n + 1/2

n – 1/2

k
+ 1

k
+ 1

/2

k
–
1/

2

H

z

y

Ex

Figure 22.8 The algorithm for using the
known values of Ex and Hy at three earlier
times and three different space positions to
obtain the solution at the present time. Note
that the values of Ex are determined on the
lattice of filled circles, corresponding to in-

teger space indices and half-integer time
indices. In contrast, the values of Hy are de-
termined on the lattice of open circles, cor-
responding to half-integer space indices and
integer time indices.

and integer space sites (filled circles). While this is an extra level of complication,
the transposed lattices do lead to an accurate and robust algorithm. Because the
fields already have subscripts indicating their vector nature, we indicate the lattice
position as superscripts, for example,

Ex(z , t) → Ex(kΔz , nΔt) → Ek ,n
x . (22.50)

Maxwell’s equations (22.46) and (22.47) now become the discrete equations

Ek ,n+1∕2
x − Ek ,n−1∕2

x

Δt
= −

Hk+1∕2,n
y − Hk−1∕2,n

y

𝜖0Δz
,

Hk+1∕2,n+1
y − Hk+1∕2,n

y

Δt
= −

Ek+1,n+1∕2
x − Ek ,n+1∕2

x

μ0Δz
.

To repeat, this formulation solves for the electric field at integer space steps (k)
but half-integer time steps (n), while themagnetic field is solved for at half-integer
space steps but integer time steps.
We convert these equations into two simultaneous algorithms by solving for Ex

at time n + 1∕2, and Hy at time n:

Ek ,n+1∕2
x = Ek ,n−1∕2

x − Δt
𝜖0Δz

(
Hk+1∕2,n

y − Hk−1∕2,n
y

)
, (22.51)

Hk+1∕2,n+1
y = Hk+1∕2,n

y − Δt
μ0Δz

(
Ek+1,n+1∕2
x − Ek ,n+1∕2

x
)
. (22.52)

The algorithmsmust be applied simultaneously because the space variation ofHy
determines the time derivative of Ex , while the space variation of Ex determines

528 22 Wave Equations II: Quantum Packets and Electromagnetic

the time derivative of Hy (Figure 22.8). These algorithms are more involved than
our usual time-stepping ones in that the electric fields (filled circles in Figure 22.8)
at future times t = n+ 1∕2 are determined from the electric fields at one time step
past t = n − 1∕2, and the magnetic fields at half a time step past t = n. Likewise,
the magnetic fields (open circles in Figure 22.8) at future times t = n + 1 are de-
termined from the magnetic fields at one time step past t = n, and the electric
field at half a time step past t = n + 1∕2. In other words, it is as if we have two
interleaved lattices, with the electric fields determined for half-integer times on
lattice 1 and the magnetic fields at integer times on lattice 2.
Although these half-integer times appear to be the norm for FDTD methods

(Taflove and Hagness , 1989; Sullivan, 2000), it may be easier for some readers to
understand the algorithm by doubling the index values and referring to even and
odd times:

Ek ,n
x = Ek ,n−2

x − Δt
𝜖0Δz

(
Hk+1,n−1

y − Hk−1,n−1
y

)
, k even, odd , (22.53)

Hk ,n
y = Hk ,n−2

y − Δt
μ0Δz

(
Ek+1,n−1
x − Ek−1,n−1

x
)
, k odd, even . (22.54)

This makes it clear that E is determined for even space indices and odd times,
while H is determined for odd space indices and even times.
We simplify the algorithm and make its stability analysis simpler by renormal-

izing the electric fields to have the same dimensions as the magnetic fields,

Ẽ =
√

𝜖0

μ0
E . (22.55)

The algorithms (22.51) and (22.52) now become

Ẽk ,n+1∕2
x = Ẽk ,n−1∕2

x + β
(
Hk−1∕2,n

y − Hk+1∕2,n
y

)
, (22.56)

Hk+1∕2,n+1
y = Hk+1∕2,n

y + β
(
Ẽk ,n+1∕2
x − Ẽk+1,n+1∕2

x
)
, (22.57)

β = c
Δz∕Δt

, c = 1√
𝜖0μ0

. (22.58)

Here, c is the speed of light in vacuum and β is the ratio of the speed of light to
grid velocity Δz∕Δt.
The space step Δz and the time step Δt must be chosen so that the algorithms

are stable. The scales of the space and time dimensions are set by the wavelength
and frequency, respectively, of the propagating wave. As a minimum, we want at
least 10 grid points to fall within a wavelength:

Δz ≤ λ
10

. (22.59)

The time step is then determined by the Courant stability condition (Taflove and
Hagness , 1989; Sullivan, 2000) to be

β = c
Δz∕Δt

≤ 1
2
. (22.60)

52922.7 FDTD Algorithm

As we have seen before, (22.60) implies that making the time step smaller im-
proves precision and maintains stability, but making the space step smaller must
be accompanied by a simultaneous decrease in the time step in order to maintain
stability (you should check this).

Listing 22.2 FDTD.py solves Maxwell’s equations via FDTD time stepping (finite-difference
time domain) for linearly polarized wave propagation in the z direction in free space.

FDTD. py FDTD solut ion of Maxwell ’ s equations in 1D

from v i s u a l import *
xmax=201
ymax=100
zmax=100
scene = d i s p l a y (x=0 , y=0 , width= 800 , he ight= 500 , \

t i t l e = ’E: cyan , H: red . Per iodic BC’ , forward =(−0.6 ,−0.5 ,−1))
E f i e l d =

curve (x= l i s t (range (0 , xmax)) , co lo r=co lo r . cyan , r ad iu s =1 .5 , d i s p l a y=scene)
H f i e l d = curve (x= l i s t (range (0 , xmax)) , co lo r=co lo r . red ,

r ad iu s =1 .5 , d i s p l a y=scene)
vp lane= curve (pos=[(−xmax , ymax) , (xmax , ymax) , (xmax,−ymax) ,(−xmax,−ymax) ,

(−xmax , ymax)] , co l o r=co lo r . cyan)
z a x i s=curve (pos=[(−xmax , 0) , (xmax , 0)] , co l o r=co lo r . magenta)
hplane=curve (pos=[(−xmax , 0 , zmax) , (xmax , 0 , zmax) , (xmax ,0 ,−zmax) ,

(−xmax,0 ,−zmax) ,(−xmax , 0 , zmax)] , co lo r=co lo r . magenta)
b a l l 1 = sphere (pos = (xmax+30 , 0 , 0) , co lo r = co lo r . b lack , r ad iu s = 2)
t s = 2 # time switch
beta = 0 .01
Ex = zeros ((xmax , t s) , f l o a t) # in i t E
Hy = zeros ((xmax , t s) , f l o a t) # in i t H
Ex l ab e l 1 = l a b e l (t e x t = ’Ex ’ , pos = (−xmax−10 , 50) , box = 0)
Ex l ab e l 2 = l a b e l (t e x t = ’Ex ’ , pos = (xmax+10 , 50) , box = 0)
Hylabe l = l a b e l (t e x t = ’Hy ’ , pos = (−xmax−10 , 0 ,50) , box = 0)
z l a b e l = l a b e l (t e x t = ’Z ’ , pos = (xmax+10 , 0) , box = 0)
t i =0

de f i n i f i e l d s () :
k = arange (xmax)
Ex [: xmax , 0] = 0 . 1 * s in (2 * p i * k / 1 0 0 . 0)
Hy [: xmax , 0] = 0 . 1 * s in (2 * p i * k / 1 0 0 . 0)

de f p l o t f i e l d s (t i) : # screen coordinates
k = arange (xmax)
E f i e l d . x = 2*k−xmax # world to screen coords
E f i e l d . y = 800* Ex [k , t i]
H f i e l d . x = 2*k−xmax
Hf i e l d . z = 800*Hy[k , t i]

i n i f i e l d s () # i n i t i a l f i e l d
p l o t f i e l d s (t i)
whi le True :

r a t e (600)
Ex [1 : xmax−1 ,1] = Ex [1 : xmax−1 ,0] + beta * (Hy [0 : xmax−2 ,0]−Hy [2 : xmax , 0])
Hy [1 : xmax−1 ,1] = Hy [1 : xmax−1 ,0] + beta * (Ex [0 : xmax−2 ,0]−Ex [2 : xmax , 0])
Ex [0 , 1] = Ex [0 , 0] + beta * (Hy[xmax−2 ,0] −Hy[1 , 0]) # BC
Ex [xmax−1 ,1] = Ex [xmax−1 ,0] + beta * (Hy[xmax−2 ,0] −Hy[1 , 0])
Hy[0 , 1] = Hy[0 , 0] + beta * (Ex [xmax−2 ,0] −Ex [1 , 0]) # BC
Hy[xmax−1 ,1] = Hy[xmax−1 ,0] + beta * (Ex [xmax−2 ,0] − Ex [1 , 0])
p l o t f i e l d s (t i)
Ex [: xmax , 0] = Ex [: xmax , 1] # New−>old
Hy [: xmax , 0] = Hy [: xmax , 1]

530 22 Wave Equations II: Quantum Packets and Electromagnetic

Figure 22.9 The E field (light) and the H field (dark) at the initial time (a) and at a later time (b).
Periodic boundary conditions are used at the ends of the spatial region, whichmeans that the
large z wave continues into the z = 0 wave.

22.7.1
Implementation

In Listing 22.2, we provide a simple implementation of the FDTD algorithm for a z
lattice of 200 sites and in Figure 22.9 we show some results. The initial conditions
correspond to a sinusoidal variation of the E and H fields for all z values in for
0 ≤ z ≤ 200:

Ex(z , t = 0) = 0.1 sin 2πz
100

, Hy(z , t = 0) = 0.1 sin 2πz
100

. (22.61)

The algorithm then steps out in time for as long as the user desires. The discrete
form of Maxwell equations used are:

Ex [k , 1] = Ex [k , 0] + beta * (Hy[k−1 , 0] − Hy[k+1 , 0])
Hy[k , 1] = Hy[k , 0] + beta * (Ex [k−1 , 0] − Ex [k+1 , 0])

where 1 ≤ k ≤ 200, and beta is a constant. The second index takes the values 0 and
1, with 0 being the old time and 1 the new. At the end of each iteration, the new
field throughout all of space becomes the old one, and a new one is computed.
With this algorithm, the spatial endpoints k=0 and k=xmax-1 remain undefined.
We define them by assuming periodic boundary conditions:

Ex [0 , 1] = Ex [0 , 0] + beta * (Hy[xmax−2 , 0] − Hy[1 , 0])
Ex [xmax−1 , 1] = Ex [xmax−1 , 0] + beta * (Hy[xmax−2 , 0] − Hy[1 , 0])
Hy[0 , 1] = Hy[0 , 0] + beta * (Ex [xmax−2 , 0] − Ex [1 , 0])
Hy[xmax−1 , 1] = Hy[xmax−1 , 0] + beta * (Ex [xmax−2 , 0] − Ex [1 , 0])

22.7.2
Assessment

1. Impose boundary conditions such that all fields vanish on the boundaries.
Compare the solutions so obtained to those without explicit conditions for
times less than and greater than those at which the pulses hit the walls.

53122.7 FDTD Algorithm

2. Examine the stability of the solution for different values of Δz and Δt and
thereby test the Courant condition (22.60).

3. Extend the algorithm to include the effect of entering, propagating through,
and exiting a dielectric material placed within the z integration region.

4. Ensure that you see both transmission and reflection at the boundaries.
5. Investigate the effect of varying the dielectric’s index of refraction.
6. The direction of propagation of the pulse is in the direction of E × H, which

depends on the relative phase between the E and H fields. (With no initial H
field, we obtain pulses both to the right and the left.)

7. Modify the program so that there is an initial H pulse as well as an initial E
pulse, both with a Gaussian times a sinusoidal shape.

8. Verify that the direction of propagation changes if the E and H fields have
relative phases of 0 or π.

9. Investigate the resonator modes of a wave guide by picking the initial condi-
tions corresponding to plane waves with nodes at the boundaries.

10. Investigate standing waves with wavelengths longer than the size of the inte-
gration region.

11. Simulate unbounded propagation by building in periodic boundary conditions
into the algorithm.

12. Place a medium with periodic permittivity in the integration volume. This
should act as a frequency-dependent filter, which does not propagate certain
frequencies at all.

22.7.3
Extension: Circularly Polarized Waves

We now extend our treatment to EMwaves in which the E andH fields, while still
transverse and propagating in the z direction, are not restricted to linear polar-
izations along just one axis. Accordingly, we add to (22.46) and (22.47):

𝜕Hx

𝜕t
= 1

μ0

𝜕Ey

𝜕z
, (22.62)

𝜕Ey

𝜕t
= 1

𝜖0

𝜕Hx

𝜕z
. (22.63)

When discretized in the same way as (22.51) and (22.52), we obtain

Hk+1∕2,n+1
x = Hk+1∕2,n

x + Δt
μ0Δz

(
Ek+1,n+1∕2
y − Ek ,n+1∕2

y

)
, (22.64)

Ek ,n+1∕2
y = Ek ,n−1∕2

y + Δt
𝜖0Δz

(
Hk+1∕2,n

y − Hk−1∕2,n
y

)
. (22.65)

To produce a circularly polarized traveling wave, we set the initial conditions

Ex = cos
(
t − z

c
+ φy

)
, Hx =

√
𝜖0

μ0
cos

(
t − z

c
+ φy

)
, (22.66)

532 22 Wave Equations II: Quantum Packets and Electromagnetic

Ey = cos
(
t − z

c
+ φx

)
, Hy =

√
𝜖0

μ0
cos

(
t − z

c
+ φx + π

)
. (22.67)

We take the phases to be φx = π∕2 and φy = 0, so that their difference φx − φy =
π∕2, which leads to circular polarization. We include the initial conditions in the
samemanner as we did the Gaussian pulse, only now with these cosine functions.
Listing 22.3 gives our implementation EMcirc.py for waves with transverse

two-component E and H fields. Some results of the simulation are shown in
Figure 22.10, where you will note the difference in phase between E and H.

Figure 22.10 E and H fields at t = 100 for a circularly polarized wave in free space.

Listing 22.3 CircPolartzn.py solves Maxwell’s equations via FDTD time-stepping for circularly
polarized wave propagation in the z direction in free space.

CircPolarztn . py : so lves Maxwell eqs . using FDTD

from v i s u a l import *

scene = d i s p l a y (x=0 , y=0 , width =600 , he ight =400 , range=200 ,
t i t l e = ’ Circular po la r i za t i o n , E f i e l d in white , H f i e l d in yellow ’)

g loba l phy , pyx
max = 201
c = 0 .01 # Courant s t ab le i f c < 0.1

Ex = zeros ((max+2 ,2) , f l o a t)
Hy = zeros ((max+2 ,2) , f l o a t)
Ey = zeros ((max+2 ,2) , f l o a t)
Hx = zeros ((max+2 ,2) , f l o a t)

arrowcol= co lo r . white
Earrows = []
Harrows = []
f o r i in range (0 ,max , 1 0) :

Earrows . append (arrow (pos =(0 , i −100 ,0) , a x i s = (0 , 0 , 0) , co l o r=arrowcol))
Harrows . append (arrow (pos =(0 , i −100 ,0) , a x i s = (0 , 0 , 0) ,

co lo r=co lo r . ye l low))

de f p l o t f i e l d s (Ex , Ey ,Hx,Hy) :
f o r n , a r r in enumerate (Earrows) :

a r r . a x i s = (35 * Ey [10 *n , 1] , 0 , 3 5 * Ex [10 *n , 1])
f o r n , a r r in enumerate (Harrows) :

a r r . a x i s = (35 *Hy[10 *n , 1] , 0 , 3 5 *Hx[10 *n , 1])

de f i n i f i e l d s () : # I n i t i a l E & H
phx = 0 . 5 * p i
phy = 0 .0
k = arange (0 ,max)

53322.8 Application: Wave Plates

Ex [: −2 ,0] = cos (−2* p i * k /200 + phx)
Ey [: −2 ,0] = cos (−2* p i * k /200 + phy)
Hx[: −2 ,0] = cos (−2* p i * k /200 + phy + pi)
Hy[: −2 ,0] = cos (−2* p i * k /200 + phx)

de f new f i e l d s () :
whi le True : # Time stepping

r a t e (1000)
Ex [1 :max−1 ,1] = Ex [1 :max−1 ,0]+ c * (Hy [:max−2 ,0]−Hy [2 :max , 0])
Ey [1 :max−1 ,1] = Ey [1 :max−1 ,0] + c * (Hx [2 :max ,0] −Hx [:max−2 ,0])
Hx [1 :max−1 ,1] = Hx [1 :max−1 ,0] + c * (Ey [2 :max ,0] −Ey [:max−2 ,0])
Hy [1 :max−1 ,1] = Hy [1 :max−1 ,0] + c * (Ex [:max−2 ,0]−Ex [2 :max , 0])
Ex [0 , 1] = Ex [0 , 0] + c * (Hy[200−1 ,0]−Hy[1 , 0]) # Periodic BC
Ex [200 ,1] = Ex [200 ,0] + c * (Hy[200−1 ,0]−Hy[1 , 0])
Ey [0 , 1] = Ey [0 , 0] + c * (Hx[1 ,0] − Hx[200 −1 ,0])
Ey [200 ,1] = Ey [200 ,0] + c * (Hx[1 ,0] − Hx[200 −1 ,0])
Hx[0 , 1] = Hx[0 , 0] + c * (Ey [1 ,0] − Ey [200 −1 ,0])
Hx[200 ,1] = Hx[200 ,0] + c * (Ey [1 ,0] − Ey [200 −1 ,0])
Hy[0 , 1] = Hy[0 , 0] + c * (Ex[200−1 ,0]−Ex [1 , 0])
Hy[200 , 1] = Hy[200 , 0] + c * (Ex[200−1 ,0]−Ex [1 , 0])
p l o t f i e l d s (Ex , Ey ,Hx ,Hy)

Ex [:max , 0] = Ex [:max , 1] # Update f i e l d s
Ey [:max , 0] = Ey [:max , 1]
Hx [:max , 0] = Hx [:max , 1]
Hy [:max , 0] = Hy [:max , 1]

i n i f i e l d s () # I n i t i a l f i e l d
new f i e l d s () # Subsequent f i e l d

22.8
Application: Wave Plates

Problem Develop a numerical model for a wave plate that convert a linearly po-
larized EM wave into a circularly polarized one.
As can be seen in Figure 22.11a wave plate is an optical device that alters the po-

larization of light traveling through it by shifting the relative phase of the compo-
nents of the polarization vector. A quarter-wave plate introduces a relative phase
of λ∕4, where λ is the wavelength of the light. Physically, a wave plate is often a
birefringent crystal in which the different propagation velocities of waves in two

Figure 22.11 One frame from the program
quarterwave.py (on Instructor’s site) show-
ing a linearly polarized EM wave entering a
quarter-wave plate from the left and leaving

as a circularly polarized wave on the right (the
arrow on the left oscillates back and forth at
45° while the one on the right rotates).

534 22 Wave Equations II: Quantum Packets and Electromagnetic

orthogonal directions leads to the phase change. The amount of phase change is
adjusted by varying the thickness of the plate.
To attack this problem, we apply our FDTD method of solving Maxwell equa-

tions. We start with a linear polarized wave with both Ex and Ey components
propagating along the z direction. The wave enters the plate and emerges from
it still traveling in the z direction, but now with the relative phase of these fields
shifted. Of course, because this is an EM wave, there will also be coupled mag-
netic field components present, in this case Hx and Hy , and they too will need be
computed.

Theory Maxwell equations for a wave propagating along the z-axis are:
𝜕Hx

𝜕t
= + 1

μ0

𝜕Ey

𝜕z
,

𝜕Hy

𝜕t
= − 1

μ0

𝜕Ex

𝜕z
, (22.68)

𝜕Ex

𝜕t
= − 1

𝜖0

𝜕Hy

𝜕z
,
𝜕Ey

𝜕t
= + 1

𝜖0

𝜕Hx

𝜕z
. (22.69)

We take as initial conditions a wave incident from the left along the z-axis, lin-
early polarized (electric field direction of 45°), with corresponding, and perpen-
dicular, H components:

Ex(t = 0) = 0.1 cos 2πx
λ

, Ey(t = 0) = 0.1 cos
2π y
λ

, (22.70)

Hx(t = 0) = 0.1 cos 2πx
λ

, Hy(t = 0) = 0.1 cos
2π y
λ

. (22.71)

Because only the relative phases matter, we simplify the calculation by assuming
that the Ey and Hx components do not have their phases changed, but that the Ex
and Hy components do (in this case by λ∕4 when they leave the plate). Of course,
after leaving the plate and traveling in free space, there are no further changes in
the relative phase.

22.9
Algorithm

As in Section 22.7 and Figure 22.8, we follow the FDTD approach of using known
values of Ex and Hy at three earlier times and three different space positions to
obtain the solution at the present time. With the renormalized electric fields as
in (22.55), this leads to the beautifully symmetric equations:

Ek ,n+1
x = Ek ,n

x + β
(
Hk+1,n

y − Hk ,n
y

)
, (22.72)

Ek ,n+1
y = Ek ,n

y + β
(
Hk+1,n

x − Hk ,n
x

)
, (22.73)

Hk ,n+1
x = Hk ,n

x + β
(
Ek+1,n
y − Ek ,n

y

)
, (22.74)

Hk ,n+1
y = Hk ,n

y + β
(
Ek+1,n
x − Ek ,n

x
)
. (22.75)

53522.10 FDTD Exercise and Assessment

22.10
FDTD Exercise and Assessment

1. Modify the FDTD program of Listing 22.2 so that it solves the algorithm
(22.72)–(22.75). Use β = 0.01.

2. After each time step, impose a gradual increment of the phase so that the to-
tal phase change will be one-quarter of a wavelength. Our program for this,
quarterplat.py, is on the instructor’s page.

3. Verify that the plate converts an initially linearly polarized wave into a circu-
larly polarized one.

4. Verify that the plate converts an initially circularly polarized wave into a lin-
early polarized one.

5. What happens if you put two plates together? Three? Four? (Verify!)

537

23
Electrostatics via Finite Elements

In Chapter 19, we discussed the simple, but powerful, finite-differencesmethod for
solving Poisson’s and Laplace’s equations on a lattice in space. In this chapter, we
provide a basic outline of the finite-element method (FEM) for solving PDEs. Our
usual approach to solving PDEs uses the finite-difference method to approximate
various derivatives in terms of the finite differences of a function evaluated upon
a fixed grid. The FEM, in contrast, breaks space up into multiple geometric objects
(elements), determines an approximate form for the solution appropriate to each
element, and thenmatches the solutions up at the elements’ edges. The FEM is ul-
timatelymore efficient and powerful than the finite-differencesmethod; however,
muchmore work is required to derive the algorithm. In practice, it is rare to solve a
PDE from scratch by deriving the FEM for a particular problem. Rather, and for good
reasons, many FEM applications use highly developed FEM packages that get cus-
tomized for an individual problem. (Python’s finite element library is FiPy.) Our aim
is to give the reader some basic understanding of the FEM, not to develop a practi-
tioner. Accordingly, we examine a 1D problem in some detail, and then outline the
similar steps followed for the same equation extended to 2D.

23.1
Finite-Element Method⊙

The theory and practice of FEM as a numerical method for solving partial differ-
ential equations have been developed over the last 30 years and is still an active
field of research. One of the theoretical strengths of FEM is that its mathemati-
cal foundations allow for elegant proofs of the convergence of its solutions. One
of the practical strengths of FEM is that it offers great flexibility for problems on
irregular domains, or for problems with highly varying conditions or even singu-
larities. Although finite-difference methods are simpler to implement than FEM,
they are less robust mathematically and for big problems less efficient in terms
of computer time. Finite elements, in turn, are more complicated to implement,
but more appropriate and precise for complicated equations and complicated ge-
ometries. In addition, the same basic finite-element technique can be applied to

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

538 23 Electrostatics via Finite Elements

many problems with only minor modifications, and yields solutions that may be
evaluated throughout all space, not just on a grid. In fact, the FEM with vari-
ous preprogrammed multigrid packages has very much become the standard for
large-scale engineering applications. Our discussion is based upon Shaw (1992);
Li (2014); Otto (2011).

23.2
Electric Field from Charge Density (Problem)

As shown in Figure 23.1, you are given two conducting plates a distance b − a
apart, with the lower one kept at potentialUa , the upper plate at potentialUb , and
a uniform charge density ρ(x) placed between them. Your problem is to compute
the electric potential between the plates.

23.3
Analytic Solution

The relation between charge density ρ(x) and potential U(x) is given by Poisson’s
equation (19.6). For our problem, the potential U changes only in the x direction,
and so the PDE becomes the ODE:

d2U(x)
dx2

= −4πρ(x) = −1 , 0 < x < 1 , (23.1)

where we have set ρ(x) = 1∕4π to simplify the programming. The solution we
want is subject to the Dirichlet boundary conditions:

U(x = a = 0) = 0 , U(x = b = 1) = 1 , (23.2)

⇒ U(x) = − x
2
(x − 3) . (23.3)

Although, we know the analytic solution (23.3),we shall develop the FEM for solv-
ing the ODE as if it was a PDE (it would be in 2D), and as if we did not know the
solution. Although we will not demonstrate it, this method works equally well for
any charge density ρ(x).

node

Ub x = b

x = aUa

element

ρ(x)

x0

xN

Figure 23.1 A finite element solution to Laplace’s equation for two metal plates with a charge
density between them. The dots are the nodes xi , and the lines connecting the nodes are the
finite elements.

53923.4 Finite-Element (Not Difference)Methods, 1D

23.4
Finite-Element (Not Difference) Methods, 1D

In an FEM, the domain in which the PDE is solved is split into finite subdomains,
called elements, and a trial solution to the PDE in each subdomain is hypothe-
sized. Then the parameters of the trial solution are adjusted to obtain a best fit
(in the sense of Chapter 7) to the exact solution. Essentially, this approach con-
verts a given PDE into an integral equation known as the weak or variational
form (“weak” because there is no longer the requirement that the second deriva-
tive of the solution exists). A trial solution on each element is then postulated, and
this leads to the numerically intensive work of finding the best values for the pa-
rameters in the trial solution, and in matching up the various trial solutions from
different subdomains.
In general, an FEM solution follows six steps (Li, 2014):

1. Derivation of a weak form of the PDE. This is equivalent to a least-squares
minimization of the integral of the difference between the approximate and
exact solutions.

2. Discretization of the computational domains.
3. Generation of interpolating or trial functions.
4. Conversion of the “weak form” integral equation into a set of linear equations.
5. Implementation of the boundary conditions.
6. Solution of the resulting linear system of equations.

23.4.1
Weak Form of PDE

Finite-difference methods yield an approximate solution of an approximate PDE.
Finite-element methods yield the best possible global agreement between an ap-
proximate solution and the exact solution. We start the FEM with the differential
equation we want to solve,

−d2U(x)
dx2

= 4πρ(x) . (23.4)

We form an integral of the product of the exact solution U(x) and the approxi-
mate solution or trial solution Φ(x) over the solution domain. This will be used
as a measure of overall agreement between the two solutions. We assume that
the trial vanishes at the endpoints,Φ(a) = Φ(b) = 0 (we satisfy general boundary
conditions later). We next multiply both sides of the differential equation (23.1)
by Φ and integrate by parts from a to b:

−d2U(x)
dx2

Φ(x) = 4πρ(x)Φ(x) , (23.5)

−
b

∫
a

dxd
2U(x)
dx2

Φ(x) =
b

∫
a

dx4πρ(x)Φ(x) (23.6)

540 23 Electrostatics via Finite Elements

−dU(x)
dx

Φ(x)|ba +
b

∫
a

dxdU(x)
dx

Φ′(x) =
b

∫
a

dx4πρ(x)Φ(x) (23.7)

⇒

b

∫
a

dxdU(x)
dx

Φ′(x) =
b

∫
a

dx4πρ(x)Φ(x) . (23.8)

Equation 23.8 is the weak form of the PDE, “weak” in the sense that it does not
require the existence of the second derivative ofU, or the continuity of ρ. Because
the approximate and exact solutions are related by the integral of their difference
over the entire domain, the algorithmprovides the global best agreement between
the two.

23.4.2
Galerkin Spectral Decomposition

The approximate solution to the weak PDE proceeds via three steps. First, we split
the full domain of the PDE into subdomains called elements, then we find approx-
imate solutions within each element, and finally wematch the elemental solutions
onto each other. For our 1D problem, the subdomain elements are straight lines
of equal length, while for the 2D problem to be considered soon, the elements are
triangles (Figure 23.4).
The critical step in the FEM is the expansion of the solution U in terms of a set

of basis functions φi :

U(x) ≃
N−1∑
j=0

αjφ j(x) . (23.9)

Evenwhen the basis functions are not sines or cosines, this expansion is still called
a spectral decomposition. We will choose φi ’s that are convenient for computa-
tion, and so the solution reduces to determining the unknown expansion coeffi-
cients αj . Later, in order to satisfy the boundary conditions, we will add an addi-
tional term to this expansion.
Considerable study has gone into determining the effectiveness of different ba-

sis functions φi that are used to represent the solution on the finite elements. If
the sizes of the finite elements are made sufficiently small, then good accuracy is
obtained with simple piecewise-continuous basis functions φi . For our 1D prob-
lem, we use finite elements that are line segments between xi and xi+1, and we
use basis functions, representing the solution on each line segment, that have the
formof triangle or “hats” between xi−1 and xi+1 (Figure 23.2).We also require that
each basis function equals 1 at the xi vertex, φi(xi) = 1:

φi(x) =
⎧⎪⎨⎪⎩
0 , for x < xi−1 , or x > xi+1 ,
x−xi−1
hi−1

, for xi−1 ≤ x ≤ xi ,
xi+1−x

hi
, for xi ≤ x ≤ xi+1 .

(hi = xi+1 − xi) , (23.10)

54123.4 Finite-Element (Not Difference)Methods, 1D

x0 x1 xN – 1 xi – 1 xi – 2 xi + 2xi xi + 1

Φ0 Φ1 ΦN

φi φi. . .

. . .

(a) (b) (c)

Figure 23.2 Basis functions used in finite-elements solution of the 1D Laplace equation.
(a) A set of overlapping basis functions 𝜙i . Each function is a triangle from xi−1 to xi+1. (b) A
Piecewise-linear function. (c) A piecewise-quadratic function.

Because this choice means that each basis function equals 0 or 1 at the nodes,

φi(x j) = δi j , (23.11)

the values of the expansion coefficients αi must equal the values of the (still un-
known) solution at the nodes:

U(xi) ≃
N−1∑
i=0

αiφi(xi) = αiφi(xi) = αi , (23.12)

⇒ U(x) ≃
N−1∑
j=0

U(x j)φj(x) . (23.13)

Equation 23.13 makes it clear that the expansion in terms of basis functions is
essentially an interpolation between the actual solution at the nodes.

23.4.2.1 Solution via Linear Equations
Because the basis functions φi in (23.9) are known, solving for U(x) involves de-
termining the coefficients α j , which, as we just said, are the unknown values of the
true solution U(x) on the nodes. We determine those values by substituting the
expansions forU(x) andΦ(x) into the weak formof the PDE (23.8). This converts
the integral equation into a set of simultaneous linear equations. As discussed in
Chapter 6, there is a standard matrix form for a set of linear equations,

A y = b . (23.14)

Our equations fit that, with y a vector of unknowns, and where we still need to
specify the known stiffness matrix A and the known load matrix b. To that end,
we substitute the expansion U(x) ≃

∑N−1
j=0 αjφ j(x) into the weak form (23.8) to

obtain:

b

∫
a

dx d
dx

(N−1∑
j=0

αjφ j(x)

)
dΦ
dx

=
b

∫
a

dx4πρ(x)Φ(x) .

542 23 Electrostatics via Finite Elements

By successively selecting Φ(x) = φ0, φ1 ,… , φN−1, we obtain N simultaneous lin-
ear equations for the unknown αj ’s:

b

∫
a

dx d
dx

(N−1∑
j=0

αjφ j(x)

)
dφi

dx
=

b

∫
a

dx4πρ(x)φi (x) , i = 0,N − 1 . (23.15)

We factor out the unknown αj ’s and write the equations out explicitly:

α0

b

∫
a

φ′
0φ

′
0 dx + α1

b

∫
a

φ′
0φ

′
1 dx +⋯ + αN−1

b

∫
a

φ′
0φ

′
N−1 dx =

b

∫
a

4πρφ0 dx ,

α0

b

∫
a

φ′
1φ

′
0 dx + α1

b

∫
a

φ′
1φ

′
1 dx +⋯ + αN−1

b

∫
a

φ′
1φ

′
N−1 dx =

b

∫
a

4πρφ1 dx ,

⋱

α0

b

∫
a

φ′
N−1φ

′
0 dx + α1 ∫ ⋯ + αN−1

b

∫
a

φ′
N−1φ

′
N−1 dx =

b

∫
a

4πρφN−1 dx .

Because we have chosen the φi ’s to be the simple hat functions, the derivatives are
easy to evaluate analytically (for other bases they can be carried out numerically):

dφi,i+1

dx
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 , x < xi−1 , or xi+1 < x ,
1

hi−1
, xi−1 ≤ x ≤ xi ,

−1
hi

, xi ≤ x ≤ xi+1 ,

0 , x < xi , or xi+2 < x ,
1
hi

, xi ≤ x ≤ xi+1 ,
−1
hi+1

, xi+1 ≤ x ≤ xi+2 .

(23.16)

The integrations are now fairly simple:

xi+1

∫
xi−1

dx(φ′
i)
2 =

xi

∫
xi−1

dx 1
(hi−1)2

+

xi+1

∫
xi

dx 1
h2i

= 1
hi−1

+ 1
hi
, (23.17)

xi+1

∫
xi−1

dxφ′
iφ

′
i+1 =

xi+1

∫
xi−1

dxφ′
i+1φ

′
i =

xi+1

∫
xi

dx−1
h2i

= − 1
hi

, (23.18)

xi+1

∫
xi−1

dx(φ′
i+1)

2 =

xi+1

∫
xi

dx(φ′
i+1)

2 =

xi+1

∫
xi

dx+1
h2i

= + 1
hi

. (23.19)

54323.4 Finite-Element (Not Difference)Methods, 1D

We rewrite these equations in the standard matrix form (23.14) with y con-
structed from the unknown αj ’s, and the tridiagonal stiffness matrix A con-
structed from the integrals over the derivatives:

y =

⎡⎢⎢⎢⎢⎣
α0

α1

⋱

αN−1

⎤⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎣

∫ x1x0
dx4πρ(x)φ0(x)

∫ x2x1
dx4πρ(x)φ1(x)

⋱

∫ xNxN−1
dx4πρ(x)φN−1(x)

⎤⎥⎥⎥⎥⎥⎦
, (23.20)

A =

⎡⎢⎢⎢⎢⎢⎣

1
h0

+ 1
h1

− 1
h1

− 1
h0

0 …

− 1
h1

1
h1

+ 1
h2

− 1
h2

0 …

0 − 1
h2

1
h2

+ 1
h3

− 1
h3

…

⋱ ⋱ − 1
hN−1

− 1
hN−2

1
hN−2

+ 1
hN−1

⎤⎥⎥⎥⎥⎥⎦
. (23.21)

The elements inA are just combinations of inverse step sizes and so do not change
for different charge densities ρ(x). This is part ofwhatmakes FEMso efficient once
set up. The elements in b do change for different ρ’s, but the required integrals
can be performed analytically or with Gaussian quadrature (Chapter 5). Once A
and b are computed, highly efficient methods from a linear algebra package are
used to solve the matrix equations for y, and thus the expansion coefficients α j .

23.4.2.2 Dirichlet Boundary Conditions
Because the basis functions vanish at the endpoints, a solution expanded in them
must also vanishes there. This will not do in general, and so we must add to our
general solution U(x), a particular solution Uaφ0(x) that satisfies the boundary
conditions (Li, 2014):

U(x) =
N−1∑
j=0

αjφ j(x) + UaφN (x) (satisfies boundary conditions) , (23.22)

where Ua = U(xa). We substitute U(x) −Uaφ0(x) into the weak form of the PDE
to obtain (N + 1) simultaneous equations, still of the form Ay = b, but now with

A =

⎡⎢⎢⎢⎢⎣
A0,0 ⋯ A0,N−1 0

⋱

AN−1,0 ⋯ AN−1,N−1 0
0 0 ⋯ 1

⎤⎥⎥⎥⎥⎦
, b′ =

⎡⎢⎢⎢⎢⎣
b0 − A0,0Ua

⋱

bN−1 − AN−1,0Ua

Ua

⎤⎥⎥⎥⎥⎦
. (23.23)

This is equivalent to adding a unit element to A and adding a new load vector
element:

b′i = bi − Ai,0Ua , i = 1,… ,N − 1 , b′N = Ua . (23.24)

544 23 Electrostatics via Finite Elements

To impose the boundary condition at x = b, we again add a particular solu-
tion UbφN−1(x) and substitute it into the weak form to obtain

b′i = bi − Ai,N−1Ub , i = 1,… ,N − 1 , b′N = Ub . (23.25)

So nowwe need to solve the linear equationsAy = b′. For 1Dproblems, 100–1000
equations are common, while for 3D problems theremay bemillions. Because the
number of calculations varies approximately as N2, it is important to utilize an
efficient and accurate algorithm, because otherwise the round-off error can easily
dominate the solution.

23.5
1D FEM Implementation and Exercises

In Listing 23.1, we give our program LaplaceFEM_1D.py that determines the 1D
FEM solution, and in Figure 23.3 we show that solution. We see on the left of the
figure that three elements do not provide even visual agreement with the analytic
result, whereas N = 11 elements do.

1. Examine the FEM solution for the choice of parameters

a = 0 , b = 1 , Ua = 0 , Ub = 1 . (23.26)

2. Generate your own triangulation by assigning explicit x values at the nodes
over the interval [0, 1].

3. Start with N = 3 and solve the equations for N values up to 1000.
4. Examine the stiffness matrix A and ensure that it is triangular.
5. Verify that the integrations used to compute the load vector b are accurate.
6. Verify that the solution of the linear equation Ay = b is correct.
7. Plot the numerical solution for U(x) for N = 10, 100, and 1000, and compare

with the analytic solution.

0

1

0 1

U

x

N =
 3

 (s
caled)

N =
 11

Figure 23.3 Exact (line) vs. FEM solution (points) for the two-plate problem for N = 3 and N =
11 finite elements (N = 3 displaced upwards for clarity). On this scale, the N = 11 solution IS
identical to the exact one.

54523.5 1D FEM Implementation and Exercises

8. The log of the relative global error (number of significant figures) is

 = log10

|||||||
1

b − a

b

∫
a

dx
UFEM(x) − Uexact(x)

Uexact(x)

||||||| . (23.27)

Plot the global error vs. x for N = 10, 100, and 1000.

Listing 23.1 LaplaceFEM_1D.py provides an FEM solution of the 1D Laplace equation via a
Galerkin spectral decomposition. The resulting matrix equations are solved with Matplotlib.

LaplaceFEM_1D . py : Solutn 1D Laplace Eq via f i n i t e elements ; utf8 coding

from v i s u a l import *
from v i s u a l . graph import *
from numpy import *
from numpy . l i n a l g import so l v e

N = 11
h = 1 . / (N − 1)
u = zeros (N, f l o a t)
A = zeros ((N, N) , f l o a t)
b = zeros ((N, N) , f l o a t)
x2 = zeros (21 , f l o a t)
u_fem = zeros (21 , f l o a t)
u_exact = zeros (21 , f l o a t)
e r ro r = zeros (21 , f l o a t)
x = zeros (N, f l o a t)

graph1 = gd i sp l ay (width =500 , he ight =500 , t i t l e = ’ Analytic (Blue) vs FEM’ , \
x t i t l e = ’x ’ , y t i t l e = ’U ’ , xmax=1 , ymax=1 , xmin=0 , ymin=0)

funct1 = gcurve (co lo r=co lo r . b lue)
funct2 = gdots (co l o r=co lo r . red)
funct3 = gcurve (co lo r=co lo r . cyan)

f o r i in range (0 , N) :
x [i] = i * h

f o r i in range (0 , N) : # In i t i a l i z e
b [i , 0] = 0 .
f o r j in range (0 , N) :

A[i] [j] = 0 .

de f l i n 1 (x , x1 , x2) : # Hat func
re turn (x−x1) / (x2−x1)

de f l i n 2 (x , x1 , x2) :
re turn (x2−x) / (x2−x1)

de f f (x) :
re turn 1 .

de f i n t 1 (min , max) : # Simpson
no = 1000
sum = 0 .
i n t e r v a l = (max − min) / (no − 1)
f o r n in range (2 , no , 2) : # Loop odd points

x = i n t e r v a l * (n − 1)
sum += 4 * f (x) * l i n 1 (x , min , max)

f o r n in range (3 , no , 2) : # Loop even points
x = i n t e r v a l * (n − 1)
sum += 2 * f (x) * l i n 1 (x , min , max)

sum += f (min) * l i n 1 (min , min , max) + f (max) * l i n 1 (max , min , max)
sum *= i n t e r v a l / 6 .

546 23 Electrostatics via Finite Elements

re turn sum

de f i n t 2 (min , max) : # Simpson
no = 1000
sum = 0 .
i n t e r v a l = (max − min) / (no − 1)
f o r n in range (2 , no , 2) : # Loop odd points

x = i n t e r v a l * (n − 1)
sum += 4 * f (x) * l i n 2 (x , min , max)

f o r n in range (3 , no , 2) : # Loop even points
x = i n t e r v a l * (n − 1)
sum += 2 * f (x) * l i n 2 (x , min , max)

sum += f (min) * l i n 2 (min , min , max) + f (max) * l i n 2 (max , min , max)
sum *= i n t e r v a l / 6 .
re turn sum

de f numerical (x , u , xp) :
N = 11 # Interpola te solut ion
y = 0 .
f o r i in range (0 , N − 1) :

i f xp >= x [i] and xp <= x [i + 1] :
y = l i n 2 (xp , x [i] , x [i +1]) *u [i] + l i n 1 (xp , x [i] , x [i +1]) *u [i +1]

re turn y

de f exact (x) : # Analytic so lut ion
u = −x * (x − 3 .) / 2 .
re turn u

f o r i in range (1 , N) :
A[i − 1 , i − 1] = A[i − 1 , i − 1] + 1 . / h
A[i − 1 , i] = A[i − 1 , i] − 1 . / h
A[i , i − 1] = A[i − 1 , i]
A[i , i] = A[i , i] + 1 . / h
b [i − 1 , 0] = b [i − 1 , 0] + in t2 (x [i − 1] , x [i])
b [i , 0] = b [i , 0] + in t1 (x [i − 1] , x [i])

f o r i in range (1 , N) : # Dir i ch le t BC l e f t end
b [i , 0] = b [i , 0] − 0 . * A[i , 0]
A[i , 0] = 0 .
A[0 , i] = 0 .

A[0 , 0] = 1 .
b [0 , 0] = 0 .

f o r i in range (1 , N) : # Dir i ch le t BC right end
b [i , 0] = b [i , 0] − 1 . * A[i , N − 1]
A[i , N − 1] = 0 .
A[N − 1 , i] = 0 .

A[N − 1 , N − 1] = 1 .
b [N − 1 , 0] = 1 .
s o l = so l v e (A, b)

f o r i in range (0 , N) :
u [i] = so l [i , 0]

f o r i in range (0 , 21) :
x2 [i] = 0 .05 * i

f o r i in range (0 , 21) :
u_fem [i] = numerical (x , u , x2 [i])
u_exact [i] = exact (x2 [i])
funct1 . p l o t (pos =(0 .05 * i , u_exact [i]))
funct2 . p l o t (pos =(0 .05 * i , u_fem [i]))
e r ro r [i] = u_fem [i] − u_exact [i] # Global error

54723.6 Extension to 2D Finite Elements

23.5.1
1D Exploration

1. Modify your program to use piecewise-quadratic functions for interpolation,
and compare the results obtained to those obtained with the linear functions.

2. Explore the resulting electric potential and check that the charge distribution
between the plates has the explicit x dependence

ρ(x) = 1
4π

⎧⎪⎨⎪⎩
1
2
− x ,

sin x ,
1 at x = 0 , −1 at x = 1 (a capacitor) .

(23.28)

23.6
Extension to 2D Finite Elements

The steps followed to derive the 2D finite elements method are similar to those
for the 1D method, with the big difference being that the finite elements are now
2D triangles as opposed to 1D lines. Figure 23.4 shows how an arbitrarily shaped
domain might be decomposed into triangles. Although life is simpler if all the
finite elements are of the same size and shape, this is not necessary, and, indeed, as
we have shown in the figure, higher precision and faster run timesmaybe obtained
by picking smaller domains in regionswhere the solution is known to vary rapidly,
and picking larger domains in regions of slow variation. As you can imagine, 2D

Discretization

Error

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

1 2

3

25

(a) (b)

Figure 23.4 (a) Decomposition of a domain
into triangular elements. Smaller triangles are
used in regions of rapid variation and larger
triangles are used in regions of slow variation.

Discretization errors occur at boundaries. (b) A
decomposition of a rectangular domain into
32 right triangles on a mesh with 25 nodes.

548 23 Electrostatics via Finite Elements

and 3D FEMs can get rather complicated, but not to worry, we will just outline
the 2D method and refer the interested reader to Polycarpou (2006) and Reddy
(1993) for fuller discussions.
We extend our previous 1Dmethod to solve the 2D version of the Laplace equa-

tion (19.4),
𝜕2U
𝜕x2

+ 𝜕2U
𝜕 y2

= 0 . (23.29)

There are now 2D Dirichlet boundary conditions:

U(x , 0) = 0 , U(x , h) = U0 , U(0, y) = 0 , U(w, y) = 0 . (23.30)

Here, h is the height and w is the width of the rectangular domain in which we
desire a solution. Because our problem domain is now rectangular, it is easy to
divide it into right triangles, as we have shown in Figure 23.4b.

23.6.1
Weak Form of PDE

For the 2D problem, the weak form of the PDE again follows from multiplying
both sides of the PDE by the trial solution Φ, and then integrating (Polycarpou,
2006):

∫ ∫
Ω

(
𝜕Φ
𝜕x

𝜕U
𝜕x

+ 𝜕Φ
𝜕 y

𝜕U
𝜕 y

)
dx dy = ∮

Γ

(
𝜕U
𝜕x

nx +
𝜕U
𝜕 y

ny

)
dl . (23.31)

Here, Ω is a surface boundary of the domain in which we seek a solution, Γ is a
perimeter around the surface, U is the solution of the PDE, and nx and ny are
outward-facing unit normal to Γ . For Dirichlet boundary conditions the contri-
bution of the line integral on the RHS vanishes.

23.6.2
Galerkin’s Spectral Decomposition

As in the 1D method, the approximate solution U(x , y) is expanded in a set
φi(x , y) of basis functions, in this case 2D functions:

U(x , y) =
N−1∑
j=0

αjφ j(x , y). (23.32)

After setting U = φj for j = 1, 2,… ,N − 1, the weak form of the PDE becomes a
set of linear equations:

∫ ∫
Ω

[(
𝜕φi

𝜕x

)(N−1∑
j=0

αj
𝜕φ j

𝜕x

)
+

(
𝜕φi

𝜕 y

)(N−1∑
j=0

αj
𝜕φ j

𝜕 y

)]
dx dy

= ∮
Γ

(
𝜕U
𝜕x

nx +
𝜕U
𝜕 y

ny

)
dl . (23.33)

54923.6 Extension to 2D Finite Elements

We rewrite these equations in the standard matrix form (23.14) for linear equa-
tions: ⎡⎢⎢⎢⎢⎣

A11 A12 ⋯ A1N

A21 A22 ⋯ A2N

⋮ ⋮ ⋱ ⋮

AN1 AN2 ⋯ ANN

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
U1

U2

⋮

Un

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
b1
b2
⋮

bn

⎤⎥⎥⎥⎥⎦
. (23.34)

Here the Ui ’s are the vectors of unknowns, the stiffness matrix elements are

Ai j = − ∫ ∫
Ω

(
𝜕φi

𝜕x
𝜕φ j

𝜕x
+

𝜕φi

𝜕 y
𝜕φ j

𝜕 y

)
dx dy , (23.35)

and the load vector b is given by (23.20).

23.6.3
Triangular Elements

Triangular elements are often used in 2D FEM because they can be fit into many
arbitrary geometries with little overlap and with little discretization error at the
boundary edges (see Figure 23.4). As we see in Figure 23.5a, we take these ele-
ments to be triangles of arbitrary shape, with the CCW arrow indicating the di-
rection in which the nodes are numbered. While it is easier to fit arbitrary shaped
triangles into a general region, it is easier to do mathematics with right triangles,
such as the master triangle shown in Figure 23.5b. The latter have their orthogo-
nal sides lying along the ξ and η axes, with the (x , y) and (ξ , η) coordinates related
by a linear coordinate transformation.
Thesemaster triangles are the linear interpolation functions in the ξ and η vari-

ables that are used in 2D FEM. For example, the linear function for node 1 has the
form

φ1(ξ , η) = a + bξ + cη . (23.36)

The constants are determined by evaluating the functions at each node, for ex-
ample,

φ1(0, 0) = a = 1 , φ1(1, 0) = 1 + b = 0 ⇒ b = −1 , (23.37)

1 2

3

(0,0)

(0,1)

(1,0)

η

ξ

x

y

1

2

3

(a) (b)

Figure 23.5 (a) Linear triangular elements in the x–y plane. (b) Linear triangular element (mas-
ter element) in the ξ η plane.

550 23 Electrostatics via Finite Elements

φ1(0, 1) = 1 + c = 0 ⇒ c = −1 , (23.38)

⇒ φ1(ξ , η) = 1 − ξ − η . (23.39)

Similar evaluations at the other nodes yield (Polycarpou, 2006):

φ2 = ξ , φ3 = η . (23.40)

With these interpolation functions in hand, it is possible to express the x and y
coordinates of any point inside an element in terms of the master coordinates:

x = x1 + x̄21ξ + x̄31η , (23.41)

y = y1 + ȳ21ξ + ȳ31η , (23.42)

x̄i j
def
= xi − x j , ȳi j

def
= yi − y j . (23.43)

Next, we take these discrete forms for the interpolation functions, return to the
Galerkin spectral decomposition, and use (23.35) to evaluate the A matrix. The
required derivatives are evaluated using the chain rule:

𝜕φ
𝜕ξ

=
𝜕φ
𝜕x

𝜕x
𝜕ξ

+
𝜕φ
𝜕 y

𝜕 y
𝜕ξ

, (23.44)

𝜕φ
𝜕η

=
𝜕φ
𝜕x

𝜕x
𝜕η

+
𝜕φ
𝜕 y

𝜕 y
𝜕η

. (23.45)

We write these equations in the matrix form as[
𝜕φ∕𝜕ξ
𝜕φ∕𝜕η

]
=

[
𝜕x∕𝜕ξ 𝜕 y∕𝜕ξ
𝜕x∕𝜕η 𝜕 y∕𝜕η

][
𝜕φ∕𝜕x
𝜕φ∕𝜕 y

]
, (23.46)

where the 2 × 2 matrix that defines the coordinate transformation between the
(x , y) and the (ξ , η) derivatives is called the Jacobianmatrix J . After substitution
of the explicit forms for the φ’s, the Jacobian takes the simple form:

J =

[
x̄21 ȳ21
x̄31 ȳ31

]
. (23.47)

Likewise, the derivatives in theAmatrix can be expressed in terms of the x and y
derivatives by using the inverse of the Jacobain matrix:[

𝜕φ
𝜕x
𝜕Φ
𝜕 y

]
= J−1

[
𝜕φ
𝜕ξ
𝜕Φ
𝜕η

]
, (23.48)

J−1 = 1| J|
[

ȳ31 − ȳ21
−x̄31 x̄21

]
, | J| ≡ det(J) = x̄2 ȳ31 − x̄31 ȳ21 . (23.49)

55123.6 Extension to 2D Finite Elements

Continued evaluation of the Galerkin matrix elements yields[
𝜕φ1
𝜕x
𝜕φ1
𝜕 y

]
= 1| J|

[
ȳ31 − ȳ21
−x̄31 x̄21

][
𝜕φ1
𝜕ξ
𝜕φ1
𝜕η

]
= 1| J|

[
ȳ31 − ȳ21
−x̄31 x̄21

][
−1
−1

]
(23.50)

= 1| J|
[
ȳ21 − ȳ31
x̄31 −x̄21

]
= 1| J|

[
ȳ23
x̄32

]
. (23.51)

After similar evaluations for φ2 and φ3, we obtain the six needed derivatives:

𝜕φ1

𝜕x
=

ȳ23| J| ,
𝜕φ1

𝜕 y
=

x̄32| J| , (23.52)

𝜕φ2
𝜕x

=
ȳ31| J| ,

𝜕φ2
𝜕 y

=
x̄13| J| , (23.53)

𝜕φ3

𝜕x
=

ȳ12| J| ,
𝜕φ3

𝜕 y
=

x̄21| J| . (23.54)

23.6.4
Solution as Linear Equations

The final evaluations of the stiffness matrix elements are made using the ξ and η
coordinates, for example,

A11 = −
1

∫
0

1−η

∫
0

[
ȳ223 + x̄232| J|2

] | J|dξ dη . (23.55)

These elements are found to form a symmetric matrix with values:

A12 = A21 = −
ȳ23 ȳ31 + x̄32 x̄13

2| J| , A11 = −
ȳ223 + x̄232
2| J| , (23.56)

A13 = A31 = −
ȳ23 ȳ12 + x̄32 x̄21

2| J| , A22 = −
ȳ231 + x̄213

2 J
, (23.57)

A23 = A32 = −
ȳ31 ȳ12 + x̄13 x̄21

2| J| , A33 = −
ȳ212 + x̄221

2 J
. (23.58)

Next we evaluates the coordinate transformations:[
x − x1
y − y1

]
=

[
x̄21 x̄31
ȳ21 ȳ31

][
ξ
η

]
, (23.59)

[
ξ
η

]
= 1

x̄21 ȳ31 − x̄31 ȳ21

[
ȳ31 −x̄31
− ȳ21 x̄21

][
x − x1
y − y1

]
. (23.60)

After substituting for ξ and η, we are left with the desired interpolation functions
expressed in terms of just x and y.

552 23 Electrostatics via Finite Elements

23.6.5
Imposing Boundary Conditions

The procedure to impose Dirichlet’s boundary conditions for the 2D case is es-
sentially the same as that for the 1D case (Section 23.4.2.2), with it now applied to
all nodes that lie on the boundary Γ .

Listing 23.2 The code LaplaceFEM_2D.py solves the 2D Laplace equation using a finite ele-
ments method.

LaplaceFEM_2D . py solve 2D Laplace Eq via F in i t e elements method ;
utf−8coding

from numpy import *
from numpy . l i n a l g import so l v e
import pylab as p
from mpl_ too l k i t s . mplot3d import Axes3D

Num squares , nodes , t r iangles , mesh coords , I n i t i a l i z a t i on

Width = 1 . ; Height = 1 . ; Nx = 20 ; Ny = 20 ; U0 = 100
Xurc = Width ; Yurc = Height ; Y l l c = 0 ; X l l c = 0
Ns = Nx * Ny ; Nn = (Nx + 1) * (Ny + 1)
Dx = (Xurc−Xl l c) /Nx ; Dy = (Yurc−Y l l c) /Ny ; Ne = 2 * Ns
ge = zeros (Ne , f l o a t)
x = zeros (Ne , f l o a t) ; y = zeros (Ne , f l o a t)
Ebcnod = zeros (Ne , i n t) ; Ebcva l = zeros (Ne , i n t)
node = zeros ((Ne + 1 , Ne + 1) , i n t)

f o r i in range (1 , Nn + 1) :
x [i] = (i − 1) % (Nx + 1) * Dx
y [i] = f l o o r ((i − 1) / (Nx + 1)) * Dy

Connectivity Information
f o r i in range (1 , Ns + 1) :

node [2 * i − 1 , 1] = i + f l o o r ((i − 1) / Nx)
node [2 * i − 1 , 2] = node [2 * i − 1 , 1] + 1 + Nx + 1
node [2 * i − 1 , 3] = node [2 * i − 1 , 1] + 1 + Nx + 1 − 1
node [2 * i , 1] = i + f l o o r ((i − 1) / Nx)
node [2 * i , 2] = node [2 * i , 1] + 1
node [2 * i , 3] = node [2 * i , 1] + 1 + Nx + 1

Dir i ch le t Boundary Conditions
Tnebc = 0
f o r i in range (0 , Nn) :

i f x [i] == Xl l c or x [i] == Xurc or y [i] == Y l l c :
Tnebc = Tnebc + 1
Ebcnod [Tnebc] = i
Ebcval [Tnebc] = 0

e l i f y [i] == Yurc :
Tnebc = Tnebc + 1
Ebcnod [Tnebc] = i
Ebcval [Tnebc] = U0

I n i t i a l i z e A matrix , b vector , form matrix
A = zeros ((Nn + 1 , Nn + 1) , f l o a t)
b = zeros ((Nn + 1 , 1) , f l o a t)
f o r e in range (1 , Ne) :

x21 = x [node [e , 2]] − x [node [e , 1]]
x31 = x [node [e , 3]] − x [node [e , 1]]
x32 = x [node [e , 3]] − x [node [e , 2]]
x13 = x [node [e , 1]] − x [node [e , 3]]
y12 = y [node [e , 1]] − y [node [e , 2]]

55323.6 Extension to 2D Finite Elements

y21 = y [node [e , 2]] − y [node [e , 1]]
y31 = y [node [e , 3]] − y [node [e , 1]]
y23 = y [node [e , 2]] − y [node [e , 3]]
J = x21 * y31 − x31 * y21

Evaluate A matrix , element vector ge
A[1 , 1] = −(y23 * y23 + x32 * x32) / (2 * J)
A[1 , 2] = −(y23 * y31 + x32 * x13) / (2 * J)
A[2 , 1] = A[1 , 2]
A[1 , 3] = −(y23 * y12 + x32 * x21) / (2 * J)
A[3 , 1] = A[1 , 3]
A[2 , 2] = −(y31 * y31 + x13 * x13) / (2 * J)
A[2 , 3] = −(y31 * y12 + x13 * x21) / (2 * J)
A[3 , 2] = A[2 , 3]
A[3 , 3] = −(y12 * y12 + x21 * x21) / (2 * J)
ge [1] = 0
ge [2] = 0
ge [3] = 0

Evaluate element pe & update A matrix
f o r i in range (1 , 4) :

f o r j in range (1 , 4) :
A[node [e , i] , node [e , j]] = A[node [e , i] , node [e , j]] \

+ A[i , j]
b [node [e , i]] = b [node [e , i]] + ge [i]

Imposition of Dir ich le t boundary condit ions
f o r i in range (1 , Tnebc) :

f o r j in range (1 , Nn + 1) :
i f j != Ebcnod [i] :

b [j] = b [j] − A[j , Ebcnod [i]] * Ebcva l [i]
A[Ebcnod [i] , :] = 0
A[: , Ebcnod [i]] = 0
A[Ebcnod [i] , Ebcnod [i]] = 1
b [Ebcnod [i]] = Ebcval [i]

Solution , place on grid , plot
V = l i n a l g . so l v e (A, b)
(X, Y) = p . meshgrid (arange (Xl lc , Xurc + 0 . 1 , 0 . 1 * (Xurc − Xl l c)) ,

arange (Yl l c , Yurc + 0 . 1 , 0 . 1 * (Yurc − Y l l c)))
Vgrid = zeros ((1 1 , 11) , f l o a t)
f o r i in arange (1 , 11) :

f o r j in arange (1 , 11) :
f o r e in range (0 , Ne) :

x2p = x [node [e , 2]] − X[i , j]
x3p = x [node [e , 3]] − X[i , j]
y2p = y [node [e , 2]] − Y[i , j]
y3p = y [node [e , 3]] − Y[i , j]
A1 = 0 .5 * abs (x2p * y3p − x3p * y2p)
x2p = x [node [e , 2]] − X[i , j]
x1p = x [node [e , 1]] − X[i , j]
y2p = y [node [e , 2]] − Y[i , j]
y1p = y [node [e , 1]] − Y[i , j]
A2 = 0 .5 * abs (x2p * y1p − x1p * y2p)
x1p = x [node [e , 1]] − X[i , j]
y21 = y [node [e , 2]] − y [node [e , 1]]
y1p = y [node [e , 1]] − Y[i , j]
x21 = x [node [e , 2]] − x [node [e , 1]]
A3 = 0 .5 * abs (x1p * y3p − x3p * y1p)
y3p = y [node [e , 3]] − Y[i , j]
x31 = x [node [e , 3]] − x [node [e , 1]]
x3p = x [node [e , 3]] − X[i , j]
y31 = y [node [e , 3]] − y [node [e , 1]]
J = x21 * y31 − x31 * y21
i f abs (J / 2 − (A1 + A2 + A3)) < 0.00001 * J / 2 :

k s i = (y31 * (X[i , j] − x [node [e , 1]]) − x31 * (Y[i , j]
− y [node [e , 1]])) / J

554 23 Electrostatics via Finite Elements

i t a = (−y21 * (X[i , j] − x [node [e , 1]]) + x21 * (Y[i ,
j] − y [node [e , 1]])) / J

N1 = 1 − k s i − i t a
N2 = k s i
N3 = i t a
Vgrid [i , j] = N1 * V[node [e , 1]] + N2 * V[node [e , 2]] \

+ N3 * V[node [e , 3]]

Plot the f i n i t e element solut ion of V using a contour plot
f i g = p . f i g u r e ()
ax = Axes3D (f i g)
ax . p lot_wire f rame (X, Y , Vgrid , co l o r= ’ r ’)
ax . s e t _ x l a b e l (’X ’)
ax . s e t _ y l a b e l (’Y ’)
ax . s e t _ z l a b e l (’ Potent ia l ’)
p . show ()

23.6.6
FEM 2D Implementation and Exercise

As shown in Figure 23.4b, our application of 2D FEM has the solution domain
covered by a collection of triangular elements. Each triangle in the mesh is num-
bered, in this case from 1 to 32. In addition, the three vertices of each triangle are
numbered in a counter-clockwise direction from 1 to 3. Next, each node in the
mesh (the dark circles in Figure 23.4 where lines intersect) is numbered, in this
case from 1 to 25. Accordingly, the stiffness matrix A in (23.34) has dimension
25 × 25, while the load vector b has dimension 25 × 1.
Listing 23.2 presents our implementation of the 2D FEM solution to the 2D

Laplace equation, based on the Matlab code of Polycarpou (2006). It utilizes 800
elements and 441 nodes. The output of this code is essentially the same as our
solution to the same problem using the finite-differences method.

23.6.7
FEM 2D Exercises

1. Examine the effect of varying the domain height andwidth, as well as the num-
ber of elements.

2. Compare this numerical solution to the analytic one (the Fourier series in Sec-
tion 19.3) and determine how the precision changes as the number of elements
is varied.

3. Modify the program so that it solves the parallel plate capacitor problem and
compare to the finite-difference solution.

555

24
Shocks Waves and Solitons

In thefirst part of this chapter,weextend thediscussionofwaves inChapters21and
22 by progressively including nonlinearities, dispersion, and hydrodynamic effects.
We end upwith the Korteweg–de Vries equation and shallow-water solitons. In the
second part of this chapter, we explore the inclusion of related nonlinear physics
for the pendulum chain, and end up with the Sine–Gordon equation and solitons
in solids.

24.1
Shocks and Solitons in Shallow Water

In 1834, J. Scott Russell (Russell, 1944) observed on the Edinburgh–Glasgowcanal
(repeated recently in Figure 24.1a):

I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped – not so the mass
of water in the channel which it had put in motion; it accumulated round the
prow of the vessel in a state of violent agitation, then suddenly leaving it be-
hind, rolled forward with great velocity, assuming the form of a large solitary
elevation, a rounded, smooth and well-defined heap of water, which continued
its course along the channel apparently without change of form or diminution
of speed. I followed it on horseback, and overtook it still rolling on at a rate of
some eight or nine miles an hour, preserving its original figure some thirty feet
long and a foot to a foot and a half in height. Its height gradually diminished,
and after a chase of one or two miles I lost it in the windings of the channel.
Such, in the month of August 1834, was my first chance interview with that
singular and beautiful phenomenon. . .

Russell also noticed that an initial, arbitrarywaveform set inmotion in the channel
evolves into two or more waves that move at different velocities and progressively
move apart until they form individual solitary waves. In Figure 24.2b, we see a
single step-like wave breaking up into approximately eight of these solitary waves
(now called solitons). These eight solitons occur so frequently that some consider
them the equivalent of normal modes for nonlinear systems. Russell went on to

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

556 24 Shocks Waves and Solitons

x

12080400

t

0

2

4

6

8

(a) (b)

Figure 24.1 (a) A re-creation on the Union
Canal near Edinburgh of Russel’s soliton
(www.ma.hw.ac.uk/solitons/press.html, Na-
ture v. 376, 3 August 1995, p. 373). (b) Two
shallow-water solitary waves crossing each

other computed with the code Soliton.py.
The taller soliton on the left catches up with
and overtakes the shorter one at t ≃ 5. The
waves resume their original shapes after the
collision.

produce these solitary waves in a laboratory and to empirically deduced that their
speed c is related to the depth h of the water in the canal and to the amplitude A
of the wave by

c2 = g(h + A) , (24.1)

where g is the acceleration as a result of gravity. Equation 24.1 implies an effect not
found in linear systems, namely, that waveswith greater amplitudes A travel faster
than thosewith smaller amplitudes.Observe that this is similar to the formation of
shockwaves, but different fromdispersion inwhichwaves of differentwavelengths
have different velocities. The dependence of c on the amplitude A is illustrated in
Figure 24.2, where we see a taller soliton catching up with and passing through a
shorter one.

Problem Explain Russell’s observations and see if they relate to the formation
of tsunamis. The latter are ocean waves that form from sudden changes in the
level of the ocean floor, and then travel over long distances without dispersion or
attenuation, possibly reeking havoc on distant shores.

24.2
Theory: Continuity and Advection Equations

The motion of a fluid is described by the continuity equation and the Navier–
Stokes equation (Landau and Lifshitz, 1976). We will discuss the former here and
the latter in Section 25.2. The continuity equation describes the conservation of
mass:

𝜕ρ(x, t)
𝜕t

+ 𝛁 ⋅ j = 0 , j
def
= ρv(x, t) . (24.2)

55724.2 Theory: Continuity and Advection Equations

12

2

1

0

0

0

4 t

8

20
40

x 60

345678

Figure 24.2 The formation of a tsunami. A sin-
gle two-level waveform at time zero progres-
sively breaks up into eight solitons (labeled)
as time increases. The tallest soliton (1) is nar-

rower and faster in its motion to the right. You
can generate an animation of this with the
program SolitonAnimate.py.

Here, ρ(x, t) is the mass density, v(x, t) is the velocity of the fluid, and the prod-
uct j = ρv is the mass current. As its name implies, the divergence 𝛁 ⋅ j describes
the spreading of the current in a region of space, asmight occur if therewere a cur-
rent source there. Physically, the continuity equation (24.2) states that changes in
the density of the fluid within some region of space arise from the flow of current
in and out of that region.
For 1D flow in the x direction, and for a fluid that is moving with a constant

velocity v = c, the continuity equation (24.2) takes the simple form
𝜕ρ
𝜕t

+ c
𝜕ρ
𝜕x

= 0 . (24.3)

This equation is known as the advection equation, where the term “advection” is
used to describe the horizontal transport of a quantity from one region of space
to another as a result of a flow velocity field. For instance, advection describes
dissolved salt transported in water.
The advection equation looks like a first-derivative form of the wave equation,

and indeed, the two are related. A simple substitution proves that any function
with the form of a traveling wave,

u(x , t) = f (x − ct) , (24.4)

will be a solution of the advection equation. If we consider a surfer riding along
the crest of a traveling wave, that is, remaining at the same position relative to the
wave’s shape as time changes, then the surfer does not see the shape of the wave
change in time, which implies that

x − ct = constant ⇒ x = ct + constant . (24.5)

The speed of the surfer is, therefore dx∕dt = c, which is a constant. Any func-
tion f (x − ct) is clearly a traveling wave solution in which an arbitrary pulse is
carried along by the fluid at velocity c without changing shape.

558 24 Shocks Waves and Solitons

24.2.1
Advection Implementation

Although the advection equation is simple, trying to solve it by a simple differ-
encing scheme (the leapfrog method) may lead to unstable numerical solutions.
As we shall see when we look at the nonlinear version of this equation, there are
better ways to solve it. Listing 24.1 presents our code AdvecLax.py for solving the
advection equation using the Lax–Wendroff method (a better method).

Listing 24.1 AdvecLax.py solves the advection equation via the Lax–Wendroff scheme.

AdvecLax . py : Solve advection eqnt v ia Lax−−Wendroff scheme
du/ dt+ c *d(u * *2/2) /dx=0; u (x , t =0)=exp(−300(x−0.12) * *2)

from v i s u a l . graph import *
m = 100 # No steps in x
c = 1 . ; dx = 1 . /m; beta = 0 .8 # beta = c * dt /dx
u = [0] * (m+1) ; # I n i t i a l Numeric
u0 = [0] * (m+1) ;
uf = [0] * (m+1)
dt = beta * dx / c ;
T_ f ina l = 0 . 5 ;
n = i n t (T_ f ina l / dt) # N time steps

graph1 = gd i sp l ay (width =600 , he ight =500 , x t i t l e = ’x ’ , xmin=0 , xmax=1 ,
ymin=0 , ymax=1 , y t i t l e = ’u(x) , Cyan=exact , Yellow=Numerical ’ ,
t i t l e = ’ Advection Eqn : I n i t i a l (red) , Exact (cyan) ,\
Numerical Lax - - Wendroff (yel low) ’)

i n i t f n = gcurve (co lo r = co lo r . red) ;
e xac t fn = gcurve (co lo r = co lo r . cyan)
numfn = gcurve (co l o r = co lo r . ye l low) # Numerical so lut ion

de f p lo t In iExac () : # Plot i n i t i a l & exact so lut ion
f o r i in range (0 , m) :

x = i * dx
u0 [i] = exp (−300 . * (x − 0 . 1 2) * * 2) # Gaussian i n i t i a l
i n i t f n . p l o t (pos = (0 . 0 1 * i , u0 [i])) # I n i t i a l function
uf [i] = exp (−300 . * (x − 0 .12 − c * T_ f ina l) * * 2) # Exact in cyan
exac t fn . p l o t (pos = (0 . 0 1 * i , uf [i]))
r a t e (50)

p lo t In iExac ()

de f numerical () : # Finds Lax−−Wendroff so lut ion
f o r j in range (0 , n+1) : # Time loop

f o r i in range (0 , m − 1) : # x loop
u [i + 1] = (1. − beta * beta) * u0 [i +1] − (0 .5* beta) * (1 . − beta) * u0 [i +2] \

+ (0 . 5 * beta) * (1 . + beta) * u0 [i] # Algorithm
u [0] = 0 . ; u [m−1] = 0 . ; u0 [i] = u [i]

numerical ()
f o r j in range (0 , m−1) :

r a t e (50)
numfn . p l o t (pos = (0 . 0 1 * j , u [j])) # Plot numerical Solution

55924.3 Theory: Shock Waves via Burgers’ Equation

24.3
Theory: Shock Waves via Burgers’ Equation

In a later section, wewill examine theKorteweg–deVries equation’s description of
solitary waves. In order to understand the physics contained in that equation, we
study, one at a time, some of the terms in it. To start, consider Burgers’ equation
(Burgers, 1974):

𝜕u
𝜕t

+ 𝜖u 𝜕u
𝜕x

= 0 , (24.6)

𝜕u
𝜕t

+ 𝜖
𝜕(u2∕2)

𝜕x
= 0 , (24.7)

where the second equation is the conservative form. This equation can be viewed
as a variation on the advection equation (24.3) in which the wave speed c = 𝜖u
is proportional to the amplitude of the wave, as Russell found for his waves. The
second, nonlinear, term in Burgers’ equation leads to some unusual behaviors.
Indeed, von Neumann studied this equation as a simple model for turbulence
(Falkovich and Sreenivasan, 2006).
In the advection equation (24.3), all points on the wave move at the same

speed c, and so the shape of the wave remains unchanged in time. In Burgers’
equation (24.6), the points on the wave move (“advect”) themselves such that
the local speed depends on the local wave’s amplitude, with the high parts of the
wave moving progressively faster than the low parts. This changes the shape of
the wave in time; if we start with a wave packet that has a smooth variation in
height, the high parts will speed up and push their way to the front of the packet,
thereby forming a sharp leading edge known as a shock wave (Tabor, 1989). A
shock wave solution to Burgers’ equation with 𝜖 = 1 is shown in Figure 24.3.

0

20
0

12

0

4

x t

u(x,t)

Figure 24.3 A visualization showing the wave height vs. position for increasing times showing
the formation of a shock wave (sharp edge) from an initial sine wave.

560 24 Shocks Waves and Solitons

24.3.1
Lax–Wendroff Algorithm for Burgers’ Equation

We first solve Burgers’ equation (24.3) via the usual approach in which we express
the derivatives as central differences. This leads to a leapfrog scheme for the future
solution in terms of present and past ones:

u(x , t + Δt) = u(x , t − Δt) − β
[
u2(x + Δx , t) − u2(x − Δx , t)

2

]
,

ui, j+1 = ui, j−1 − β

[
u2
i+1, j − u2

i−1, j

2

]
, β = 𝜖

Δx∕Δt
. (24.8)

Here, u2 is the square of u and is not its second derivative, and β is a ratio of
constants known as the Courant–Friedrichs–Lewy (CFL) number. As you should
prove for yourself, β < 1 is required for stability.
While we have used a leapfrog method successfully in the past, its low-order

approximation for the derivative becomes inaccurate when the gradients can get
large, as happens with shock waves, and so the leapfrog algorithm may become
unstable (Press et al., 1994). TheLax–Wendroffmethod attains better stability and
accuracy by retaining second-order differences for the time derivative:

u(x , t + Δt) ≃ u(x , t) + 𝜕u
𝜕t

Δt + 1
2
𝜕2u
𝜕t2

Δt2 . (24.9)

To covert (24.9) to an algorithm, we use Burgers’ equation 𝜕u∕𝜕t = −𝜖𝜕(u2∕2)∕𝜕x
for the first-order time derivative. Likewise, we use Burger’s equation to express
the second-order time derivative in terms of space derivatives:

𝜕2u
𝜕t2

= 𝜕

𝜕t

[
−𝜖 𝜕

𝜕x

(
u2

2

)]
= −𝜖 𝜕

𝜕x
𝜕

𝜕t

(
u2

2

)
(24.10)

= −𝜖 𝜕

𝜕x

(
u 𝜕u
𝜕t

)
= 𝜖2

𝜕

𝜕x

[
u 𝜕

𝜕x

(
u2

2

)]
. (24.11)

We next substitute these derivatives into the Taylor expansion (24.9) to obtain

u(x , t + Δt) = u(x , t) − Δt𝜖 𝜕

𝜕x

(
u2

2

)
+ (Δt)2

2
𝜖2

𝜕

𝜕x

[
u 𝜕

𝜕x

(
u2

2

)]
.

(24.12)

We now replace the outer x derivatives by central differences of spacing Δx∕2:

u(x , t + Δt) = u(x , t) − Δt𝜖
2

u2(x + Δx , t) − u2(x − Δx , t)
2Δx

+ (Δt)2 𝜖2

2

× 1
2Δx

[
u
(
x + Δx

2
, t
)

𝜕

𝜕x
u2

(
x + Δx

2
, t
)
− u

(
x − Δx

2
, t
)

× 𝜕

𝜕x
u2

(
x − Δx

2
, t
)]

. (24.13)

56124.3 Theory: Shock Waves via Burgers’ Equation

Next we approximate u(x ± Δx∕2, t) by the average of adjacent grid points,

u(x ± Δx
2

, t) ≃ u(x , t) + u(x ± Δx , t)
2

, (24.14)

and apply a central-difference approximation to the second derivatives:

𝜕u2(x ± Δx∕2, t)
𝜕x

= u2(x ± Δx , t) − u2(x , t)
±Δx

. (24.15)

Finally, putting all these derivatives together yields the discrete form

ui, j+1 = ui, j −
β
4

(
u2
i+1, j − u2

i−1, j

)
+

β2

8
×
[
(ui+1, j + ui, j)

(
u2
i+1, j − u2

i, j

)
− (ui, j + ui−1, j)

(
u2
i, j − u2

i−1, j

)]
,

(24.16)

where we have substituted the CFL number β. This Lax–Wendroff scheme is ex-
plicit, centered upon the grid points, and stable for β < 1 (small nonlinearities).

24.3.2
Implementation and Assessment of Burgers’ Shock Equation

1. Write a program to solve Burgers’ equation via the leapfrog method.
2. Define arrays u0[100] and u[100] for the initial data and the solution.
3. Take the initial wave to be sinusoidal, u0[i]= 3 sin(3.2x), with speed c = 1.
4. Incorporate the boundary conditions u[0]=0 and u[100]=0.
5. Keep the CFL number β < 1 for stability.
6. Now modify your program to solve Burgers’ shock equation (24.7) using the

Lax–Wendroff method (24.16).
7. Save the initial data and the solutions for a number of times in separate files

for plotting.
8. Plot the initial wave and the solution for several time values on the same graph

in order to see the formation of a shock wave (see Figure 24.3).
9. Run the code for several increasingly large CFL numbers. Is the stability con-

dition β < 1 correct for this nonlinear problem?
10. Compare the leapfrog and Lax–Wendroffmethods.With the leapfrogmethod

you should see shock waves forming but breaking up into ripples as the
square edge develops. The ripples are numerical artifacts. The Lax–Wendroff
method should give a better shock wave (square edge), although some ripples
may still occur.

Listing 24.1 presents our implementation of the Lax–Wendroff method.

562 24 Shocks Waves and Solitons

24.4
Including Dispersion

We have just seen that Burgers’ equation can turn an initially smooth wave into a
square-edged shock wave. An inverse wave phenomenon is dispersion, in which a
waveform disperses or broadens as it travels through a medium. Dispersion does
not cause waves to lose energy and attenuate, but rather to lose information with
time. Physically, dispersion may arise when the propagating medium has struc-
tures with a spatial regularity equal to some fraction of a wavelength. Mathemat-
ically, dispersion may arise from terms in the wave equation that contain higher
order space derivatives. For example, consider the waveform

u(x , t) = e±i(kx−ωt) (24.17)

corresponding to a plane wave traveling to the right (“traveling” because the
phase kx − ωt remains unchanged if you increase x with time). When this u(x , t)
is substituted into the advection equation (24.3), we obtain

ω = ck . (24.18)

This equation is an example of a dispersion relation, that is, a relation between
frequency ω and wave vector k. Because the group velocity of a wave

vg =
𝜕ω
𝜕k

, (24.19)

the linear dispersion relation (24.18) leads to all frequencies having the same
group velocity c and thus dispersionless propagation.
Let us now imagine that awave is propagatingwith a small amount of dispersion,

that is, with a frequency that has somewhat less than a linear increase with the
wave number k:

ω ≃ ck − βk3 . (24.20)

Note that we skip the even powers in (24.20), so that the group velocity,

vg =
dω
dk

≃ c − 3βk2 , (24.21)

is the same for waves traveling to the left the or the right. Nowwe work backward.
If plane-wave solutions like (24.17) were to arise from a wave equation, then (as
verified by substitution) the ω term of the dispersion relation (24.20) would arise
from a first-order time derivative, the ck term from a first-order space derivative,
and the k3 term from a third-order space derivative:

𝜕u(x , t)
𝜕t

+ c 𝜕u(x , t)
𝜕x

+ β 𝜕
3u(x , t)
𝜕x3

= 0 . (24.22)

We leave it as an exercise to show that solutions to this equation do indeed have
waveforms that disperse in time.

56324.5 Shallow-Water Solitons: The KdeV Equation

24.5
Shallow-Water Solitons: The KdeV Equation

In this section, we put all of the pieces together that are needed to generate
shallow-water solitary waves. This is a subject for which the computer has been
absolutely essential for discovery and understanding. In addition, we recommend
that you look at some of the soliton animations we provide online.

We want to understand the unusual water waves that occur in shallow, narrow
channels such as canals (Abarbanel et al., 1993; Tabor, 1989). The analytic de-
scription of this “heap of water” was given byKorteweg and deVries (1895) (KdeV)
with the partial differential equation

𝜕u(x , t)
𝜕t

+ εu(x , t)𝜕u(x , t)
𝜕x

+ μ 𝜕
3u(x , t)
𝜕x3

= 0 . (24.23)

As we discussed in Section 24.1 in our study of Burgers’ equation, the nonlinear
term εu𝜕u∕𝜕t leads to a sharpening of the wave and ultimately a shock wave. In
contrast, as we discussed in our study of dispersion, the 𝜕3u∕𝜕x3 term produces
broadening, while the 𝜕u∕𝜕t term produces traveling waves. For the proper pa-
rameters and initial conditions, the dispersive broadening exactly balances the
nonlinear narrowing, and a stable traveling wave is formed.
Korteweg and de Vries solved (24.23) analytically and proved that the speed

(24.1) given by Russell is in fact correct. Seventy years after its discovery, theKdeV
equation was rediscovered by Zabusky and Kruskal (1965), who solved it numeri-
cally and found that a cos(x∕L) initial condition broke up into eight solitary waves
(Figure 24.2). They also found that the parts of the wave with larger amplitudes
moved faster than those with smaller amplitudes, which is why the higher peaks
tend to be on the right in Figure 24.2. As if wonders never cease, Zabusky and
Kruskal, who coined the name soliton for these solitary waves, also observed that
a faster peak passed through a slower one unscathed (Figure 24.1).

24.5.1
Analytic Soliton Solution

The trick in analytic approaches to these types of nonlinear equations is to sub-
stitute a guessed solution that has the form of a traveling wave

u(x , t) = u(ξ = x − ct) . (24.24)

This form means that if we move with a constant speed c, we will see a constant
wave form (but now the speed will depend on the magnitude of u). There is no
guarantee that this form of a solution exists, but it is a lucky guess because sub-
stituting it into the KdeV equation produces a solvable ODE:

−c 𝜕u
𝜕ξ

+ 𝜖u 𝜕u
𝜕ξ

+ μd
3u

dξ3
= 0 , (24.25)

564 24 Shocks Waves and Solitons

⇒ u(x , t) = −c
2
sech2

[1
2
√
c(x − ct − ξ0)

]
, (24.26)

where ξ0 is the initial phase. We see in (24.26) an amplitude that is proportional
to the wave speed c, and a sech2 function that gives a single lump-like wave. This
is an analytic form for a soliton.

24.5.2
Algorithm for KdeV Solitons

The KdeV equation is solved numerically using a finite-difference scheme with
the time and space derivatives given by central-difference approximations:

𝜕u
𝜕t

≃
ui, j+1 − ui, j−1

2Δt
, 𝜕u

𝜕x
≃

ui+1, j − ui−1, j

2Δx
. (24.27)

To approximate 𝜕3u(x , t)∕𝜕x3 , we expand u(x , t) to (Δt)3 about the four points
u(x ± 2Δx , t) and u(x ± Δx , t),

u(x ± Δx , t) ≃ u(x , t) ± (Δx)𝜕u
𝜕x

+ (Δx)2

2!
𝜕2u
𝜕2x

± (Δx)3

3!
𝜕3u
𝜕x3

, (24.28)

which we solve for 𝜕3u(x , t)∕𝜕x3 . Finally, the factor u(x , t) in the second term
of (24.23) is taken as the average of three x values all with the same t:

u(x , t) ≃
ui+1, j + ui, j + ui−1, j

3
. (24.29)

We substitute these approximations to obtain the algorithm for the KdeV equa-
tion:

ui, j+1 ≃ ui, j−1 −
𝜖

3
Δt
Δx

[
ui+1, j + ui, j + ui−1, j

] [
ui+1, j − ui−1, j

]
− μ Δt

(Δx)3
[
ui+2, j + 2ui−1, j − 2ui+1, j − ui−2, j

]
. (24.30)

To apply this algorithm to predict future times, we need to know u(x , t) at present
and past times. The initial time solution ui,1 is known for all positions i via the
initial condition. To find ui,2, we use a forward-difference scheme in which we
expand u(x , t), keeping only two terms for the time derivative:

ui,2 ≃ ui,1 −
𝜖Δt
6Δx

[
ui+1,1 + ui,1 + ui−1,1

] [
ui+1,1 − ui−1,1

]
−

μ
2

Δt
(Δx)3

[
ui+2,1 + 2ui−1,1 − 2ui+1,1 − ui−2,1

]
. (24.31)

The keen observer will note that there are still some undefined columns of
points, namely, u1, j , u2, j , uNmax−1, j, and uNmax , j , where Nmax is the total num-
ber of grid points. A simple technique for determining their values is to as-
sume that u1,2 = 1 and uNmax,2 = 0. To obtain u2,2 and uNmax−1,2, assume that

56524.5 Shallow-Water Solitons: The KdeV Equation

ui+2,2 = ui+1,2 and ui−2,2 = ui−1,2 (avoid ui+2,2 for i = Nmax−1, and ui−2,2 for i = 2).
To carry out these steps, approximate (24.31) so that

ui+2,2 + 2ui−1,2 − 2ui+1,2 − ui−2,2 → ui−1,2 − ui+1,2 . (24.32)

The truncation error and stability condition for our algorithm are related:

(u) = [(Δt)3] + [Δt(Δx)2] , (24.33)

1
(Δx∕Δt)

[
𝜖|u| + 4

μ
(Δx)2

]
≤ 1 . (24.34)

The first equation shows that smaller time and space steps lead to a smaller ap-
proximation error, yet because the round-off error increases with the number of
steps, the total error does not necessarily decrease (Chapter 3). Yet, we are also
limited in how small the steps can be made by the stability condition (24.34),
which indicates that making Δx too small always leads to instability. Care and
experimentation are required.

24.5.3
Implementation: KdeV Solitons

Modify or run the program Soliton.py in Listing 24.2 that solves the KdeV equa-
tion (24.23) for the initial condition

u(x , t = 0) = 1
2

[
1 − tanh

(x − 25
5

)]
, (24.35)

with parameters 𝜖 = 0.2 and μ = 0.1. Start with Δx = 0.4 and Δt = 0.1. These
constants are chosen to satisfy (24.33) with |u| = 1.

1. Define a 2D array u[131,3] with the first index corresponding to the position x
and the second to the time t. With our choice of parameters, the maximum
value for x is 130 × 0.4 = 52.

2. Initialize the time to t = 0 and assign values to u[i,1].
3. Assign values to u[i,2], i = 3, 4,… , 129, corresponding to the next time inter-

val. Use (24.31) to advance the time but note that you cannot start at i = 1 or
end at i = 131 because (24.31) would include u[132,2] and u[–1,1], which are
beyond the limits of the array.

4. Increment the time and assume that u[1,2] = 1 and u[131,2] = 0. To obtain u[2,2]
and u[130,2], assume that u[i+2,2]= u[i+1,2] and u[i–2,2]= u[i–1,2]. Avoid u[i+2,2]
for i = 130, and u[i–2,2] for i = 2. To do this, approximate (24.31) so that (24.33)
is satisfied.

5. Increment time and compute u[i, j] for j= 3 and for i= 3, 4,..., 129, using (24.30).
Again follow the same procedures to obtain the missing array elements u[2, j]
and u[130, j] (set u[1, j] = 1. and u[131, j] = 0). As you print out the numbers
during the iterations, you will be convinced that it was a good choice.

6. Set u[i,1] = u[i,2] and u[i,2] = u[i,3] for all i. In this way, you are ready to find the
next u[i,j] in terms of the previous two rows.

566 24 Shocks Waves and Solitons

7. Repeat the previous two steps about 2000 times. Write your solution to a file
after approximately every 250 iterations.

8. Use your favorite graphics tool to plot your results as a 3D graph of distur-
bance u vs. position and vs. time.

9. Observe the wave profile as a function of time and try to confirm Russell’s
observation that a taller soliton travels faster than a smaller one.

Listing 24.2 Soliton.py solves the KdeV equation for 1D solitons corresponding to a “bore”
initial conditions.

Sol iton . py : Korteweg de Vries equation for a so l i t on

from v i s u a l import *
import matp lo t l i b . py lab as p ;
from mpl_ too l k i t s . mplot3d import Axes3D ;
import numpy

ds = 0 . 4 ; dt = 0 . 1 ; max = 2000 ; mu = 0 . 1 ; eps = 0 . 2 ; mx = 131
u = zeros ((mx, 3) , f l o a t) ; sp l = zeros ((mx, 21) , f l o a t) ; m = 1

f o r i in range (0 , 131) : # I n i t i a l wave
u [i , 0] = 0 . 5 * (1

−((math . exp (2 * (0 . 2 * ds * i −5 .)) −1) / (math . exp (2 * (0 . 2 * ds * i −5 .)) +1)))
u [0 , 1] = 1 . ; u [0 , 2] = 1 . ; u [130 ,1] = 0 . ; u [130 ,2] = 0 . # End points

f o r i in range (0 , 131 , 2) : sp l [i , 0] = u [i , 0]
f a c = mu* dt / (ds * * 3)
pr in t ("Working . Please hold breath and wait while I count to 20")
f o r i in range (1 , mx−1) : # Fir s t time step

a1 = eps * dt * (u [i + 1 , 0] + u [i , 0] + u [i − 1 , 0]) / (ds * 6 .)
i f i > 1 and i < 129 : a2 = u [i +2 ,0]+2 . * u [i −1 ,0] −2.* u [i +1 ,0]−u [i −2 ,0]
e l s e : a2 = u [i −1 , 0] − u [i +1 , 0]
a3 = u [i +1 , 0] − u [i −1 , 0]
u [i , 1] = u [i , 0] − a1 * a3 − f a c * a2 / 3 .

f o r j in range (1 , max+1) : # Next time steps
f o r i in range (1 , mx−2) :

a1 = eps * dt * (u [i + 1 , 1] + u [i , 1] + u [i − 1 , 1]) / (3 . * ds)
i f i > 1 and i < mx−2:

a2 = u [i +2 ,1] + 2 . * u [i −1 ,1] − 2 . * u [i +1 ,1] − u [i −2 ,1]
e l s e : a2 = u [i −1 , 1] − u [i +1 , 1]
a3 = u [i +1 , 1] − u [i −1 , 1]
u [i , 2] = u [i , 0] − a1 * a3 − 2 . * f a c * a2 / 3 .

i f j %100 == 0 : # Plot every 100 time steps
f o r i in range (1 , mx − 2) : sp l [i , m] = u [i , 2]
pr in t (m)
m = m + 1

f o r k in range (0 , mx) : # Recycle array saves memory
u [k , 0] = u [k , 1]
u [k , 1] = u [k , 2]

x = l i s t (range (0 , mx, 2)) # Plot every other point
y = l i s t (range (0 , 21)) # Plot 21 l ine s every 100 t s teps
X, Y = p . meshgrid (x , y)

de f functz (sp l) :
z = sp l [X, Y]
re turn z

f i g = p . f i g u r e () # create f igure
ax = Axes3D (f i g) # plot axes
ax . p lot_wire frame (X, Y , sp l [X, Y] , co l o r = ’ r ’) # red wireframe
ax . s e t _ x l a b e l (’ Positon ’) # labe l axes

56724.6 Solitonson PendulumChain

ax . s e t _ y l a b e l (’Time ’)
ax . s e t _ z l a b e l (’ Disturbance ’)
p . show () # Show figure , c lose Python she l l
pr in t ("That ’ s a l l f o l k s ! ")

The code SolitonAnimate.py produces an animation.

24.5.4
Exploration: Solitons in Phase Space, Crossing

1. Explore what happens when a tall soliton collides with a short one.
a) Start by placing a tall soliton of height 0.8 at x = 12 and a smaller soliton

in front of it at x = 26:

u(x , t = 0) = 0.8
[
1 − tanh2

(3x
12

− 3
)]

+0.3
[
1 − tanh2

(4.5x
26

− 4.5
)]

.

(24.36)

b) Do they reflect from each other? Do they go through each other? Do they
interfere? Does the tall soliton still move faster than the short one after the
collision (Figure 24.1)?

2. Construct phase-space plots (u̇(t) vs. u(t)) of the KdeV equation for various
parameter values. Note that only very specific sets of parameters produce
solitons. In particular, by correlating the behavior of the solutions with your
phase-space plots, show that the soliton solutions correspond to the separa-
trix solutions to the KdeV equation. In other words, the stability in time for
solitons is analogous to the infinite period for a pendulum balanced straight
upward.

24.6
Solitons on Pendulum Chain

In 1955, Fermi, Ulam, and Pastu were investigating how a 1D chain of coupled os-
cillators disperses waves. Because waves of differing frequencies traveled through
the chain with differing speeds, a pulse, which inherently includes a range of fre-
quencies, broadens as time progresses. Surprisingly, when the oscillators were
made more realistic by introducing a nonlinear term into Hooke’s law

F(x) ≃ −k(x + αx2) , (24.37)

Fermi, Ulam, and Pastu found that even in the presence of dispersion, a sharp
pulse in the chain would survive indefinitely. Your problem is to explain how
this combination of dispersion and nonlinearity can combine to produce a stable
pulse.
In Chapter 14, we studied nonlinear effects in a single pendulum arising from

large oscillations. Now we go further and couple a number of those pendulums

568 24 Shocks Waves and Solitons

θ1 θ2 θ3 θ4 θ5

a aa a

Figure 24.4 A 1D chain of pendulums coupled with a torsion bar on top. The pendulums
swing in planes perpendicular to the length of the bar.

together. As shown in Figure 24.4, we take as our model a 1D chain of identi-
cal, equally spaced pendulums connected by a torsion bar that twists as the pen-
dulums swing. The angle θi measures the displacement of pendulum i from its
equilibrium position, and a the distance between pivot points. If all the pendu-
lums are set off swinging together, θi ≡ θ j , the coupling torques would vanish and
we would have our old friend, the equation for a realistic pendulum. We assume
that three torques act on each pendulum, a gravitational torque trying to return
the pendulum to its equilibrium position, and the two torques from the twisting
of the bar to the right and to the left of the pendulum. The equation of motion for
pendulum j follows from Newton’s law for rotational motion:∑

j≠i
τ ji = I

d2θ j(t)
dt2

, (24.38)

−κ(θ j − θ j−1) − κ(θ j − θ j+1) −mgL sin θ j = I
d2θ j(t)
dt2

, (24.39)

⇒ κ(θ j+1 − 2θ j + θ j−1) − mgL sin θ j = I
d2θ j(t)
dt2

, (24.40)

where I is the moment of inertia of each pendulum, L is the length of the pen-
dulum, and κ is the torque constant of the bar. The nonlinearity in (24.40) arises
from the sin θ ≃ θ − θ3∕6 + … dependence of the gravitational torque. As it
stands, (24.40) is a set of coupled nonlinear equations, with the number of equa-
tions equal to the number of oscillators, which would be large for a realistic solid.

24.6.1
Including Dispersion

Consider a surfer remaining on the crest of a wave. Since he/she does not see
the wave form change with time, his/her position is given by a function of the
form f (kx − ωt). Consequently, to his/her the wave has a constant phase

kx − ωt = constant ⇒ x = ωt∕k = constant . (24.41)

The surfer’s (phase) velocity is the rate of change of x with respect to time,

vp =
dx
dt

= ω
k

, (24.42)

56924.6 Solitonson PendulumChain

which is constant. In general, the frequency ωmay be a nonlinear function of k, in
which case the phase velocity varies with frequency and we have dispersion. If the
wave contained just one frequency, then you would not observe any dispersion,
but if the wave was a pulse composed of a range of Fourier components, then it
would broaden and change shape in time as each frequencymovedwith a differing
phase velocity. So although dispersion does not lead to an energy loss, it may well
lead to a loss of information content as pulses broaden and overlap.
The functional relation between frequency ω and the wave vector k is called

a dispersion relation. If the Fourier components in a wave packet are centered
around a mean frequency ω0, then the pulse’s information travels, not with the
phase velocity, but with the group velocity

vg =
𝜕ω
𝜕k

||||ω0

. (24.43)

A comparison of (24.42) and (24.43) makes it clear that when there is dispersion
the group and phase velocities may well differ.
To isolate the dispersive aspect of (24.40), we examine its linear version

d2θ j(t)
dt2

+ ω2
0θ j(t) =

κ
I
(θ j+1 − 2θ j + θ j−1) , (24.44)

where ω0 =
√
mgL∕I is the natural frequency for any one pendulum. Because we

want to determine if a wave with a single frequency propagates on this chain, we
start with a traveling wave with frequency ω and wavelength λ,

θ j(t) = Aei(ωt−kx j) , k = 2π
λ

, (24.45)

and then test if it is a solution. Substitution of (24.45) into the wave equa-
tion (24.44) produces the dispersion relation (Figure 24.5):

ω2 = ω2
0 −

2κ
I
(1 − cos ka) (dispersion relation) . (24.46)

To have dispersionless propagation (all frequencies propagate with the same ve-
locity), we need a linear relation between ω and k:

λ = c2π
ω

⇒ ω = ck (dispersionless propagation) . (24.47)

This will be true for the chain only if ka is small, because then cos ka ≃ 1 and
ω ≃ ω0.
Not only does the dispersion relation (24.46) change the speed of waves, but it

also limits which frequencies can propagate on the chain. In order to have real k
solutions, ω must lie in the range

ω0 ≤ ω ≤ ω∗ (waves propagation) . (24.48)

570 24 Shocks Waves and Solitons

k

ω0

ω*

ω

π/a–π/a

Figure 24.5 The dispersion relation for a linearized chain of pendulums.

The minimum frequency ω0 and the maximum frequency ω∗ are related through
the limits of cos ka in (24.46),

(ω∗)2 = ω2
0 +

4κ
I

. (24.49)

Waves with ω < ω0 do not propagate, while those with ω > ω∗ are nonphysical
because they correspond to wavelengths λ < 2a, that is, oscillations where there
are no particles. These high and low ω cutoffs change the shape of a propagating
pulse, that is, cause dispersion.

24.6.2
Continuum Limit, the Sine-Gordon Equation

If the wavelengths in a pulse are much longer than the pendulum–pendulum re-
peat distance a, that is, if ka ≪ 1, the chain can be approximated as a continu-
ous medium. In this limit, a becomes the continuous variable x, and the system
of coupled ordinary differential equations becomes a single, partial differential
equation:

θ j+1 ≃ θ j +
𝜕θ
𝜕x

Δx (24.50)

⇒ (θ j+1 − 2θ j + θ j−1) ≃
𝜕2θ
𝜕x2

Δx2 → 𝜕2θ
𝜕x2

a2 (24.51)

⇒
𝜕2θ
𝜕t2

− κa2
I

𝜕2θ
𝜕x2

=
mgL
I

sin θ . (24.52)

If we measure time in units of
√
I∕mgL and distances in units of

√
κa∕(mgLb),

we obtain the standard form of the sine-Gordon equation (SGE)1):

1
c2

𝜕2θ
𝜕t2

− 𝜕2θ
𝜕x2

= sin θ (SGE) , (24.53)

where the sin θ on the RHS introduces the nonlinear effects.

1) The name “sine-Gordon” is either a reminder that the SGE is like the Klein–Gordon equation
of relativistic quantum mechanics with a sin u added to the RHS, or a reminder of how clever
one can be in thinking up names.

57124.6 Solitonson PendulumChain

24.6.3
Analytic SGE Solution

The nonlinearity of the SGE (24.53) makes it hard to solve analytically. There
is, however, a trick. Guess a functional form of a traveling wave, substitute it
into (24.53) and thereby convert the PDE into a solvable ODE:

θ(x , t)
?
= θ(ξ = t ± x∕v) ⇒

d2θ
dξ2

= v2
v2 − 1

sin θ . (24.54)

You should recognize (24.54), the equation of motion for the realistic pendulum
with no driving force and no friction, as our old friend. The constant v is a velocity
in natural units, and separates different regimes of the motion:

v < 1 : pendulums initially down ↓↓↓↓↓ (stable),
v > 1 : pendulums initially up ↑↑↑↑↑ (unstable).

(24.55)

Although the equation is familiar, it does notmean that an analytic solution exists.
However, for an energy E = ±1, we have motion along the separatrix, and have a
solution with the characteristic soliton form,

θ(x − vt) =
⎧⎪⎨⎪⎩
4 tan−1

(
exp

[
+ x−vt√

1−v2

])
, for E = 1 ,

4 tan−1
(
exp

[
− x−vt√

1−v2

])
+ π , for E = −1 .

(24.56)

This soliton corresponds to a solitary kink traveling with velocity v = −1 that flips
the pendulums around by 2π as it moves down the chain. There is also an antikink
in which the initial θ = π values are flipped to final θ = −π.

24.6.4
Numeric Solution: 2D SGE Solitons

We have already solved for 1D solitons arising from the KdeV equation. The
elastic-wave solitons that arise from the SGE can be easily generalized to two di-
mensions, as we do here with the 2D generalization of the SGE equation (24.53):

1
c2

𝜕2u
𝜕t2

− 𝜕2u
𝜕x2

− 𝜕2u
𝜕 y2

= sin u (2D SGE) . (24.57)

Whereas the 1D SGE describeswave propagation along a chain of connected pen-
dulums, the 2D form might describe wave propagation in nonlinear elastic me-
dia. Interestingly enough, the same 2D SGE also occurs in quantum field theory,
where the soliton solutions have been suggested as models for elementary par-
ticles (Christiansen and Lomdahl, 1981; Christiansen and Olsen, 1978; Argyris,
1991). The idea is that, like elementary particles, the solutions are confined to a
region of space for a long period of time by nonlinear forces, and do not radiate

572 24 Shocks Waves and Solitons

away their energy. We solve (24.57) in a finite region of 2D space and for positive
times:

−x0 < x < x0 , −y0 < y < y0 , t ≥ 0 . (24.58)

We take x0 = y0 = 7 and impose the boundary conditions that the derivative of
the displacement vanishes at the ends of the region:

𝜕u
𝜕x

(−x0 , y, t) =
𝜕u
𝜕x

(x0 , y, t) =
𝜕u
𝜕 y

(x ,−y0 , t) =
𝜕u
𝜕 y

(x , y0 , t) = 0 . (24.59)

We also impose the initial condition that at time t = 0 the waveform is that of a
pulse (Figure 24.6) with its surface at rest:

u(x , y, t = 0) = 4 tan−1(e3−
√
x2+y2) , 𝜕u

𝜕t
(x , y, t = 0) = 0 . (24.60)

We discretize the equation first by looking for solutions on a space–time lattice:

x = mΔx , y = lΔx , t = nΔt , (24.61)

un
m,l

def
= u(mΔx , lΔx , nΔt) . (24.62)

Next we replace the derivatives in (24.57) by their finite-difference approxima-
tions:

un+1
m,l ≃ −un−1

m,l + 2
[
1 − 2

(Δt
Δx

)2]
un
m,l

+
(Δt
Δx

)2 (
un
m+1,l + un

m−1,l + un
m,l+1 + un

m,l−1

)
− Δt2 sin

[1
4

(
un
m+1,l + un

m−1,l + un
m,l+1 + un

m,l−1

)]
. (24.63)

To make the algorithm simpler and establish stability, if we make the time and
space steps proportional, Δt= Δx∕

√
2. This leads to all of the un

m,l terms dropping
out:

u2
m,l ≃

1
2

(
u1
m+1,l + u1

m−1,l + u1
m,l+1 + u1

m,l−1

)
− Δt2

2
sin

[1
4

(
u1
m+1,l + u1

m−1,l + u1
m,l+1 + u1

m,l−1

)]
. (24.64)

Likewise, the discrete form of vanishing initial velocity (24.60) becomes

𝜕u(x , y, 0)
𝜕t

= 0 ⇒ u2
m,l = u0

m,l . (24.65)

This will be useful in setting the initial conditions. The lattice points on the edges
and corners cannot be obtained from these relations, but must be obtained by

57324.6 Solitonson PendulumChain

Figure 24.6 A circular ring soliton at times 8, 20, 40, 60, 80, and 120. This has been proposed as
a model for an elementary particle.

applying the boundary conditions (24.59):

𝜕u
𝜕z

(x0 , y, t) =
u(x + Δx , y, t) − u(x , y, t)

Δx
= 0 (24.66)

⇒ un
1,l = un

2,l . (24.67)

Similarly, the other derivatives in (24.59) give

un
Nmax ,l

= un
Nmax−1,l

, un
m,2 = un

m,1 , un
m,Nmax

= un
m,Nmax−1

, (24.68)

where Nmax is the number of grid points used for one space dimension.

24.6.5
2D Soliton Implementation

1. Define an array u[Nmax,Nmax, 3] with Nmax = 201 for the space slots and the
3 for the time slots.

2. The solution (24.60) for the initial time t = 0 is placed in u[m, l, 1].
3. The solution for the second time Δt is placed in u(m, l, 2), and the solution

for the next time, 2Δt, is placed in u[m, l, 3].
4. Assign the constants, Δx = Δ y = 7∕100, Δt = Δx∕

√
2, y0 = x0 = 7.

5. Start off at t = 0 with the initial conditions and impose the boundary condi-
tions to this initial solution. This is the solution for the first time step, defined
over the entire 201 × 201 grid.

6. For the second time step, increase time by Δt and use (24.64) for all points in
the plane. Do not include the edge points.

574 24 Shocks Waves and Solitons

7. At the edges, for i = 1, 2,… , 200, set

u[i, 1, 2] = u[i, 2, 2] , u[i,Nmax , 2] = u[i,Nmax−1, 2]
u[1, i, 2] = u[2, i, 2] , u[Nmax, i, 2] = u[Nmax−1, i, 2] .

8. To find values for the four points in the corners for the second time step, again
use initial condition (24.64):

u[1, 1, 2] = u[2, 1, 2] , u[Nmax,Nmax, 2] = u[Nmax−1,Nmax−1, 2]
u[1, 1,Nmax] = u[2,Nmax , 2] , u[Nmax , 1, 2] = u[Nmax−1, 1, 2] .

9. For the third time step (the future), use (24.64).
10. Continue the propagation forward in time, reassigning the future to the

present, and so forth. In this way, we need to store the solutions for only
three time steps.

24.6.6
SGE Soliton Visualization

We see in Figure 24.6 the time evolution of a circular ring soliton that results for
the stated initial conditions. We note that the ring at first shrinks in size, then ex-
pands, and then shrinks back into another (but not identical) ring soliton. A small
amount of the particle does radiate away, and in the last frame we can notice some
interference between the radiation and the boundary conditions. An animation of
this sequence can be found online.

575

25
Fluid Dynamics

We have already introduced some fluid dynamics in the previous chapter’s discus-
sion of shallow-water solitons. This chapter confronts the more general equations
of computational fluid dynamics (CFD) and their solutions.1) The mathematical de-
scription of the motion of fluids, although not a new subject, remains a challeng-
ing one. Equations are complicated and nonlinear, there are many degrees of free-
dom, the nonlinearitiesmay lead to instabilities, analytic solutions are rare, and the
boundary conditions for realisticgeometries (like airplanes) are not intuitive. These
difficultiesmayexplainwhyfluiddynamics is often absent fromundergraduate and
even graduate physics curricula. Nonetheless, as an essential element of the phys-
ical world that also has tremendous practical importance, we encourage its study.
We recommend Fetter and Walecka (1980); Landau and Lifshitz (1987) for those
interested in the derivations, and Shaw (1992) for more details about the compu-
tations.

25.1
River Hydrodynamics

Problem In order to give migrating salmon a place to rest during their arduous
upstream journey, the Oregon Department of Environment is placing objects in
several deep, wide, fast-flowing streams. One such object is a long beam of rect-
angular cross section (Figure 25.1a), and another is a set of plates (Figure 19.4b).
The objects are to be placed far enough below the water’s surface so as not to dis-
turb the surface flow, and far enough from the bottom of the stream so as not to
disturb the flow there either. Your problem is to determine the spatial dependence
of the stream’s velocity when the objects are in place, and, specifically,whether the
wake of the object will be large enough to provide a resting place for a meter-long
salmon.

1) We acknowledge some helpful reading of by Satoru S. Kano.

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

576 25 Fluid Dynamics

surface

bottom bottom

surface

RiverRiver

xx

y
y

H
L

L

(a) (b)

Figure 25.1 Side view of the flow of a stream
around a submerged beam (a) and around
two parallel plates (b). Both beam and plates
have length L along the direction of flow. The

flow is seen to be symmetric about the center-
line and to be unaffected at the bottom and at
the surface by the submerged object.

25.2
Navier–Stokes Equation (Theory)

As with our study of shallow-waterwaves, we assume that water is incompressible
and thus that its density ρ is constant. We also simplify the theory by looking only
at steady-state situations, that is, ones in which the velocity is not a function of
time. However, to understand how water flows around objects, like our beam, it
is essential to include the complication of frictional forces (viscosity).
For the sake of completeness, we repeat here the first equation of hydrodynam-

ics, the continuity equation (24.2):

𝜕ρ(x, t)
𝜕t

+ 𝛁 ⋅ j = 0 , j
def
= ρv(x, t) . (25.1)

Before proceeding to the second equation, we introduce a special time deriva-
tive, the hydrodynamic derivativeDv∕Dt, which is appropriate for a quantity con-
tained in a moving fluid (Fetter and Walecka, 1980):

Dv
Dt

def
= (v ⋅ 𝛁)v + 𝜕v

𝜕t
. (25.2)

This derivative gives the rate of change, as viewed from a stationary frame, of the
velocity of material in an element of flowing fluid and so incorporates changes as
a result of the motion of the fluid (first term) as well as any explicit time depen-
dence of the velocity. Of particular interest is that Dv∕Dt is of second order in the
velocity, and so its occurrence introduces nonlinearities into the theory. Youmay
think of these nonlinearities as related to the fictitious (inertial) forces that occur
when we describe the motion in the fluid’s rest frame (an accelerating frame to
us).

57725.2 Navier–Stokes Equation (Theory)

The material derivative is the leading term in the Navier–Stokes equation,

Dv
Dt

= ν∇2v − 1
ρ
𝛁P(ρ, T, x) , (25.3)

𝜕vx
𝜕t

+
z∑
j=x

v j
𝜕vx
𝜕x j

= ν
z∑
j=x

𝜕2vx
𝜕x2j

− 1
ρ
𝜕P
𝜕x

,

𝜕v y

𝜕t
+

z∑
j=x

v j
𝜕v y

𝜕x j
= ν

z∑
j=x

𝜕2v y

𝜕x2j
− 1

ρ
𝜕P
𝜕 y

,

𝜕vz
𝜕t

+
z∑
j=x

v j
𝜕vz
𝜕x j

= ν
z∑
j=x

𝜕2vz
𝜕x2j

− 1
ρ
𝜕P
𝜕z

.

(25.4)

Here, ν is the kinematic viscosity, P is the pressure, and (25.4) gives the deriva-
tives in (25.3) in Cartesian coordinates. This equation describes transfer of the
momentum of the fluid within some region of space as a result of forces and flow
(think dp∕dt = F). There is a simultaneous equation for each of the three veloc-
ity components. The v ⋅∇v term in Dv∕Dt describes the transport ofmomentum
in some region of space resulting from the fluid’s flow and is often called the con-
vection or advection term.2) The𝛁P term describes the velocity change as a result
of pressure changes, and the ν∇2v term describes the velocity change resulting
from viscous forces (which tend to dampen the flow).
The explicit functional dependence of the pressure on the fluid’s density and

temperature P(ρ, T, x) is known as the equation of state of the fluid, and would
have to be known before trying to solve the Navier–Stokes equation. To keep
our problem simple, we assume that the pressure is independent of density and
temperature. This leaves the four simultaneous partial differential equations to
solve, (25.1) and (25.3). Because we are interested in steady-state flow around an
object, we assume that all time derivatives of the velocity vanish. Because we as-
sume that the fluid is incompressible, the time derivative of the density also van-
ishes, and (25.1) and (25.3) become

𝛁 ⋅ v ≡ ∑
i

𝜕vi
𝜕xi

= 0 , (25.5)

(v ⋅ 𝛁)v = ν∇2v − 1
ρ
𝛁P . (25.6)

The first equation expresses the equality of inflow and outflowand is known as the
condition of incompressibility. In as much as the stream in our problem is much
wider than the width (z direction) of the beam, and because we are staying away

2) We discuss pure advection in Section 24.1. In oceanology or meteorology, convection implies
the transfer of mass in the vertical direction where it overcomes gravity, whereas advection
refers to transfer in the horizontal direction.

578 25 Fluid Dynamics

from the banks, we will ignore the z dependence of the velocity. The explicit PDEs
we need to solve then reduce to

𝜕vx
𝜕x

+
𝜕v y

𝜕 y
= 0 , (25.7)

ν
(
𝜕2vx
𝜕x2

+
𝜕2vx
𝜕 y2

)
= vx

𝜕vx
𝜕x

+ v y
𝜕vx
𝜕 y

+ 1
ρ
𝜕P
𝜕x

, (25.8)

ν

(
𝜕2v y

𝜕x2
+

𝜕2v y

𝜕 y2

)
= vx

𝜕v y

𝜕x
+ v y

𝜕v y

𝜕 y
+ 1

ρ
𝜕P
𝜕 y

. (25.9)

25.2.1
Boundary Conditions for Parallel Plates

The plate problem is relatively easy to solve analytically, and so we will do it! This
will give us some experience with the equations as well as a check for our nu-
merical solution. To find a unique solution to the PDEs (25.7)–(25.9), we need to
specify boundary conditions. As far as we can tell, picking boundary conditions
is somewhat of an acquired skill.
We assume that the submerged parallel plates are placed in a stream that is

flowing with a constant velocity V0 in the horizontal direction (Figure 25.1b). If
the velocity V0 is not too high or the kinematic viscosity ν is sufficiently large,
then the flow should be smooth and without turbulence. We call such flow lam-
inar. Typically, a fluid undergoing laminar flow moves in smooth paths that do
not close on themselves, like the smooth flow of water from a faucet. If we imag-
ine attaching a vector to each element of the fluid, then the path swept out by
that vector is called a streamline or line of motion of the fluid. These streamlines
can be visualized experimentally by adding colored dye to the stream.We assume
that the plates are so thin that the flow remains laminar as it passes around and
through them.
If the plates are thin, then the flow upstream of them is not affected, and we can

limit our solution space to the rectangular region in Figure 25.2. We assume that
the length L and separation H of the plates are small compared to the size of the
stream, so the flow returns to uniform as we get far downstream from the plates.
As shown in Figure 25.2, there are boundary conditions at the inlet where the fluid
enters the solution space, at the outlet where it leaves, and at the stationary plates.
In addition, because the plates are far from the stream’s bottom and surface, we
assume that the dotted-dashed centerline is a plane of symmetry, with identical
flow above and below the plane. We thus have four different types of boundary
conditions to impose on our solution:

Solid plates Because there is friction (viscosity) between the fluid and the plate
surface, the only way to have laminar flow is to have the fluid’s velocity equal
to the plate’s velocity, which means both are zero:

vx = v y = 0 . (25.10)

57925.2 Navier–Stokes Equation (Theory)

Such being the case, we have smooth flow in which the negligibly thin plates
lie along streamlines of the fluid (like a “streamlined” vehicle).

Inlet The fluid enters the integration domain at the inlet with a horizontal ve-
locity V0. Because the inlet is far upstream from the plates, we assume that
the fluid velocity at the inlet is unchanged by the presence of the plates:

vx = V0 , v y = 0 . (25.11)

Outlet Fluid leaves the integration domain at the outlet. While it is totally rea-
sonable to assume that the fluid returns to its unperturbed state there, we are
not told what that is. So, instead, we assume that there is a physical outlet at
the end with the water just shooting out of it. Consequently, we assume that
the water pressure equals zero at the outlet (as at the end of a garden hose)
and that the velocity does not change in a direction normal to the outlet:

P = 0 ,
𝜕vx
𝜕x

=
𝜕v y

𝜕x
= 0 . (25.12)

Symmetry plane If the flow is symmetric about the y = 0 plane, then there can-
not be flow through the plane, and the spatial derivatives of the velocity com-
ponents normal to the plane must vanish:

v y = 0 ,
𝜕v y

𝜕 y
= 0 . (25.13)

This condition follows from the assumption that the plates are along stream-
lines and that they are negligibly thin. Itmeans that all the streamlines are par-
allel to the plates as well as to the water surface, and so it must be that v y = 0
everywhere. The fluid enters in the horizontal direction, the plates do not
change the vertical y component of the velocity, and the flow remains sym-
metric about the centerline. There is a retardation of the flow around the
plates because of the viscous nature of the flow and that of the v = 0 boundary
layers formed on the plates, but there are no actual v y components.

L

H

Figure 25.2 The boundary conditions for two thin submerged plates. The surrounding box is
the integration volume within which we solve the PDEs and upon whose surface we impose
the boundary conditions. In practice, the box is much larger than L and H.

580 25 Fluid Dynamics

25.2.2
Finite-Difference Algorithm and Overrelaxation

Now we develop an algorithm for solution of the Navier–Stokes and continuity
PDEs using successive over-relaxation. This is a variation of the method used in
Chapter 19, to solve Poisson’s equation. We divide space into a rectangular grid
with the spacing h in both the x and y directions:

x = ih , i = 0,… ,Nx ; y = jh , j = 0,… ,Ny .

We next express the derivatives in (25.7)–(25.9) as finite differences of the values
of the velocities at the grid points using central-difference approximations. For ν=
1m2∕s and ρ = 1 kg∕m3, this yields

vxi+1, j − vxi−1, j + v y
i, j+1 − v y

i, j−1 = 0 , (25.14)

vxi+1, j + vxi−1, j + vxi, j+1 + vxi, j−1 − 4vxi, j =
h
2
vxi, j

[
vxi+1, j − vxi−1, j

]
+ h

2
v y
i, j

[
vxi, j+1 − vxi, j−1

]
+ h

2
[
Pi+1, j − Pi−1, j

]
, (25.15)

v y
i+1, j + v y

i−1, j + v y
i, j+1 + v y

i, j−1 − 4v y
i, j =

h
2
vxi, j

[
v y
i+1, j − v y

i−1, j

]
+ h

2
v y
i, j

[
v y
i, j+1 − v y

i, j−1

]
+ h

2
[
Pi, j+1 − Pi, j−1

]
. (25.16)

Because v y ≡ 0 for this problem, we rearrange terms to obtain for vx :

4vxi, j = vxi+1, j + vxi−1, j + vxi, j+1 + vxi, j−1 −
h
2
vxi, j

[
vxi+1, j − vxi−1, j

]
− h

2
v y
i, j

[
vxi, j+1 − vxi, j−1

]
− h

2
[
Pi+1, j − Pi−1, j

]
. (25.17)

We recognize in (25.17) an algorithm similar to the one we used in solving
Laplace’s equation by relaxation. Indeed, as we did there, we can accelerate the
convergence by writing the algorithm with the new value of vx given as the old
value plus a correction (residual):

vxi, j = vxi, j + ri, j , r
def
= vx(new)i, j − vx(old)i, j (25.18)

⇒ r = 1
4

{
vxi+1, j + vxi−1, j + vxi, j+1 + vxi, j−1 −

h
2
vxi, j

[
vxi+1, j − vxi−1, j

]
− h

2
v y
i, j

[
vxi, j+1 − vxi, j−1

]
− h

2
[
Pi+1, j − Pi−1, j

]}
− vxi, j . (25.19)

As performed with the Poisson equation algorithm, successive iterations sweep
the interior of the grid, continuously adding in the residual (25.18) until the change
becomes smaller than some set level of tolerance, |ri, j| < ε.

58125.4 Theory: Vorticity Form of Navier–Stokes Equation

A variation of this method, successive over-relaxation, increases the speed at
which the residuals approach zero via an amplifying factor ω:

vxi, j = vxi, j + ωri, j (SOR) . (25.20)

The standard relaxation algorithm (25.18) is obtained with ω = 1, an accelerated
convergence (over-relaxation) is obtainedwith ω ≥ 1, and underrelaxation occurs
for ω < 1. Values ω > 2 are found to lead to numerical instabilities. Although a
detailed analysis of the algorithm is necessary to predict the optimal value for ω,
we suggest that you test different values forω to see which one provides the fastest
convergence for your problem.

25.2.3
Successive Overrelaxation Implementation

1. Modify the program Beam.py, or write your own, to solve the Navier–Stokes
equation for the velocity of a fluid in a 2D flow. Represent the x and y compo-
nents of the velocity by the arrays vx[Nx,Ny] and vy[Nx,Ny].

2. Specialize your solution to the rectangular domain and boundary conditions
indicated in Figure 25.2.

3. Use of the following parameter values,

ν = 1m2∕s , ρ = 103 kg∕m3 , (flow parameters) ,
Nx = 400 , Ny = 40 , h = 1 , (grid parameters) ,

leads to the analytic solution

𝜕P
𝜕x

= −12, 𝜕P
𝜕 y

= 0 , vx =
3 j
20

(
1 −

j
40

)
, v y = 0 . (25.21)

4. For the relaxation method, output the iteration number and the computed vx
and then compare the analytic and numeric results.

5. Repeat the calculation and see if SOR speeds up the convergence.

25.3
2D Flow over a Beam

Now that the comparison with an analytic solution has shown that our CFD sim-
ulation works, we return to determining if the beam in Figure 25.1 might produce
a good resting place for salmon.While we have no analytic solution with which to
compare, our canoeing and fishing adventures have taught us that standing waves
with fish in themare often formedbehind rocks in streams, and sowe expect there
will be a standing wave formed behind the beam.

582 25 Fluid Dynamics

25.4
Theory: Vorticity Form of Navier–Stokes Equation

We have seen how to solve numerically the hydrodynamics equations

𝛁 ⋅ v = 0 , (25.22)

(v ⋅ 𝛁)v = −1
ρ
𝛁P + ν∇2v . (25.23)

These equations determine the components of a fluid’s velocity, pressure, and
density as functions of position. In analogy to electrostatics, where one usually
solves for the simpler scalar potential and then takes its gradient to determine the
more complicated vector field, we now recast the hydrodynamic equations into
forms that permit us to solve two simpler equations for simpler functions, from
which the velocity is obtained via a gradient operation.3)

We introduce the stream function u(x) from which the velocity is determined
by the curl operator:

v
def
= 𝛁 × u(x) = �̂�x

(
𝜕uz

𝜕 y
−

𝜕uy

𝜕z

)
+ �̂�y

(
𝜕ux

𝜕z
−

𝜕uz

𝜕x

)
. (25.24)

Note the absence of the z component of velocity v for our problem. Because 𝛁 ⋅
(𝛁 × u) ≡ 0, we see that any v that can be written as the curl of u automatically
satisfies the continuity equation 𝛁 ⋅ v = 0. Further, because v for our problem has
only x and y components, u(x) needs have only a z component:

uz ≡ u ⇒ vx =
𝜕u
𝜕 y

, v y = −𝜕u
𝜕x

. (25.25)

It is worth noting that in 2D flows, the contour lines u = constant are the stream-
lines.
The second simplifying function is the vorticityfieldw(x), which is related phys-

ically and alphabetically to the angular velocity ω of the fluid. Vorticity is defined
as the curl of the velocity (sometimes with a − sign):

w
def
= 𝛁 × v(x) . (25.26)

Because the velocity in our problem does not change in the z direction, we have

wz =
(
𝜕v y

𝜕x
−

𝜕vx
𝜕 y

)
. (25.27)

Physically, we see that the vorticity is a measure of how much the fluid’s velocity
curls or rotates, with the direction of the vorticity determined by the right-hand

3) If we had to solve only the simpler problem of irrotational flow (no turbulence), then we would
be able to use a scalar velocity potential, in close analogy to electrostatics (Lamb, 1993). For the
more general rotational flow, two vector potentials are required.

58325.4 Theory: Vorticity Form of Navier–Stokes Equation

rule for rotations. In fact, if we could pluck a small element of the fluid into space
(so it would not feel the internal strain of the fluid), we would find that it is ro-
tating like a solid with angular velocity ω ∝ w (Lamb, 1993). That being the case,
it is useful to think of the vorticity as giving the local value of the fluid’s angular
velocity vector. If w = 0, we have irrotational flow.
The field lines of w are continuous and move as if they are attached to the par-

ticles of the fluid. A uniformly flowing fluid has vanishing curl, while a nonzero
vorticity indicates that the current curls back on itself or rotates. From the def-
inition of the stream function (25.24), we see that the vorticity w is related to it
by

w = 𝛁 × v = 𝛁 × (𝛁 × u) = 𝛁(𝛁 ⋅ u) − ∇2u , (25.28)

where we have used a vector identity for𝛁 × (𝛁 × u). Yet the divergence 𝛁 ⋅ u = 0
because u has a component only in the z-direction and that component is inde-
pendent of z (or because there is no source for u).We have now obtained the basic
relation between the stream function u and the vorticity w:

𝛁2u = −w . (25.29)

Equation 25.29 is analogous to Poisson’s equation of electrostatics, ∇2φ = −4πρ,
only now each component of vorticityw is a source for the corresponding compo-
nent of the stream function u. If the flow is irrotational, that is, if w = 0, then we
need only to solve Laplace’s equation for each component of u. Rotational flow,
with its coupled nonlinearities equations, leads to more interesting behavior.
As is to be expected from the definition of w, the vorticity form of the Navier–

Stokes equation is obtained by taking the curl of the velocity form, that is, by
operating on both sides with 𝛁×. After significant manipulations one obtains

ν∇2w = [(𝛁 × u) ⋅ 𝛁]w . (25.30)

This and (25.29) are the two simultaneous PDEs that we need to solve. In 2D,
with u and w having only z components, they are

𝜕2u
𝜕x2

+ 𝜕2u
𝜕 y2

= −w , (25.31)

ν
(
𝜕2w
𝜕x2

+ 𝜕2w
𝜕 y2

)
= 𝜕u

𝜕 y
𝜕w
𝜕x

− 𝜕u
𝜕x

𝜕w
𝜕 y

. (25.32)

So after all that work, we end up with two simultaneous, nonlinear, elliptic PDEs
that look like a mixture of Poisson’s equation with the wave equation. The equa-
tion for u is Poisson’s equation with source w, and must be solved simultaneously
with the second. It is this second equation that contains mixed products of the
derivatives of u and w and thus introduces the nonlinearity.

584 25 Fluid Dynamics

25.4.1
Finite Differences and the SOR Algorithm

We solve (25.31) and (25.32) on an Nx × Ny grid of uniform spacing h with

x = iΔx = ih , i = 0,… ,Nx , y = jΔ y = jh , j = 0,… ,Ny . (25.33)

Because the beam is symmetric about its centerline (Figure 25.1a), we need the
solution only in the upper half-plane.We apply the now familiar central-difference
approximation to the Laplacians of u and w to obtain the difference equation

𝜕2u
𝜕x2

+ 𝜕2u
𝜕 y2

≃
ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui, j

h2
. (25.34)

Likewise, for the product of the first derivatives,

𝜕u
𝜕 y

𝜕w
𝜕x

≃
ui, j+1 − ui, j−1

2h
wi+1, j − wi−1, j

2h
. (25.35)

The difference form of the vorticity of the Navier–Stokes equation (25.31) be-
comes

ui, j =
1
4
(
ui+1, j + ui−1, j + ui, j+1 + ui, j−1 + h2wi, j

)
, (25.36)

wi, j =
1
4
(wi+1, j + wi−1, j + wi, j+1 + wi, j−1) −

R
16

{[
ui, j+1 − ui, j−1

]
×

[
wi+1, j − wi−1, j

]
−

[
ui+1, j − ui−1, j

] [
wi, j+1 − wi, j−1

]}
, (25.37)

R = 1
ν
=

V0h
ν

(in normal units) . (25.38)

Note that we have placed ui, j and wi, j on the LHS of the equations in order to
obtain an algorithm appropriate to a solution by relaxation.
The parameter R in (25.38) is related to the Reynolds number. When we solve

the problem in natural units, we measure distances in units of grid spacing h, ve-
locities in units of initial velocityV0, stream functions in units ofV0h, and vorticity
in units of V0∕h. The second form is in regular units and is dimensionless. This R
is known as the grid Reynolds number and differs from the physical R, which has
a pipe diameter in place of the grid spacing h.
The grid Reynolds number is a measure of the strength of the coupling of the

nonlinear terms in the equation.When the physical R is small, the viscosity acts as
a frictional force that damps out fluctuations and keeps the flow smooth.When R
is large (R ≃ 2000), physical fluids undergo phase transitions from laminar to tur-
bulent flow in which turbulence occurs at a cascading set of smaller and smaller
space scales (Reynolds, 1883).However, simulations that produce the onset of tur-
bulence have been a research problembecause Reynolds first experiments in 1883
(Falkovich and Sreenivasan, 2006), possibly because the laminar flow is stable
against small perturbations and some large-scale “kick” may be needed to change

58525.4 Theory: Vorticity Form of Navier–Stokes Equation

laminar to turbulent flow. Recent research along these lines have been able to find
unstable, traveling-wave solutions to the Navier–Stokes equations, and the hope
is that these may lead to a turbulent transition (Fitzgerald, 2004).
As discussed in Section 25.2.2, the finite-difference algorithm can have its con-

vergence accelerated by the use of successive over-relaxation (25.36):

ui, j = ui, j + ωr(1)i, j , wi, j = wi, j + ωr(2)i, j (SOR) . (25.39)

Here, ω is the over-relaxation parameter and should lie in the range 0 < ω < 2
for stability. The residuals are just the changes in a single step, r(1) = unew − uold

and r(2) = wnew − wold:

r(1)i, j =
1
4
(
ui+1, j + ui−1, j + ui, j+1 + ui, j−1 + wi, j

)
− ui, j ,

r(2)i, j =
1
4

(
wi+1, j + wi−1, j + wi, j+1 + wi, j−1 −

R
4
{[
ui, j+1 − ui, j−1

]
×

[
wi+1, j − wi−1, j

]
−
[
ui+1, j − ui−1, j

] [
wi, j+1 − wi, j−1

]})
− wi, j .

(25.40)

25.4.2
Boundary Conditions for a Beam

Awell-defined solution of these elliptic PDEs requires a combination of (less than
obvious) boundary conditions on u and w. Consider Figure 25.3, based on the
analysis of Koonin (1986). We assume that the inlet, outlet, and surface are far
from the beam, which may not be evident from the not-to-scale figure.

Freeflow If there were no beam in the stream, thenwe would have free flowwith
the entire fluid possessing the inlet velocity:

vx ≡ V0 , v y = 0 , ⇒ u = V0 y , w = 0 . (25.41)

O
u
tl
e
t

H

dw/dx = 0

du/dx = 0vx = du/dy = V0

w = 0

In
le

t
F

Surface G

vx = du/dy = V0 w = 0

y

x

vy = –du/dx = 0

center line

w = u = 00 = u = w

u = 0

u = 0

vy = –du/dx = 0

AE

Half

Beam

B

C

D

Figure 25.3 Boundary conditions for flow around the beam in Figure 25.1. The flow is symmet-
ric about the centerline, and the beam has length L in the x direction (along flow).

586 25 Fluid Dynamics

(Recall that we can think of w = 0 as indicating no fluid rotation.) The center-
line divides the system along a symmetry plane with identical flow above and
below it. If the velocity is symmetric about the centerline, then its y compo-
nent must vanish there:

v y = 0 , ⇒
𝜕u
𝜕x

= 0 (centerline AE) . (25.42)

Centerline The centerline is a streamline with u = constant because there is no
velocity component perpendicular to it. We set u = 0 according to (25.41).
Because there cannot be any fluid flowing into or out of the beam, the normal
component of velocity must vanish along the beam surfaces. Consequently,
the streamline u = 0 is the entire lower part of Figure 25.3, that is, the center-
line and the beam surfaces. Likewise, the symmetry of the problem permits
us to set the vorticity w = 0 along the centerline.

Inlet At the inlet, the fluid flow is horizontal with uniform x component V0 at
all heights and with no rotation:

v y = −𝜕u
𝜕x

= 0 , w = 0 (inlet F) , vx =
𝜕u
𝜕 y

= V0 . (25.43)

Surface We are told that the beam is sufficiently submerged so as not to disturb
the flow on the surface of the stream. Accordingly, we have free-flow condi-
tions on the surface:

vx =
𝜕u
𝜕 y

= V0 , w = 0 (surface G) . (25.44)

Outlet Unless something truly drastic happens, the conditions on the far down-
stream outlet have little effect on the far upstream flow. A convenient choice
is to require the stream function and vorticity to be constant:

𝜕u
𝜕x

= 𝜕w
𝜕x

= 0 (outlet H) . (25.45)

Beamsides We have already noted that the normal component of velocity vx
and stream function u vanish along the beam surfaces. In addition, because
the flow is viscous, it is also true that the fluid “sticks” to the beam some-
what and so the tangential velocity also vanishes along the beam’s surfaces.
While these may all be true conclusions regarding the flow, specifying them
as boundary conditions would over-restrict the solution (see Table 19.2 for
elliptic equations) to the point where no solution may exist. Accordingly, we
simply impose the no-slip boundary condition on the vorticity w. Consider a
grid point (x , y) on the upper surface of the beam. The stream function u at
a point (x , y + h) above it can be related via a Taylor series in y:

u(x , y + h) = u(x , y) + 𝜕u
𝜕 y

(x , y)h + 𝜕2u
𝜕 y2

(x , y)h
2

2
+⋯ (25.46)

Because w has only a z component, it has a simple relation to 𝛁 × v:

w ≡ wz =
𝜕v y

𝜕x
−

𝜕vx
𝜕 y

. (25.47)

58725.4 Theory: Vorticity Form of Navier–Stokes Equation

Because of the fluid’s viscosity, the velocity is stationary along the beam top:

vx =
𝜕u
𝜕 y

= 0 (beam top) . (25.48)

Because the current flows smoothly along the top of the beam, v y must also
vanish. In addition, because there is no x variation, we have

𝜕v y

𝜕x
= 0 ⇒ w = −

𝜕vx
𝜕 y

= −𝜕2u
𝜕 y2

. (25.49)

After substituting these relations into the Taylor series (25.46), we can solve
for w and obtain the finite-difference version of the top boundary condition:

w ≃ −2
u(x , y + h) − u(x , y)

h2
⇒ wi, j = −2

ui, j+1 − ui, j

h2
(top) .

(25.50)

Similar treatments applied to other surfaces yield the boundary conditions.

u = 0 w = 0 Centerline EA
u = 0 wi, j = −2(ui+1, j − ui, j)∕h2 Beam back B

u = 0 wi, j = −2(ui, j+1 − ui, j)∕h2 Beam top C

u = 0 wi, j = −2(ui−1, j − ui, j)∕h2 Beam front D

𝜕u∕𝜕x = 0 w = 0 Inlet F
𝜕u∕𝜕 y = V0 w = 0 Surface G
𝜕u∕𝜕x = 0 𝜕w∕𝜕x = 0 Outlet H (25.51)

25.4.3
SOR on a Grid

Beam.py in Listing 25.1 is our program for the solution of the vorticity form of
the Navier–Stokes equation. You will notice that while the relaxation algorithm is
rather simple, some care is needed in implementing many boundary conditions.
Relaxation of the stream function and of the vorticity are performed by separate
functions.

Listing 25.1 Beam.py solves the Navier–Stokes equation for the flow over a plate.

Beam. py : so lves Navier−−Stokes equation for flow around beam

import matp lo t l i b . py lab as p ;
from mpl_ too l k i t s . mplot3d import Axes3D ;
from numpy import * ;

pr in t ("Working , wait f o r the f i g ur e a f t e r 100 i t e r a t i o n s ")

Nxmax = 70 ; Nymax = 20 ; IL = 10 ; H = 8 ; T = 8 ; h = 1 .
u = zeros ((Nxmax+1 , Nymax+1) , f l o a t) # Stream
w = zeros ((Nxmax+1 , Nymax+1) , f l o a t) # Vor t i c i t y
V0 = 1 . 0 ; omega = 0 . 1 ; nu = 1 . ; i t e r = 0 ; R = V0 * h /nu

588 25 Fluid Dynamics

de f borders () :
f o r i in range (0 , Nxmax+1) : # In i t stream

f o r j in range (0 , Nymax+1) : # In i t v o r t i c i t y
w[i , j] = 0 .
u [i , j] = j * V0

f o r i in range (0 , Nxmax+1) : # Fluid surface
u [i , Nymax] = u [i , Nymax−1] + V0*h
w[i , Nymax−1] = 0 .

f o r j in range (0 , Nymax+1) :
u [1 , j] = u [0 , j]
w[0 , j] = 0 . # In le t

f o r i in range (0 , Nxmax+1) : # Centerline
i f i <= IL and i >= IL+T :

u [i , 0] = 0 .
w[i , 0] = 0 .

f o r j in range (1 , Nymax) : # Outlet
w[Nxmax , j] = w[Nxmax−1 , j]
u [Nxmax , j] = u [Nxmax−1 , j]

de f beam () : # BC for beam
f o r j in range (0 , H+1) : # Sides

w[IL , j] = − 2 * u [IL −1 , j] / (h*h) # Front
w[IL+T, j] = − 2 * u [IL + T + 1 , j] / (h*h) # Back

f o r i in range (IL , IL+T + 1) : w[i , H − 1] = − 2 * u [i , H] / (h*h) ;
f o r i in range (IL , IL+T+1) :

f o r j in range (0 , H+1) :
u [IL , j] = 0 . # Front
u [IL+T, j] = 0 . # Back
u [i , H] = 0 ; # Top

de f r e l a x () : # Relax stream
beam () # Reset condit ions
f o r i in range (1 , Nxmax) : # Relax stream

f o r j in range (1 , Nymax) :
r1 = omega * ((u [i +1 , j]+u [i −1 , j]+u [i , j +1]+u [i , j −1] +

h*h*w[i , j]) /4−u [i , j])
u [i , j] += r1

f o r i in range (1 , Nxmax) : # Relax v o r t i c i t y
f o r j in range (1 , Nymax) :

a1 = w[i +1 , j] + w[i −1 , j] + w[i , j +1] + w[i , j −1]
a2 = (u [i , j +1] − u [i , j −1]) * (w[i +1 , j] − w[i − 1 , j])
a3 = (u [i +1 , j] − u [i −1 , j]) * (w[i , j +1] − w[i , j − 1])
r2 = omega * ((a1 − (R / 4 .) * (a2 − a3)) / 4 . − w[i , j])
w[i , j] += r2

borders ()
whi le (i t e r <= 100) :

i t e r += 1
i f i t e r%10 == 0 : pr in t (i t e r)
r e l a x ()

f o r i in range (0 , Nxmax+1) :
f o r j in range (0 , Nymax+ 1) : u [i , j] = u [i , j] / V0/h # V0h units

x = range (0 , Nxmax−1) ; y = range (0 , Nymax−1)
X, Y = p . meshgrid (x , y)

de f functz (u) : # Stream flow
z = u [X, Y]
re turn z

Z = functz (u)
f i g = p . f i g u r e ()
ax = Axes3D (f i g)
ax . p lot_wire frame (X, Y , Z , co l o r = ’ r ’)
ax . s e t _ x l a b e l (’X ’)
ax . s e t _ y l a b e l (’Y ’)
ax . s e t _ z l a b e l (’ Stream Function ’)
p . show ()

58925.4 Theory: Vorticity Form of Navier–Stokes Equation

25.4.4
Flow Assessment

1. Use Beam.py as a basis for your solution for the stream function u and the
vorticity w using the finite-differences algorithm (25.36).

2. A good place to start your simulation is with a beam of size L = 8h, H = h,
Reynolds number R = 0.1, and intake velocity V0 = 1. Keep your grid small
during debugging, say, Nx = 24 and Ny = 70.

3. Explore the convergence of the algorithm.
a) Print out the iteration number and u values upstream from, above, and

downstream from the beam.
b) Determine the number of iterations necessary to obtain three-place con-

vergence for successive relaxation (ω = 0).
c) Determine the number of iterations necessary to obtain three-place con-

vergence for successive over-relaxation (ω ≃ 0.3). Use this number for fu-
ture calculations.

4. Change the beam’s horizontal placement so that you can see the undisturbed
current entering on the left and then developing into a standing wave. Note
that you may need to increase the size of your simulation volume to see the
effect of all the boundary conditions.

5. Make surface plots including contours of the stream function u and the vor-
ticity w. Explain the behavior seen.

6. Is there a region where a big fish can rest behind the beam?
7. The results of the simulation (Figure 25.4) are for the one-component stream

function u. Make several visualizations showing the fluid velocity throughout

Figure 25.4 Two visualizations of the stream function u for Reynold’s number R = 5. The one
on the left uses contours, while the one on the right uses color.

590 25 Fluid Dynamics

w(x,y)

x
y

0

–1

0

50 0

20

(a) (b)

Figure 25.5 (a) The velocity field around the beam as represented by vectors. (b) The vorticity
as a function of x and y for the same velocity field. Rotation is seen to be largest behind the
beam.

the simulation region. Note that the velocity is a vector with two components
(or a magnitude and direction), and both degrees of freedom are interesting
to visualize. A plot of vectors would work well here.

8. Explore how increasing the Reynolds number R changes the flowpattern. Start
at R = 0 and gradually increase R while watching for numeric instabilities. To
overcome the instabilities, reduce the size of the relaxation parameter ω and
continue to larger R values.

9. Verify that the flow around the beam is smooth for small R values, but that it
separates from the back edge for large R, at which point a small vortex devel-
ops, as can be seen in Figure 25.5.

25.4.5
Exploration

1. Determine the flow behind a circular rock in the stream.
2. The boundary condition at an outlet far downstream should not have much

effect on the simulation. Explore the use of other boundary conditions there.
3. Determine the pressure variation around the beam.

591

26
Integral Equations of QuantumMechanics

There are people – amongst whom I would include myself – who detest happy
endings.

Vlasimir Nabokov, Pnin

We have put this chapter off till last because it is the one in which we have the
closest personal connections. The power and accessibility of high-speed comput-
ers have changed the view as to what kind of equations are soluble. We have seen
how even nonlinear differential equations can be solved easily and can give new
insight into the physical world. In this chapter, we examine how the integral equa-
tions of quantum mechanics can be solved for both bound and scattering states.
We start by extending our treatment of the eigenvalue problem, earlier solved as
a coordinate-spacedifferential equation, to the equivalent integral-equationprob-
lem inmomentum space. Then, we treat the singular integralequations for scatter-
ing, a problem whose multiple challenges have been met well by computational
physics.

26.1
Bound States of Nonlocal Potentials

Problem A particle undergoes a many-body interaction with a medium (Fig-
ure 26.1). Although, we canwrite down themany-body Schrödinger equation that
describes this interaction as the sum of many potentials, the number of coordi-
nates involved is too large for a practical solution. Instead theorists have derived
an effective single-particle potential that accounts for the many particles present
by having the potential that is nonlocal, that is, the effective potential at r that de-
pends on the wave function at the r′ values of the other particles (Landau, 1996):

V (r)ψ(r) → ∫ dr′V (r, r′)ψ(r′) . (26.1)

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

592 26 Integral Equations of QuantumMechanics

rr'

Figure 26.1 A dark particle moving in a dense medium in which it interacts with all particles
present. The nonlocality of the potential felt by the dark particle at r arises from the interac-
tions at all r′.

This type of interaction leads to a Schrödinger equation which is a combined in-
tegral and differential (“integrodifferential”) equation:

− 1
2μ

d2ψ(r)
dr2

+ ∫ dr′V (r, r′)ψ(r′) = Eψ(r) . (26.2)

Your problem is to figure out how to find the bound-state energies En and wave
functions ψn for the equation in (26.2).1)

26.2
Momentum–Space Schrödinger Equation (Theory)

One way of dealing with (26.2) is by going to momentum space where it becomes
the integral equation (Landau, 1996)

k2
2μ

ψn(k) +
2
π
∫∞0 d pp2V (k , p)ψn (p) = Enψn(k) . (26.3)

We restrict our solution to angularmomentum l = 0 partial waves, but for simplic-
ity of notation we do not include an index to indicate that. In (26.3), V (k , p) is the
momentum–space representation (double Fourier transform) of the coordinate-
space potential,

V (k , p) = 1
k p

∞

∫
0

dr sin(kr)V (r) sin(pr) . (26.4)

ψn(k) is themomentum–space wave function (the probability amplitude for find-
ing the particle with momentum k), and is the Fourier transform of ψn(r):

ψn(k) =
∞

∫
0

drkrψn(r) sin(kr) . (26.5)

1) We use natural units in which ℏ ≡ 1.

59326.2 Momentum–Space Schrödinger Equation (Theory)

Equation 26.3 is an integral equation for ψn(k). It differs from an integral rep-
resentation of ψn(k), because the integral in it cannot be evaluated until ψn(p) is
known. Although thismay seem like an insurmountable barrier, wewill transform
this equation into amatrix equation that can be solvedwith thematrix techniques
discussed in Chapter 6.

26.2.1
Integral to Matrix Equations

We approximate the integral over the potential as a weighted sum overN integra-
tion points (usually Gauss quadrature points2)) for p = k j , j = 1,N :

∞

∫
0

d pp2V (k , p)ψn (p) ≃
N∑
j=1

wjk2j V (k , k j)ψn(k j) . (26.6)

This converts the integral equation (26.3) to the algebraic equation

k2
2μ

ψn(k) +
2
π

N∑
j=1

wjk2j V (k , k j)ψn(k j) = En . (26.7)

Equation 26.7 contains the N unknown function values ψn(k j), the unknown En ,
as well as the unknown functional dependence of ψn(k). We eliminate the func-
tional dependence of ψn(k) by restricting the solution to the same values of k = ki
as used in the approximation of the integral, which means that we are solving for
wave function for k values on the grid of Figures 26.2. This leads to a set of N
coupled linear equations in (N + 1) unknowns:

k2i
2μ

ψn(ki) +
2
π
∑N

j=1 wjk2j V (ki , k j)ψn(k j) = Enψn(ki) , i = 1,N .

(26.8)

As a concrete example, for N = 2 we have two simultaneous linear equations

k21
2μ

ψn(k1) +
2
π
w1k21V (k1, k1)ψn(k1) + w2k22V (k1 , k2)ψn(k2) = Enψn(k1) ,

k22
2μ

ψn(k2) +
2
π
w1k21V (k2, k1)ψn(k1) + w2k22V (k2 , k2)ψn(k2) = Enψn(k2) .

Nk3k2k1k

Figure 26.2 The grid of momentum values on which the integral equation is solved.

2) See Chapter 5, for a discussion of numerical integration.

594 26 Integral Equations of QuantumMechanics

Of course, realistic examples require more than two integration points for preci-
sion.
We write our coupled equations (26.8) in the matrix form as

[H][ψn] = En[ψn] (26.9)

or as explicit matrices

⎛⎜⎜⎜⎜⎜⎜⎝

k21
2μ

+ 2
π
V (k1 , k1)k21w1

2
π
V (k1 , k2)k22w2 ⋯ 2

π
V (k1 , kN)k2NwN

2
π
V (k2 , k1)k21w1

2
π
V (k2 , k2)k22w2 +

k22
2μ

⋯ ⋯

⋱ ⋱ ⋱ ⋱

⋯ ⋯ ⋯
k2N
2μ

+ 2
π
V (kN , kN)k2NwN

⎞⎟⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎜⎜⎝
ψn(k1)
ψn(k2)
⋱

ψn(kN)

⎞⎟⎟⎟⎟⎠
= En

⎛⎜⎜⎜⎜⎝
ψn(k1)
ψn(k2)
⋱

ψn(kN)

⎞⎟⎟⎟⎟⎠
.

(26.10)

Equation 26.9 is thematrix representation of the Schrödinger equation (26.3). The
wave function ψn(k) on the grid is the N × 1 vector

[ψn(ki)] =

⎛⎜⎜⎜⎜⎝
ψn(k1)
ψn(k2)
⋱

ψn(kN)

⎞⎟⎟⎟⎟⎠
. (26.11)

The astute reader may be questioning the possibility of solving N equations for
(N + 1) unknowns, ψn(ki), and En . Only sometimes, and only for certain values
of En (eigenvalues), will the computer be able to find solutions. To see how this
arises, we try to apply the matrix inversion technique (which we will use success-
fully for scattering in Section 26.3). We rewrite (26.9) as

[H − EnI][ψn] = [0] (26.12)

and multiply both sides by the inverse of [H − EnI] to obtain the formal solution

[ψn] = [H − EnI]−1[0] . (26.13)

This equation tells us that (1) if the inverse exists, then we have the trivial solu-
tion ψn ≡ 0, which is not revealing, and (2) for a nontrivial solution to exist, our
assumption that the inverse existsmust be incorrect. Yet we know from the theory
of linear equations that the inverse fails to exist when the determinant vanishes:

det[H − EnI] = 0 (bound-state condition) . (26.14)

Equation 26.14 is the N + 1th equation needed to find unique solutions to the
eigenvalue problem. Although, there is no guarantee that solutions of (26.14) can
always be found, if they are found they are the desired eigenvalues of (26.9).

59526.2 Momentum–Space Schrödinger Equation (Theory)

26.2.2
Delta-Shell Potential (Model)

To keep things simple and to have an analytic answer to comparewith,we consider
the local delta-shell potential:

V (r) = λ
2μ

δ(r − b) . (26.15)

This might be a good model for an interaction that occurs when two parti-
cles are predominantly a fixed distance b apart. We use (26.4) to determine its
momentum–space representation:

V (k′ , k) =
∞

∫
0

sin(k′r′)
k′k

λ
2μ

δ(r− b) sin(kr)dr = λ
2μ

sin(k′b) sin(kb)
k′k

. (26.16)

Beware:Wehave chosen this potential because it is easy to evaluate themomentum–
space matrix element of the potential. However, its singular nature in r space
leads to (26.16) having a very slow falloff in k space, and this causes the integrals
to converge so slowly that numerics are not as precise as we would like.
If the energy is parameterized in terms of a wave vector κ by En = −κ2∕2μ, then

for this potential there is, at most, one bound state and it satisfies the transcen-
dental equation (Gottfried, 1966)

e−2κb − 1 = 2κ
λ

. (26.17)

Note that bound states occur only for attractive potentials. For the present case,
this requires λ < 0.

Exercise Pick some values of b and λ and verify that (26.17) can be solved for κ.

26.2.3
Binding Energies Solution

An actual computation may follow two paths. The first calls subroutines to evalu-
ate the determinant of the [H−En I]matrix in (26.14), and then to search for those
values of energy for which the computed determinant vanishes. This provides En ,
but not wave functions. The other approach calls an eigenproblem solver thatmay
give some or all eigenvalues and eigenfunctions. In both the cases, the solution is
obtained iteratively, and youmay be required to guess starting values for both the
eigenvalues and eigenvectors. In Listing 26.1, we present our solution of the inte-
gral equation for bound states of the delta-shell potential using theNumPymatrix
library and the gauss method for Gaussian quadrature points and weights.

596 26 Integral Equations of QuantumMechanics

Listing 26.1 Bound.py solves the Lippmann–Schwinger integral equation for bound states
within a delta-shell potential. The integral equations are converted to matrix equations using
Gaussian grid points, and they are solved with linalg.

Bound . py : Bound s t a t e solutn of Lippmann−−Schwinger equation in p space
from v i s u a l import *
from numpy import *
from numpy . l i n a l g import *

min1 =0 . ; max1 =200 . ; u =0 .5 ; b =10.

de f gauss (npts , a , b , x ,w) :
pp = 0 . ; m = (npts + 1) / / 2 ; eps = 3 . E−10 # Accuracy : ADJUST!

f o r i in range (1 ,m+1) :
t = cos (math . p i * (f l o a t (i) −0.25) / (f l o a t (npts) + 0 . 5))
t1 = 1
whi le ((abs (t−t1)) >= eps) :

p1 = 1 . ; p2 = 0 . ;
f o r j in range (1 , npts +1) :

p3 = p2
p2 = p1
p1=((2 * j −1) * t * p2−(j −1) * p3) / j

pp = npts * (t * p1−p2) / (t * t −1 .)
t1 = t ; t = t1 − p1 / pp

x [i −1] = − t
x [npts− i] = t
w[i −1] = 2 . / ((1 . − t * t) * pp *pp)
w[npts− i] = w[i −1]

f o r i in range (0 , npts) :
x [i] = x [i] * (b−a) / 2 . + (b + a) / 2 .
w[i] = w[i] * (b−a) / 2 .

f o r M in range (16 , 32 , 8) :
z=[−1024 , −512 , −256 , −128 , −64 , −32 , −16 , −8 , −4 , −2]
f o r lmbda in z :

A = zeros ((M,M) , f l o a t) # Hamiltonian
WR = zeros ((M) , f l o a t) # Eigenvalues , potent ia l
k = zeros ((M) , f l o a t) ; w = zeros ((M) , f l o a t) ; # Pts & wts
gauss (M, min1 , max1 , k , w) # Call gauss points
f o r i in range (0 ,M) : # Set Hamiltonian

f o r j in range (0 ,M) :
VR = lmbda /2 / u* s in (k [i] * b) / k [i] * s in (k [j] * b) / k [j]
A[i , j] = 2 . / math . p i *VR*k [j] * k [j] *w[j]
i f (i == j) :

A[i , j] += k [i] * k [i] / 2 / u
Es , e v ec to r s = e ig (A)
r e a l e v = Es . r e a l # Real eigenvalues
f o r j in range (0 ,M) :

i f (r e a l e v [j] <0) :
pr in t (" M (s i z e) , lmbda , ReE = " ,M, " " , lmbda , "

" , r e a l e v [j])
break

1. Write a program, or modify ours, to solve the integral equation (26.9) for the
delta-shell potential (26.16). Either find the En ’s for which the determinant
vanishes or, find the eigenvalues and eigenvectors for thisH.

2. Set the scale by setting 2μ = 1 and b = 10.
3. Set up the potential and Hamiltonian matrices V(i, j) andH(i, j) for Gaussian

quadrature integration with at least N = 16 grid points.

59726.3 ScatteringStates of Nonlocal Potentials⊙

4. Adjust the value and sign of λ for bound states. A good approach is to start
with a large negative value for λ and then make it less negative. You should
find that the eigenvalue moves up in energy.

5. Note: Your eigenenergy solver may return several eigenenergies. The true
bound state will be at negative energy and change little as the number of grid
points changes. The others are numerical artifacts.

6. Try increasing the number of grid points in steps of 8, for example, 16, 24, 32,
64,…, and see how the energy changes.

7. Extract the best value for the bound-state energy and estimate its precision by
seeing how it changes with the number of grid points.

8. If you are solving the eigenvalue problem, check your solution by comparing
the RHS and LHS in the matrix multiplication [H][ψn] = En[ψn].

9. Verify that, regardless of the potential’s strength, there is only a single bound
state and that it gets deeper as the magnitude of λ increases. Compare
with (26.17).

26.2.4
Wave Function (Exploration)

1. Determine the momentum–space wave function ψn(k) using an eigen prob-
lem solver. Does ψn(k) fall off at k → ∞? Does it oscillate? Is it well behaved
at the origin?

2. Using the same points and weights as used to evaluate the integral in the in-
tegral equation, determine the coordinate-space wave function via the Bessel
transform

ψn(r) =
∞

∫
0

dkψn(k)
sin(kr)
kr

k2 . (26.18)

Does ψn(r) fall off as you would expect for a bound state? Does it oscillate? Is
it well behaved at the origin?

3. Compare the r dependence of this ψn(r) to the analytic wave function:

ψn(r) ∝

{
e−κr − eκr , for r < b ,
e−κr , for r > b .

(26.19)

26.3
Scattering States of Nonlocal Potentials⊙

Problem Again we have a particle interacting with the nonlocal potential dis-
cussed for bound states (Figure 26.3a), only now the particle has sufficiently high
energy that it scatters from rather than binds with the medium. Your problem is
to determine the scattering cross section for scattering from a nonlocal potential.

598 26 Integral Equations of QuantumMechanics

r’ r

k

k’
–k

–k’

m1

m2(a) (b)

Figure 26.3 (a) A projectile (dark particle at r) scattering from a dense medium. (b) The same
process viewed in the CM systemwhere the projectile and target always have equal and oppo-
site momenta.

26.4
Lippmann–Schwinger Equation (Theory)

Because experiments measure scattering amplitudes and not wave functions, it
is more direct to have a theory dealing with amplitudes rather than wave func-
tions.3) An integral form of the Schrödinger equation dealing with the scattering
amplitude R is the Lippmann–Schwinger equation:

R(k′ , k) = V (k′ , k) + 2
π

∞

∫
0

d p
p2V (k′ , p)R(p, k)
(k20 − p2)∕2μ

, (26.20)

where the symbol in (26.20) indicates the Cauchy principal-value prescription
for avoiding the singularity arising from the zero of the denominator (we discuss
how to do that next). As for the bound-state problem, this equation is for partial
wave l = 0 and ℏ = 1. In (26.20), the momentum k0 is related to the energy E and
the reduced mass μ by

E =
k20
2μ

, μ =
m1m2

m1 +m2
. (26.21)

The initial and final COMmomenta k and k′ are themomentum–space variables.
The experimental observable that results from a solution of (26.20) is the diagonal
matrix element R(k0, k0), which is related to the scattering phase shift δ0 and thus
the cross section:

R(k0, k0) = −
tan δl
ρ

, ρ = 2μk0 . (26.22)

Note that (26.20) is not just the evaluation of an integral, it is an integral equa-
tion in which R(p, k) is integrated over all p. Yet because R(p, k) is unknown, the
integral cannot be evaluated until after the equation is solved!

3) To make the presentation simpler, but still perfectly valid, we solve for the reaction matrix R,
but call it the scattering amplitude.

59926.4 Lippmann–SchwingerEquation (Theory)

26.4.1
Singular Integrals (Math)

A singular integral

 =
b

∫
a

g(k)dk , (26.23)

is one in which the integrand g(k) is singular at a point k0 within the integra-
tion interval [a , b], yet with the integral remaining finite. (If the integral itself
were infinite, we could not compute it.) Unfortunately, computers are notoriously
bad at dealing with infinite numbers, and if an integration point gets too near the
singularity, overwhelming subtractive cancellation or overflowmay occur. Conse-
quently, we apply some results from complex analysis before evaluating singular
integrals numerically.4)
In Figure 26.4, we show three ways to avoid the singularity of an integrand.

The paths in Figure 26.4a and b move the singularity slightly off the real k-axis
by giving the singularity a small imaginary part ±i𝜖. The Cauchy principal-value
prescription in Figure 26.4c is seen to follow a path that “pinches” both sides of
the singularity at k0, but does not to pass through it:

+∞

∫
−∞

f (k)dk = lim
𝜖→0

⎡⎢⎢⎣
k0−𝜖

∫
−∞

f (k)dk +
+∞

∫
k0+𝜖

f (k)dk
⎤⎥⎥⎦ . (26.24)

The preceding three prescriptions are related by the identity
+∞

∫
−∞

f (k)dk
k − k0 ± i𝜖

=
+∞

∫
−∞

f (k)dk′

k − k0
∓ iπ f (k0) , (26.25)

which follows from Cauchy’s residue theorem.

(a)

Im k’

Im k’ Im k’

(b) (c)

–k k

–k k

k – ε k + ε
Re k’ Re k’ Re k’

Figure 26.4 Three different paths in the complex k′ plane used to evaluate line integrals when
there are singularities. Here the singularities are at k and −k, and the integration variable is k′.

4) Singh and Thompson (1993) describe a different approach using Maple and Mathematica.

600 26 Integral Equations of QuantumMechanics

26.4.2
Numerical Principal Values

A direct numerical evaluation of the principal value limit (26.24) is troublesome
because of the large cancellations that occur near the singularity. A better algo-
rithm follows from the mathematical theorem

+∞

∫
−∞

dk
k − k0

= 0 . (26.26)

This equation says that the curve of 1∕(k − k0) as a function of k has equal and
opposite areas on both sides of the singular point k0. If we break the integral up
into one over positive k and one over negative k, a change of variable k → −k
permits us to rewrite (26.26) as

+∞

∫
0

dk
k2 − k20

= 0 . (26.27)

We observe that the principal-value exclusion of the singular point’s contribution
to the integral is equivalent to a simple subtraction of the zero integral (26.27):

+∞

∫
0

f (k)dk
k2 − k20

=
+∞

∫
0

[f (k) − f (k0)]dk
k2 − k20

. (26.28)

Note that there is no on the RHS of (26.28) because the integrand is no longer
singular at k = k0 (it is proportional to the d f ∕dk) and can therefore be evalu-
ated numerically using the usual rules. The integral (26.28) is called the Hilbert
transform of f and also arises in subjects like inverse problems.

26.4.3
Reducing Integral Equations to Matrix Equations (Method)

Now that we can handle singular integrals, we go back to reducing the integral
equation (26.20) to a set of linear equations that can be solved with matrix meth-
ods. We start by rewriting the principal-value prescription as a definite integral
(Haftel and Tabakin, 1970):

R(k′ , k) = V (k′ , k) + 2
π

∞

∫
0

d p
p2V (k′ , p)R(p, k) − k20V (k′ , k0)R(k0 , k)

(k20 − p2)∕2μ
.

(26.29)

60126.4 Lippmann–SchwingerEquation (Theory)

We convert this integral equation to linear equations by approximating the inte-
gral as a sum over N integration points (usually Gaussian) k j with weights wj :

R(k , k0) ≃ V (k , k0) +
2
π

N∑
j=1

k2j V (k , k j)R(k j , k0)wj

(k20 − k2j)∕2μ

− 2
π
k20V (k , k0)R(k0 , k0)

N∑
m=1

wm

(k20 − k2m)∕2μ
. (26.30)

We note that the last term in (26.30) implements the principal-value prescription
and cancels the singular behavior of the previous term. Equation 26.30 contains
the (N + 1) unknowns R(k j , k0) for j = 0,N . We turn it into (N + 1) simultaneous
equations by evaluating it for (N + 1) k values on a grid (Figure 26.2) consisting
of the observable momentum k0 and the integration points:

k = ki =

{
k j , j = 1,N (quadrature points) ,
k0 , i = 0 (observable point) .

(26.31)

There are now (N + 1) linear equations for (N + 1) unknowns Ri ≡ R(ki , k0):

Ri = Vi +
2
π

N∑
j=1

k2j Vi jR jw j

(k20 − k2j)∕2μ
− 2

π
k20Vi0R0

N∑
m=1

wm

(k20 − k2m)∕2μ
. (26.32)

We express these equations in the matrix form by combining the denominators
and weights into a single denominator vector D:

Di =
⎧⎪⎨⎪⎩
+ 2

π
wik2i

(k20−k
2
i)∕2μ

, for i = 1,N ,

− 2
π
∑N

j=1
w jk20

(k20−k
2
j)∕2μ

, for i = 0 .
(26.33)

The linear equations (26.32) now assume the matrix form

R − DVR = [1 − DV]R = V , (26.34)

where R and V are column vectors of length N + 1:

[R] =

⎛⎜⎜⎜⎜⎝
R0,0

R1,0

⋱

RN ,0

⎞⎟⎟⎟⎟⎠
, [V] =

⎛⎜⎜⎜⎜⎝
V0,0

V1,0

⋱

VN ,0

⎞⎟⎟⎟⎟⎠
. (26.35)

We call the matrix [1 − DV] in (26.34) the wave matrix F and write the integral
equation as the matrix equation

[F][R] = [V] , Fi j = δi j − DjVi j . (26.36)

With R the unknown vector, (26.36) is in the standard form AX = B, which can
be solved by the mathematical subroutine libraries discussed in Chapter 6.

602 26 Integral Equations of QuantumMechanics

26.4.4
Solution via Inversion, Elimination

An elegant (but alas not most efficient) solution to (26.36) is by matrix inversion:

[R] = [F]−1[V] . (26.37)

Because the inversion of even complex matrices is a standard routine in mathe-
matical libraries, (26.37) is a direct solution for the R amplitude. Unless you need
the inverse for other purposes (like calculating wave functions), a more efficient
approach is to use Gaussian elimination to find an [R] that solves [F][R] = [V]
without computing the inverse.

Listing 26.2 Scatt.py solves the Lippmann–
Schwinger integral equation for scattering
from a delta-shell potential. The singular in-
tegral equations are regularized by a sub-

traction, converted to matrix equations using
Gaussian grid points, and then solved with
matrix library routines.

Scat t . py : Soln p space Lippmann Schwinger for s ca t t e r ing

from v i s u a l import *
from v i s u a l . graph import *
import numpy . l i n a l g as l i n a # Numpy ’ s LinearAlgebra

de f gauss (npts , job , a , b , x , w) :
m = i = j = t = t1 = pp = p1 = p2 = p3 = 0 .
eps = 3 . E−14 # Accuracy : * * * * * *ADJUST THIS * * * * * * * !
m = (npts + 1) /2
f o r i in arange (1 , m + 1) :

t = cos (math . p i * (f l o a t (i) − 0 . 2 5) / (f l o a t (npts) + 0 . 5))
t1 = 1
whi le ((abs (t − t1)) >= eps) :

p1 = 1 . ; p2 = 0 .
f o r j in range (1 , npts + 1) :

p3 = p2 ; p2 = p1
p1 = ((2 . * f l o a t (j) −1) * t * p2 − (f l o a t (j) −1.) * p3) / (f l o a t (j))

pp = npts * (t * p1 − p2) / (t * t − 1 .)
t1 = t ; t = t1 − p1 / pp

x [i − 1] = − t ; x [npts − i] = t
w[i − 1] = 2 . / ((1 . − t * t) * pp *pp)
w[npts − i] = w[i − 1]

i f (j ob == 0) :
f o r i in range (0 , npts) :

x [i] = x [i] * (b − a) / 2 . + (b + a) / 2 .
w[i] = w[i] * (b − a) / 2 .

i f (j ob == 1) :
f o r i in range (0 , npts) :

x i = x [i]
x [i] = a *b * (1 . + x i) / (b + a − (b − a) * x i)
w[i] = w[i] * 2 . * a *b *b / ((b + a − (b−a) * x i) * (b + a − (b−a) * x i))

i f (j ob == 2) :
f o r i in range (0 , npts) :

x i = x [i]
x [i] = (b * x i + b + a + a) / (1 . − x i)
w[i] = w[i] * 2 . * (a + b) / ((1 . − x i) * (1 . − x i))

g r aphsca t t = gd i sp l ay (x=0 , y=0 , xmin=0 , xmax=6 , ymin=0 , ymax=1 , width =600 ,
he ight =400 ,

60326.4 Lippmann–SchwingerEquation (Theory)

t i t l e = ’S Wave Cross Section vs E ’ , x t i t l e = ’kb ’ , y t i t l e = ’ [s in (delta)]**2 ’)
s i n 2p l o t = gcurve (co lo r=co lo r . ye l low)
M = 27 ; b = 10 . 0 ; n = 26
k = zeros ((M) , f l o a t) ; x = zeros ((M) , f l o a t) ; w =

zeros ((M) , f l o a t)
Finv = zeros ((M,M) , f l o a t) ; F = zeros ((M,M) , f l o a t) ; D =

zeros ((M) , f l o a t)
V = zeros ((M) , f l o a t) ; Vvec = zeros ((n+1 ,1) , f l o a t)
s c a l e = n / 2 ; lambd = 1 .5

gauss (n , 2 , 0 . , s c a l e , k , w) # Set up points & wts
ko = 0 .02
f o r m in range (1 , 901) :

k [n] = ko
f o r i in range (0 , n) : D[i]=2/ p i *w[i] * k [i] * k [i] / (k [i] * k [i]−ko * ko) #D
D[n] = 0 .
f o r j in range (0 , n) : D[n]=D[n]+w[j] * ko * ko / (k [j] * k [j]−ko * ko)
D[n] = D[n] * (− 2 . / p i)
f o r i in range (0 , n+1) : # Set up F & V

f o r j in range (0 , n+1) :
pot = −b *b * lambd * s in (b * k [i]) * s in (b * k [j]) / (k [i] * b * k [j] * b)
F [i] [j] = pot *D[j]
i f i== j : F [i] [j] = F [i] [j] + 1 .

V[i] = pot
f o r i in range (0 , n+1) : Vvec [i] [0]= V[i]
Finv = l i n a . inv (F) # LinearAlgebra for inverse
R = dot (Finv , Vvec) # Matrix multiply
RN1 = R[n] [0]
s h i f t = atan (−RN1*ko)
s in2 = (s in (s h i f t)) * *2
s i n 2p l o t . p l o t (pos = (ko *b , s in2)) # Plot s in * *2 (delta)
ko = ko + 0 . 2 * p i / 1000 .

pr in t ("Done")

26.4.5
Scattering Implementation

For the scattering problem,we use the same delta-shell potential (26.16) discussed
in Section 26.2.2 for bound states:

V (k′ , k) = −|λ|
2μk′k

sin(k′b) sin(kb) . (26.38)

This is one of the few potentials for which the Lippmann–Schwinger equa-
tion (26.20) has an analytic solution (Gottfried, 1966) with which to check:

x tan δ0 =
λb sin2(kb)

kb − λb sin(kb) cos(kb)
. (26.39)

Our results were obtained with 2μ = 1, λb = 15, and b = 10, the same as in (Got-
tfried, 1966). In Figure 26.5, we give a plot of sin2 δ0 vs. kb, which is proportional
to the scattering cross section arising from the angular momentum l = 0 phase
shift. It is seen to reach its maximum values at energies corresponding to reso-
nances. In Listing 26.2, we present our program for solving the scattering integral
equation using the NumPy Linear Algebra matrix library and the gauss method

604 26 Integral Equations of QuantumMechanics

for quadrature points. For your implementation:

1. Set up the matrices V[], D[], and F[,]. Use at least N = 16 Gaussian quadrature
points for your grid.

2. Calculate the matrix F−1 using a library subroutine.
3. Calculate the vector R by matrix multiplication R = F−1V .
4. Deduce the phase shift δ from the i = 0 element of R:

R(k0, k0) = R0,0 = − tan δ
ρ

, ρ = 2μk0 . (26.40)

5. Estimate the precision of your solution by increasing the number of grid point
in steps of two (we found the best answer for N = 26). If your phase shift
changes in the second or third decimal place, you probably have that much
precision.

6. Plot sin2 δ vs. energy E = k20∕2μ starting at zero energy and ending at ener-
gies where the phase shift is again small. Your results should be similar to
those in Figure 26.5. Note that a resonance occurs when δl increases rapidly
through π∕2, that is, when sin2 δ0 = 1.

7. Check your answer against the analytic results (26.39).

0 2 4 6
0

1

kb

sin
2δ

π

Analytic

Figure 26.5 The energy dependence of the
cross section for l = 0 scattering from an at-
tractive delta-shell potential with λb = 15. The
dashed curve is the analytic solution (26.39),

and the solid curve results from numerically
solving the integral Schrödinger equation,
either via direct matrix inversion or via LU
decomposition.

26.4.6
Scattering Wave Function (Exploration)

The F−1 matrix that occurred in our solution to the integral equation

R = F−1V = (1 − VG)−1V (26.41)

60526.4 Lippmann–SchwingerEquation (Theory)

is actually quite useful. In scattering theory, it is known as the wave matrix be-
cause it is used in expansion of the wave function:

u(r) = N0

N∑
i=1

sin(ki r)
ki r

F(ki , k0)−1 . (26.42)

Here N0 is a normalization constant and the R amplitude is appropriate for
standing-wave boundary conditions. So once we know F1, we also know the wave
function.

1. Plot u(r) and compare it to a free wave.

607

A
Codes, Applets, and Animations

Table A.1 Python codes, Chapters 1–26.

Name Listing Description Name Listing Description
No. No.

EasyVisual 1.1 Visual easy plot 3GraphVisual 1.2 Visual multiplots
3Dshapes 1.3 Visual 3D shapes EasyMatPlot 1.4 Matplot 2D
GradesMatPlot 1.5 Matplot multiplots MatPlot2figs 1.6 Matplot multiplots
PondMatPlot 1.7 Matplot scatter plot Simple3Dplot 1.8 Matplot surface
Scatter3dPlot 1.9 Matplot 3D scatter EqHeatAnimate 1.10 Matplot animation
MayaLines 1.12 Mayavi flow lines MayaYlm 1.10 Mayavi surface
Area 2.1 Simple screen I/O AreaFormatted 2.2 Formatted I/O
Directives 2.3 I/O directives, escape Limits 2.4 Machine precision
Bessel 3.1 Downward recursion Walk 4.1 Random walk
Walk3D 4.1 3D random walk DecaySound 4.2 Spontaneous decay
TrapMethods 5.1 Trapezoid rule IntegGauss 5.2 Gaussian quadrature
vonNeuman 5.3 von Neumann rejection Eigen 6.34 Matrix eigenvalues
Matrix 6.5 Matrix array mult NewtonNDanimate 6.1 N-D Newton–Raphson
Bisection 7.1 Bisection algorithm NewtonCD 7.2 Newton–Raphson search
Lagrange 7.5 Lagrange interpolation Spline 7.3 Spline fitting
SplineInteract 7.3 Interactive splines Fit 7.4 Least-squares fitting
rk4 8.1 rk4 ODE solver rk45 8.2 Adaptive step rk4
ABM 8.3 ABM ODE solver QuantumNumerov 9.1 Schrödinger equation
QuantumEigen 9.2 Quantum eigen rk4 ProjectileAir 9.3 Projectile with drag
TuneNumPy 11.5 NumPy vectors Tune.f90 11.6 Fortran tuning
Tune 11.7 Python tuning Tune4 11.8 Python loop unroll
tune4.f95 11.9 Fortran loop unrolling SumArraysCuda 11.16 CUDA GPU program
SumArraysCuda2 11.17 GPU blocks DFTcomplex 12.1 Complex DFT
DFTreal 12.2 Real DFT FourierMatplot 12.2 Interactive DFT
NoiseSincFilter 12.4 Fourier filtering FFT.py 12.3 Fast Fourier transform
FFTappl 12.3 FFT+ graphs CWT 13.1 Continuous wavelets
DWT 13.2 Discrete wavelets Bugs 14.1 Logistic bifurcations

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

608 A Codes, Applets, and Animations

Table A.1 (continued).

Name Listing Description Name Listing Description
No. No.

LyapLog 14.2 Lyapunov coefficient Entropy 14.3 Shannon entropy
PredatorPrey 14.4 Population dynamics Fern3D 16.1 3D fern
Column 16.2 Column growth Gameoflife 16.3 Game of life
Islands.pov 16.4 Ray tracing Film online Film deposition
Coastline online Box counting DLA 16.7 Aggregation
Fern 16.1 1D fern Sierpin 16.2 Sierpinsky gasket
IsingViz 17.1 Ising model WangLandau 17.2 Wang–Landau MC
QMC 17.3 Quantum MC QMCbouncer 17.4 QMC bouncer
MD 18.1 1D MD MD2D 18.1 2D MD
LaplaceLine 19.1 Laplace equation EqHeat 20.1 Heat equation solution
EqHeat 20.1 Heat equation HeatCNTridiag 20.2 Better heat
EqStringAnimate 21.1 Wave equation EqStringMatPlot.py online Waves with Matplot
Waves2D 21.2 2D wave equation Waves2Danal online Analytic membrane
HarmosAnimate 22.1 Quantum packet FDTD 22.2 Finite difference time
CircPolarztn 22.3 FDTD circular domain
LaplaceFEM_1D 23.1 Finite element 1D LaplaceFEM_2D 23.2 Finite element 2D
AdvecLax 24.1 Advection equation Soliton 24.2 KdeV solitons
SolitonAnimate online Soliton movie Beam 25.1 Navier–Stokes equation
BeamContour 25.4 Flow contours Bound 26.1 Integral equation eigen
Scatt 26.2 Integral equation scatter

Table A.2 Animations (A player such as VLC or QuickTime required for mpeg and avi, and a
Web browser for gifs).

Directory Chapter Directory Chapter

DoublePendulum (see also applets) 15 Fractals (see also applets) 16
MapleWaveMovie (requires Maple) 21 Laplace (DX movie) 19
MD 18 TwoSlits 22
2D solitons 21,25 Utilities (scripts, colormaps)
Waves (animated gifs need browser) 21

609

Bibliography

Abarbanel, H.D.I., Rabinovich, M.I., and
Sushchik, M.M. (1993) Introduction to
Nonlinear Dynamics for Physicists, World
Scientific, Singapore.

Abramowitz, M. and Stegun, I.A. (1972)
Handbook of Mathematical Functions,
10th edn, US Govt. Printing Office, Wash-
ington.

Addison, P.S. (2002) The Illustrated Wavelet
Transform Handbook, Institute of Physics
Publishing, Bristol and Philadelphia.

Allan, M.P. and Tildesley, J.P. (1987) Computer
Simulations of Liquids, Oxford Science
Publications, Oxford.

Amdahl, G. (1967) Validity of the Single-
Processor Approach to Achieving Large-
Scale Computing Capabilities, Proc.
AFIPS, p. 483.

Ancona, M.G. (2002) Computational Meth-
ods for Applied Science and Engineering,
Rinton Press, Princeton.

Anderson, E., Bai, Z., Bischof, C., Demmel, J.,
Dongarra, J., Du Croz, J., Greenbaum, A.,
Hammarling, S., McKenney, A., Ostrou-
chov, S., and Sorensen, D. (2013) LAPACK
Users’ Guide, 3rd edn, SIAM, Philadelphia,
www.netlib.org (accessed 22 March 2015).

Anderson, J.A., Lorenz, C.D., and Traves-
set, A. (2008) HOOMD-blue, general
purpose molecular dynamics simula-
tions. J. Comput. Phys., 227 (10), 5342,
codeblue.umich.edu/hoomd-blue (accessed
22 March 2015).

Arfken, G.B. and Weber, H.J. (2001) Math-
ematical Methods for Physicists, Har-
court/Academic Press, San Diego.

Argyris, J., Haase, M., and Heinrich, J.C.
(1991) Comput. Methods Appl. Mech. Eng.,
86, 1.

Armin, B. and Shlomo, H. (eds) (1991) Frac-
tals and Disordered Systems, Springer,
Berlin.

Askar, A. and Cakmak, A.S. (1977) J. Chem.
Phys., 68, 2794.

Banacloche, J.G. (1999) A quantum bouncing
ball. Am. J. Phys., 67, 776.

Barnsley, M.F. and Hurd, L.P. (1992) Fractal
Image Compression, A.K. Peters,Wellesley.

Beazley, D.M. (2009) Python Essential Refer-
ence, 4th edn, Addison-Wesley, Reading,
MA, USA.

Becker, R.A. (1954) Introduction to Theoreti-
cal Mechanics, McGraw-Hill, New York.

Bevington, P.R. and Robinson, D.K. (2002)
Data Reduction and Error Analysis for the
Physical Sciences, 3rd edn, McGraw-Hill,
New York.

Bleher, S., Grebogi, C., and Ott, E. (1990) Bi-
furcations in chaotic scattering. Physica D,
46, 87.

Briggs,W.L. andHenson, V.E. (1995)TheDFT,
An Owner’s Manual, SIAM, Philadelphia.

Bunde, A. and Havlin, S. (eds) (1991) Fractals
and Disordered Systems, Springer, Berlin.

Burgers, J.M. (1974) The Non-Linear Diffu-
sion Equation; Asymptotic Solutions and
Stattistical Problems, Reidel, Boston.

Car, R. and Parrinello, M. (1985) Phys. Rev.
Lett., 55, 2471.

Cencini, M., Ceconni, F. and Vulpiani, A.
(2010) Chaos From Simple Models To Com-
plex Systems, World Scientific, Singapore.

Christiansen, P.L. and Lomdahl, P.S. (1981)
Physica D, 2, 482.

Christiansen, P.L. and Olsen, O.H. (1978)
Phys. Lett. A, 68, 185; Christiansen, P.L.
and Olsen, O.H. (1979) Phys. Scr., 20, 531.

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

610 Bibliography

Clark University (2011) Statistical and Ther-
mal Physics Curriculum Development
Project, stp.clarku.edu/ (accessed 22 March
2015); Density of States of the 2D Ising
Model.

CPUG, Computational Physics degree
program for Undergraduates (2009),
physics.oregonstate.edu/CPUG (accessed 22
March 2015).

Crank, J. and Nicolson, P. (1946) Proc. Cam-
bridge Philos. Soc., 43, 50.

Cooley, J.W. and Tukey, J.W. (1965) Math.
Comput., 19, 297.

Courant, R., Friedrichs, K., and Lewy, H.
(1928) Math. Ann., 100, 32.

Critchley, S. (2014) The Dangers of Certainty:
A Lesson from Auschwitz, New York Times,
New York.

Danielson, G.C. and Lanczos, C. (1942) J.
Franklin Inst., 233, 365.

Daubechies, I. (1995) Wavelets and other
phase domain localization methods,
Proc. Int. Congr. Math., 1, 2, Basel, 56,
Birkhäuser, Basel.

DeJong, M.L. (1992) Chaos and the simple
pendulum. Phys. Teach., 30, 115.

Dongarra, J. (2011) On the Future of High
Performance Computing: How to Think
for Peta and Exascale Computing, Con-
ference on Computational Physics 2011,
Gatlinburg; Emerging Technologies for
High Performance Computing, GPU Club
presentation, University of Manchester,
www.netlib.org/utk/people/JackDongarra/
SLIDES/gpu-0711.pdf (accessed 22 March
2015).

Dongarra, J., Sterling, T., Simon, H., and
Strohmaier, E. (2005) High-performance
computing. Comput. Sci. Eng., 7, 51.

Dongarra, J., Hittinger, J., Bell, J., Chacson, L.,
Falgout, R., Heroux, M., Hovland, P., Ng,
E., Webster, C., and Wild, S. (2014) Ap-
plied Mathematics Research for Exascale
Computing, US Department of Energy Re-
port, http://www.osti.gov/bridge (accessed
22 March 2015).

Donnelly, D. and Rust, B. (2005) The fast
Fourier transform for experimentalists.
Comput. Sci. Eng., 7, 71.

Eclipse an open development platform (2014)
www.eclipse.org (accessed 22 March 2015).

Ercolessi, F. (1997) A molecular dynamics
primer, www.ud.infn.it/~ercolessi/md/ (ac-
cessed 22 March 2015).

Faber, R. (2010) CUDA, Supercomput-
ing for the Masses: Part 15, www.
drdobbs.com/architecture-and-design/
cuda-supercomputing-for-the-masses-part/
222600097 (accessed 22 March 2015).

Falkovich, G. and Sreenivasan, K.R. (2006)
Lesson from hydrodynamic turbulence.
Phys. Today, 59, 43.

Family, F. and Vicsek, T. (1985) J. Phys. A, 18,
L75.

Feigenbaum, M.J. (1979) J. Stat. Phys., 21, 669.
Fetter, A.L. and Walecka, J.D. (1980) Theoret-

ical Mechanics of Particles and Continua,
McGraw-Hill, New York.

Feynman, R.P. and Hibbs, A.R. (1965)
Quantum Mechanics and Path Integrals,
McGraw-Hill, New York.

Fitzgerald, R. (2004) New experiments set the
scale for the onset of turbulence in pipe
flow. Phys. Today, 57, 21.

Fosdick L.D., Jessup, E.R. Schauble, C.J.C.,
and Domik, G. (1996) An Introduction to
High Performance Scientific Computing,
MIT Press, Cambridge.

Fox, G. (1994) Parallel Computing Works!
Morgan Kaufmann, San Diego.

Gara, A., Blumrich, M.A., Chen, D.,
Chiu, G.L.-T., Coteus, P., Giampapa, M.E.,
Haring, R.A., Heidelberger, P.,
Hoenicke, D., Kopcsay, G.V., Liebsch, T.A.,
Ohmacht, M., Steinmacher-Burow, B.D.,
Takken, T., and Vranas, P. (2005) Overview
of the Blue Gene/L system architecure.
IBM J. Res Dev., 49, 195; Feldman, M., IBM
Specs Out Blue Gene/Q Chip, (2011) HPC
Wire, August 22 2011.

Garcia, A.L. (2000) Numerical Methods for
Physics, 2nd edn, Prentice-Hall, Upper
Saddle River, NJ, USA.

Gibbs, R.L. (1975) The quantum bouncer.
Am. J. Phys., 43, 25.

Gnuplot (2014) gnuplot homepage www.
gnuplot.info (accessed 22 March 2015).

Goldberg, A., Schey, H.M., and Schwartz, J.L.
(1967) Computer-generated motion pic-
tures of one-dimensional quantum-
mechanical transmission and reflection
phenomena. Am. J. Phys., 35, 177–186.

611Bibliography

Goodings, D.A. and Szeredi, T. (1992) The
quantum bouncer by the path integral
method. Am. J. Phys., 59, 924.

Goswani, J.C. and Chan, A.K. (1999) Funda-
mentals of Wavelets, John Wiley & Sons,
New York.

Gottfried, K. (1966) Quantum Mechanics,
Benjamin, New York.

Gould, H., Tobochnik, J., and Christian, W.
(2006) An Introduction to Computer Simu-
lations Methods, 3rd edn, Addison-Wesley,
Reading, USA.

Graps, A. (1995) An introduction to wavelets.
Comput. Sci. Eng., 2, 50.

Gurney, W.S.C. and Nisbet, R.M. (1998) Eco-
logical Dynamics, Oxford University Press,
Oxford.

Haftel, M.I. and Tabakin, F. (1970)Nucl. Phys.,
158, 1.

Hardwich, J. (1996) Rules for Optimiza-
tion, www.cs.cmu.edu/~jch/java (accessed
22 March 2015).

Hartmann, W.M. (1998) Signals, Sound, and
Sensation, AIP Press, Springer, New York.

Higgins, R.J. (1976) Fast Fourier transform:
An introduction with some minicomputer
experiments. Am. J. Phys., 44, 766.

Hildebrand, F.B. (1956) Introduction to Nu-
merical Analysis, McGraw-Hill, New York.

Hinsen, K. (2013) Software development for
reproducible research. Comput. Sci. Eng, 4
(15), 60–63,
www.computer.org/portal/web/cise/home
(accessed 22 March 2015).

History of Python (2009) The History of
Python python-history.blogspot.com/2009/
01/brief-timeline-of-python.html (accessed
22 March 2015).

Hockney, R.W. and J.W. Eastwood (1988)
Computer Simulation Using Particles,
Adam Hilger, Bristol.

Hubble, E. (1929) A relation between distance
and radial velocity among extra-galactic
nebulae. Proc. Natl. Acad. Sci. USA, 15 (3),
168.

Hunag, K. (1987) Statistical Mechanics, John
Wiley & Sons, New York.

Jackson, J.D. (1988) Classical Electrodynam-
ics, 3rd edn, JohnWiley & Sons, New York.

Jackson, J.E. (1988) A User’s Guide to Princi-
pal Components, John Wiley & Sons, New
York.

Jolliffe, I.Y. (2001) Principal Component Anal-
ysis, 2nd edn, Springer, New York.

José, J.V. and Salatan, E.J. (1988) Classical
Dynamics, Cambridge University Press,
Cambridge.

Kennedy, R. (2006) The case of Pollock’s Frac-
tals Focuses on Physics, New York Times,
2, 5 December 2006.

Kirk, D. and Wen-Mei, W.H. (2013) Program-
ming Massively Parallel Processors, 2nd
edn, Morgan Kauffman, Waltham.

Kittel, C. (2005) Introduction to Solid State
Physics, 8th edn, John Wiley & Sons, Inc.,
Hoboken.

Klöckner, A. (2014) PyCUDA, mathema.tician.
de/software/pycuda (accessed 22 March
2015).

Koonin, S.E. (1986) Computational Physics,
Benjamin, Menlo Park, CA.

Korteweg, D.J. and deVries, G. (1895) Philos.
Mag., 39, 4.

Kreyszig, E. (1998) Advanced Engineering
Mathematics, 8th edn, John Wiley & Sons,
New York.

Lamb, H. (1993) Hydrodynamics, 6th edn,
Cambridge University Press, Cambridge.

Landau, D.P. and Wang, F. (2001) Determin-
ing the density of states for classical sta-
tistical models: A random walk algorithm
to produce a flat histogram. Phys. Rev. E,
64, 056101; Landau, D.P., Tsai, S.-H., and
Exler, M. (2004) A new approach to Monte
Carlo simulations in statistical physics:
Wang–Landau sampling. Am. J. Phys., 72,
1294.

Landau, L.D. and Lifshitz, E.M. (1987)
Fluid Mechanics, 2nd edn, Butterworth-
Heinemann, Oxford.

Landau, L.D. and Lifshitz, E.M. (1976) Quan-
tum Mechanics, Pergamon, Oxford.

Landau, L.D. and Lifshitz, E.M. (1976) Me-
chanics, 3rd edn, Butterworth-Heinemann,
Oxford.

Landau, R.H. (2008) Resource letter CP-2:
Computational physics. Am. J. Phys., 76,
296.

Landau, R.H. (2005) A First Course in Sci-
entific Computing, Princeton University
Press, Princeton.

Landau, R.H. (1996) Quantum Mechanics II,
A Second Course in Quantum Theory, 2nd
edn, John Wiley & Sons, New York.

612 Bibliography

Lang, W.C. and Forinash, K. (1998) Time-
frequency analysis with the continuous
wavelet transform. Am. J. Phys., 66, 794.

Langtangen, H.P. (2008) Python Scripting for
Computational Science, Springer, Heidel-
berg.

Langtangen, H.P. (2009) A Primer on Scien-
tific Programming with Python, Springer,
Heidelberg.

Li, Z. (2014) Numerical Methods for Partial
Differential Equations – Finite Element
Method, www4.ncsu.edu/~zhilin/ (accessed
22 March 2015).

Lorenz, E.N. (1963) Deterministic non-
periodic flow. J. Atmos. Sci., 20,130.

Lotka, A.J. (1925) Elements of Physical Biol-
ogy, Williams and Wilkins, Baltimore.

MacKeown, P.K. (1985) Am. J. Phys., 53, 880.
MacKeown, P.K. and Newman, D.J. (1987)

Computational Techniques in Physics,
Adam Hilger, Bristol.

Maestri, J.J.V., Landau, R.H., and Páez, M.J.
(2000) Two-particle Schrödinger equation
animations of wave packet-wave packet
scattering. Am. J. Phys., 68, 1113; http:
//physics.oregonstate.edu/~rubin/nacphy/
ComPhys/PACKETS/.

Mallat, P.G. (1982) A theory for multireso-
lution signal decomposition: The wavelet
representation. IEEE Trans. Pattern Anal.
Mach. Intell., 11 (7), 674.

Mandelbrot, B. (1967) How long is the coast
of Britain? Science, 156, 638.

Mandelbrot, B. (1982) The Fractal Geometry
of Nature, Freeman, San Francisco.

Manneville, P. (1990) Dissipative Structures
and Weak Turbulence, Academic Press,
San Diego.

Mannheim, P.D. (1983) The physics behind
path integrals in quantum mechanics. Am.
J. Phys., 51, 328.

Marion, J.B. and Thornton, S.T. (2003) Classi-
cal Dynamics of Particles and Systems, 5th
edn, Harcourt Brace Jovanovich, Orlando.

Mathews, J. (2002) Numerical Methods for
Mathematics, Science and Engineering,
Prentice-Hall, Upper Saddle River.

Metropolis, M., Rosenbluth, A.W., Rosen-
bluth, M.N., Teller, A.H., and Teller, E.
(1953) J. Chem. Phys., 21, 1087.

Moon, F.C. and Li, G.-X. (1985) Phys. Rev.
Lett., 55, 1439.

Morse, P.M. and Feshbach, H. (1953)Methods
of Theoretical Physics, McGraw-Hill, New
York.

Motter, A. and Campbell, D. (2013) Chaos at
fifty. Phys. Today, 66 (5), 27.

Nelson, M., Humphrey, W., Gursoy, A.,
Dalke, A., Kalé, L., Skeel, R.D., and Schul-
ten, K. (1996) NAMD – Scalable Molec-
ular Dynamics. J. Supercomput. Apps.
High Perform. Comput., 10, 251–268,
www.ks.uiuc.edu/Research/namd (accessed
22 March 2015).

Nesvizhevsky, V.V., Borner, H.G.,
Petukhov, A.K., Abele, H., Baessler, S.,
Ruess, F.J., Stoferle, T., Westphal, A.,
Gagarski, A.M., Petrov, G.A., and
Strelkov, A.V. (2002) Quantum states of
neutrons in the Earth’s gravitational field.
Nature, 415, 297.

NIST Digital Library of Mathematical Func-
tions (2014) dlmf.nist.gov/ (accessed 22
March 2015).

Numerical Python (2013) NumPy numpy.
scipy.org (accessed 22 March 2015).

NumPy Tutorial, Tentative (2015) Tentative
NumPy Tutorial wiki.scipy.org/Tentative_
NumPy_Tutorial (accessed 22 March 2015).

Oliphant, T.E. (2006) Guide to NumPy, csc.
ucdavis.edu/~chaos/courses/nlp/Software/
NumPyBook.pdf (accessed 22 March 2015).

Ott, E. (2002) Chaos in Dynamical Systems,
Cambridge University Press, Cambridge.

Otto A. (2011) Numerical Simulations of Flu-
ids and Plasmas, how.gi.alaska.edu/ao/sim
(accessed 22 March 2015).

Pancake, C.M. (1996) Is parallelism for you?,
Comput. Sci. Eng., 3, 18.

Peitgen, H.-O., Jürgens, H., and Saupe, D.
(1992) Chaos and Fractals, Springer, New
York.

Penna, T.J.P. (1994) Comput. Phys., 9, 341.
Perez, F., Granger, B.E. and Hunter, J.D.

(2010) Python: An Ecosystem for Scien-
tifc Computing. Comput. Sci. Eng., 13 (2),
www.computer.org/web/computingnow/cise
(accessed 22 March 2015).

Perlin, K. (1985) An Image Synthesizer, Com-
puter Graphics (Proceedings of ACM SIG-
GRAPH 85) 24, 3.

Phatak, S.C. and Rao, S.S. (1995) Logistic
map: A possible random-number genera-
tor. Phys. Rev. E, 51, 3670.

613Bibliography

Plischke, M. and Bergersen, B. (1994) Equi-
librium Statistical Physics, 2nd edn, World
Scientific, Singapore.

Polikar, R. (2001) The Wavelet Tuto-
rial, users.rowan.edu/~polikar/WAVELETS/
WTtutorial.html (accessed 22 March 2015).

Polycarpou, A.C. (2006) Introduction to the
Finite Element Method in Electromagnet-
ics, Morgan and Claypool, San Rafael.

Potvin, J. (1993) Comput. Phys., 7, 149.
(2013) Pov-Ray, Persistence of Vision Ray-

tracer, www.povray.org (accessed 22 March
2015).

Press, W.H., Flannery, B.P., Teukolsky, S.A.,
and Vetterling, W.T. (1994) Numerical
Recipes, CambridgeUniversity Press, Cam-
bridge.

Python (2014) Python for Programmers, https:
//wiki.python.org/moin/BeginnersGuide/
Programmers (accessed 22 March 2015).

LearnPython.org (2014) Interactive Python
Tutorial, http://www.learnpython.org/ (ac-
cessed 22 March 2015).

(2014) The Python Tutorial, docs.python.org/
2/tutorial/ (accessed 22 March 2015).

(2014) Python Index of Packages, pypi.python.
org/pypi (accessed 22 March 2015).

(2014) Python Documentation, www.python.
org/doc (accessed 22 March 2015).

Quinn, M.J. (2004) Parallel Programming in
C with MPI and OpenMP, McGraw-Hill,
New York.

Ramasubramanian, K. and Sriram, M.S.
(2000) A comparative study of compu-
tation of Lyapunov spectra with different
algorithms. Physica D, 139, 72.

Rapaport, D.C. (1995) The Art of Molecular
Dynamics Simulation, Cambridge Univer-
sity Press, Cambridge.

Rasband, S.N. (1990) Chaotic Dynamics of
Nonlinear Systems, John Wiley & Sons,
New York.

Rawitscher, G., Koltracht, I., Dai, H., and
Ribetti, C. (1996) Comput. Phys., 10, 335.

Reddy, J.N. (1993) An Introduction to the
Finite Element Method, 2nd edn, McGraw-
Hill, New York.

Refson, K. (2000) Moldy, A General-Purpose
Molecular Dynamics Simulation Program,
cc-ipcp.icp.ac.ru/Moldy_2_16.html (accessed
22 March 2015).

Reynolds, O. (1883) Proc. R. Soc. Lond., 35,
84.

Richardson. L.F. (1961) Problemof contiguity:
an appendix of statistics of deadly quarrels.
General Syst. Yearbook, 6, 139.

Rowe, A.C.H. and Abbott, P.C. (1995)
Daubechies wavelets and mathematica.
Comput. Phys., 9, 635.

Russell, J.S. (1844) Report of the 14th Meeting
of the British Association for the Advance-
ment of Science, John Murray, London.

Sander, E., Sander, L.M., and Ziff, R.M. (1994)
Comput. Phys., 8, 420.

Sanders, J. and Kandrot, E. (2011) Cuda by
Example, Addison Wesley, Upper Saddle
River.

Satoh, A. (2011) Introduction to Practice of
Molecular Simulation, Elsevier, Amster-
dam.

Scheck, F. (1994) Mechanics, from Newton’s
Laws to Deterministic Chaos, 2nd edn,
Springer, New York.

Shannon, C.E. (1948) A mathematical theory
of communication. Bell Syst. Tech. J., 27,
379.

(2014) SciPy, a Python-based ecosystem,
www.scipy.org (accessed 22 March 2015).

Shaw C.T. (1992) Using Computational
Fluid Dynamics, Prentice-Hall, Englewood
Cliffs, NJ.

Singh, P.P. and Thompson, W.J. (1993) Com-
put. Phys., 7, 388.

Sipper, M. (1997) Evolution of Parallel Cellu-
lar Machines, Springer, Heidelberg,
cell-auto.com (accessed 22 March 2015).

Smith, D.N. (1991) Concepts of Object-
Oriented Programming, McGraw-Hill,
New York.

Smith, L.I. (2002) A Tutorial on Princi-
pal Components Analysis, www.cs.otago.
ac.nz/cosc453/student_tutorials/principal_
components.pdf (accessed 22 March 2015).

Smith, S.W. (1999) The Scientist and En-
gineer’s Guide to Digital Signal Process-
ing, California Technical Publishing, San
Diego.

Stetz, A., Carroll, J., Chirapatpimol, N.,
Dixit, M., Igo, G., Nasser, M., Orten-
dahl, D., and Perez-Mendez, V. (1973)
Determination of the Axial Vector Form
Factor in the Radiative Decay of the Pion,
LBL 1707.

Sullivan, D. (2000) Electromagnetic Simula-
tions Using the FDTDMethods, IEEE Press,
New York.

614 Bibliography

Tabor, M. (1989) Chaos and Integrability in
Nonlinear Dynamics, John Wiley & Sons,
New York.

Taflove, A. and Hagness, S. (2000) Compu-
tational Electrodynamics: The Finite Dif-
ference Time Domain Method, 2nd edn,
Artech House, Boston.

Tait, R.N., Smy, T., and Brett, M.J. (1990)Thin
Solid Films, 187, 375.

Thijssen J.M. (1999) Computational Physics,
Cambridge University Press, Cambridge.

Thompson, W.J. (1992) Computing for Sci-
entists and Engineers, John Wiley & Sons,
New York.

Tickner, J. (2004) Simulating nuclear particle
transport in stochastic media using Perlin
noise functions. Nucl. Instrum. Methods B,
203, 124.

Vallée, O. (2000) Comment on a quantum
bouncing ball. Am. J. Phys., 68, 672.

van de Velde, E.F. (1994) Concurrent Scientific
Computing, Springer, New York.

van den Berg, J.C. (ed.) (1999) Wavelets in
Physics, Cambridge University Press, Cam-
bridge.

Vano, J.A., Wildenberg, J.C., Anderson, M.B.,
Noel, J.K., and Sprott, J.C. (2006) Chaos in
low-dimensional Lotka–Volterramodels of
competition. Nonlinearity, 19, 2391–2404.

Visscher, P.B. (1991) Comput. Phys., 5, 596.
Vold, M.J. (1959) J. Colloid Sci., 14, 168.
Volterra, V. (1926) Variazioni e fluttuazioni

del numero d’individui in specie animali
conviventi. Mem. R. Accad. Naz. Lincei.
Ser. VI, 2.

Warburton, R.D.H. and Wang, J. (2004) Anal-
ysis of asymptotic projectile motion with

air resistance using the Lambert W func-
tion. Am. J. Phys., 72, 1404.

Ward, D.W. and Nelson, K.A. (2005) Finite
difference time domain, FDTD, simula-
tions of electromagnetic wave propagation
using a spreadsheet. Comput. Appl. Eng.
Educat., 13 (3), 213–221.

Whineray, J. (1992) An energy representation
approach to the quantum bouncer. Am. J.
Phys., 60, 948.

(2014) Principal component analysis, en.
wikipedia.org/wiki/Principal_component_
analysis (accessed 22 March 2015).

Williams, G.P. (1997) Chaos Theory Tamed,
Joseph Henry Press, Washington.

Witten, T.A. and Sander, L.M. (1981) Phys.
Rev. Lett., 47, 1400; Witten, T.A. and
Sander, L.M. (1983) Phys. Rev. B, 27, 5686.

Wolf, A., Swift, J.B., Swinney, H.L., and Vas-
tano, J.A. (1985) Determining Lyapunov
exponents from a time series. Physica D,
16, 285.

Wolfram S. (1983) Statistical mechanics of
cellular automata. Rev. Mod. Phys., 55, 601.

Yang, C.N. (1952) The spontaneous magne-
tization of a two-dimensional Ising model.
Phys. Rev., 85, 809.

Yee, K. (1966) IEEE Trans. Ant. Propagat.,
AP-14, 302.

Yue, K., Fiebig, K.M., Thomas, P.D.,
Chan, H.S., Shakhnovich, E.I., and Dill, A.
(1995) Proc. Natl. Acad. Sci. USA, 92, 325.

Zabusky, N.J. and Kruskal, M.D. (1965) Phys.
Rev. Lett., 15, 240.

Zeller, C. (2008) High Performance Com-
puting with CUDA, www.nvidia.com/
object/sc10_cuda_tutorial.htmlP (accessed
22 March 2015).

615

Index

a
Accuracy 41
Adams–Bashforth–Moulton 184
Advection 555–558
Airy function 441
Algorithm 35, 40
Alias 285
Amdahl’s law 228
Analog filter 294
Animation 374, 375, 450, 453, 514, 515, 563
Antiferromagnet 411
Applet 204, 210, 211
Architecture 122, 215, 216, 220, 226, 232,

244, 249, 254, see also Memory
Arithmetic unit 219, 223
Asymptote 344
Attractor 343–345, 374
– predictable 368, 370
– strange 370
Autocorrelation function 290–294

b
Backtracking 121, 147
Ballistic deposition 390, 390, 391, 395, 395,

396
– correlated 395, 396
Bandwidth 229
Base 41
Basic machine language 34, 35
Beating 189, 190
Beowulf 226
Bessel function 58, 59, 61, 597
Bias 45
Bifurcation 343–349, 351, 352, 374, 375, 377
– diagram 345
– dimension of 400
Binary number 40
Binary point 44
Binning 347

Bisection algorithm 142–145, 195
Bit 40, 41
– reversal 301
Blue Gene 244, see also IBM Blue Gene
Boltzmann distribution 148, 412
Boolean 43
Bound state 141, 145, 193, 194, 200, 201,

207, 429, 431–440, 456, 591, 592, 595, 596
Boundary condition 175, 450, 461
Box counting 392–395, 399
Box-Muller method 113–116
Break command 474
Broadcasting 244, 252
Buffer 216
Burgers’ equation 559–561
Bus 226
Butterfly operation 301
Byte 41
– code 35, 249

c
C language 35
Cache 216, 262, 264
– data 262, 263
– misses 263, 264
– programming 262, 264, 265
Canonical ensemble 412, 446
Capacitor 471–474
Catenary 501–503
Cauchy principal value 600
Cellular automata 400–402
Central
– difference 87
– processing unit 216, 219, see also CPU
– storage 216, 217
Chaos 349, 351, 363, 368–375
– Fourier analysis of 377
– of pendulum 363
– phase space 368–374

Computational Physics, 3rd edition. Rubin H. Landau, Manuel J. Páez, Cristian C. Bordeianu.
©2015WILEY-VCHVerlagGmbH&Co.KGaA.Published2015byWILEY-VCHVerlagGmbH&Co.KGaA.

616 Index

Chi-squared measure 160
CISC 220, 221
Column-major order 125, 216
Command-line interpreter 34
Communication 231
– time 229
Compiler 35
– just-in-time 249
Complex number 130, 284
Compression 307
– lossless 311, 333
– PCA 333
– wavelets 307
Computational
– physics 1
– science 1–3
– thinking 2
Computer language 33
Control structure 36
Convolution 292, 294
Conway’s Game of Life 400
Correlation 291, 292, 395, 396
– auto 290, 291
– coefficient 162
– growth 395
– PCA 333
Courant stability condition 528, 531, 560,

561
Course grain parallel 225
Covariance 162, 335
CPU 215–223, 230, 243, 247, 249, 263
– design 220
– RISC 220
– time 221
Crank–Nicolson method 484, 485, 487, 490
Cubic spline 153, 154, see also Spline
Cumulative distribution 115
Curie temperature 149, 409, 412
Curve fitting see Data fitting; Data fitting
Cycle time 221

d
Data
– cache see Cache
– compression 307
– dependency 224
– fitting 141, 150, 151
– parallel 224
– shared 230
– stream 225
– type 41
Data parallelism 239
Deadlock 234

Decay
– exponential 82, 156
– simulation 82
– spontaneous 156
Density of states 421
Dependency 224
Deposition 390
– ballistic 391
– correlated ballistic 395
Derivative 85–88, 90, 174
– central difference 433, 452
– forward difference 177
– second 155, 176, 197, 452
DFT 281, 293
Differential equation 171, 193–214
– algorithm 177
– boundary condition 175
– dynamical form 175
– Euler’s rule 177
– initial condition 175
– order 174, 175
– partial 174, 461, see also PDE
– Runge–Kutta algorithm 179
– type 173, 461
Differential equations
– type 461
Differentiation 85, 86
Diffusion-limited aggregation 396
Digital 41
Dimension
– array 124
– fractional 383–386, 392–394, 399
– Hausdorf–Besicovitch 383, 384
– physical 124
– scheme 125
Discrete Fourier transform 281, 287, 293
Dispersion 448, 556, 562, 563, 568, 569
– relation 556, 562
Distributed memory 226
Domain decomposition 239
Double 44
– pendulum 375–377
– precision 44, 49
Drag 208, 210, see also friction
DRAM 216
Driving force 190
Duffing oscillator 379

e
Eigenvalue 123, 133, 135, 175, 193, 194, 197,

201, 290, 431, 511, 591
Electrostatic potential 463
Elliptic integral 365, 366

617Index

Entropy 351
Equation
– Burgers’ 559
– differential 171, 193
– discrete 81, 340
– integral 591–593, 598, see also Integral
– Korteweg–de Vries 563
– motion 206, 209–211
– Schrödinger 512
– Van der Pool 379
Ergodic 414
Error 53–67, 88, 89
– algorithmic 54, 62, 63, 96
– approximation 54, 62, see also algorithmic
– empirical 62, 100, 101
– integration 96, 101
– minimum 65
– multiplicative 57
– N-D integration 109
– random 54
– roundoff 51, 54, 57, 58, 62–65, 67, 71, 92,

96, 101, 106, 177, 178, 565
– total 62, 63
– type 54
Euler’s rule 177, 178, 180, 433, 435
Exchange energy 410
Executive
– system 34
– unit 216
Exponential decay 80, 156
Extinction 344
Extrapolated difference 88

f
Fast Fourier transform see FFT
Feigenbaum constants 348
Ferromagnet 411
Fetch 222
Feynman
– path integrals 429–443
– postulates 431
– propagator 429
FFT 284, 299–304
Filters 294, 295
– analog 294
– digital 296, 327
– sinc 297
– windowed 296, 297
Fine grain parallel 225, 226
Finite
– 2D element 547–554
– difference 82, 467, 513, 580, 584
– difference equation 82

– difference time domain 525–533
– element 537–554
Fitting 150
– best 151
– global 160
– goodness 160
– least squares 158–160
– linear 165
– linear least square 160–167
– local 160
– Newton–Raphson 169
– nonlinear 167
Fixed points in maps 343, 368
Fixed-point number 41
Fixed-point numbers 42
Float see Floating-point; Floating
Floating-point number 41
Floating-point numbers 42, 54
FLOPS 186, 243
Fluid Dynamics 555, 556, 558–560, 562–565,

575–590
Fortran 35
– vs Python 255
Fourier
– analysis 276
– autocorrelation relation 293
– chaos 377
– decompositon 276
– discrete transform 281, see also Discrete
– fast transform see FFT
– integral 275, 279, 280
– PDE solution 464
– sawtooth 279
– series 275, 276, 279
– short-time transform 311
– theorem 277
– transform 275, 279, 280
Fractal 383–407
– coastline 392
– dimension 383, see also Dimension
– plant 386, 387
– Pollock painting 399
– tree 389
Friction 188, 189, 368, 372, 379, 576, 585
– in oscillation 191
– in oscillations 189
– in waves 498–500
– in pendulum 363–370
– in projectile motion 208–210
Functional integration 430–443

g
Galerkin decomposition 540–543
Game of Life 400

618 Index

Garbage 53
Gaussian
– distribution 113, 116
– elimination 602
– quadrature 92, 97, 98
– – derivation 99
Gibbs overshoot 279, 298
Global array language 223
Global optimization 219
GPU see Graphical processing unit
Granularity 225
Graphical processing unit 266
– programming 266–274
Green’s function 294, 429
Grid point 99, 528, 561, 565, 596, 602
Growth model 348, 353, 383–402
Guest 230

h
Half-wave function 278
Hamilton’s principle 429
Hardware 215, 247–264
Harmonics 276
Heat bath 446
Heat equation 477–490
Hénon-Heiles potential 380
High performance computing 221, 247, 264
Hilbert transform 600
HPC see High performance computing
Huygens’s principle 429
Hyperbolic point 368

i
IBM Blue Gene 243, 244
IEEE floating-point 41–44
Importance sampling 111
Initial condition 175
Input/Output (I/O) 37
Instruction
– stack 216
– stream 225
Integral equation 592–605
Integration 85, 91–116
– error 96, 101
– from splines 155
– Gaussian quadrature 97
– mapping point 98
– mean value 105
– Monte Carlo 104–116
– multi-dimensional 108
– rejection techniques for 104
– scaling 99
– Simpson’s rule 94–97

– spline 155
– trapezoid rule 92–97
– variance reduction 110
– von Neumann rejection 112
Integro-differential equation 592
Intermittency 344
Interpolation
– Lagrange 151–153
– spline 154
Interpreter 35
Inverse matrix 123, 133, 134, 328
Ising model 409–428
– 2D 413, 420

j
Jacobi method 469
Jacobian matrix 121
Just-in-time compiler 249

k
Kernel 34, 429
Korteweg–de Vries equation 563

l
Lag time 291
Lagrange interpolation 151–153
Language
– compiled 35
– computer 33
– high-level 34
– interpreted 35
– Python 8
Languages
– BASIC 35
– compiled 35
Laplace’s equation 463–554, 583
Latency 216, 229, 244
Lattice computation 409, 432, 433, 440
Lattice point see Grid point
Lax–Wendroff algorithm 560, 561, 561
Leap frog see Time stepping
Least-squares fitting 159, 160
Length of coastline 391
Lifetime 156
Limit cycle 368, 369
Linear
– algebra 122, 132, 162
– congruent method 70
– least square fitting 160
– regression 160, 161
– superposition 174
Linux 34
Lippmann–Schwinger equation 598

619Index

Load 35
– balancing 230
– module 35
Logistic map 339–348
Loop unrolling 258, 262
Lorenz attractor 379
Lotka–Volterra model 354–362
Lyapunov coefficients 349–351

m
Machine
– number 42, 54
– precision 49
Magnetic material 148, 409–428
Mantissa 42
Master and slave 234
Matplotlib 17–26
Matrix 117–139
– column-major order 125
– computing 124
– diagonalization 124
– equation 598
– inversion 121, 123, 602–605
– storage 216
– subroutine library 134
– tri-diagonal 487
Maxwell’s Equations 525–533
Mayavi 26–30
Mean value theorem 105
Memory 215, 216, 219, 247, 254
– architecture 122, 216
– conflict 228, 248
– distributed 226
– page 125
– virtual 218, 219, 222
Message passing 225–227, 231, 233, 234
Metropolis algorithm 409, 413–416, 420, 432
Microcanonical ensemble 412, 446
Microcode 220
Miller’s device 60
MIMD 225–227, 231
Mode locking 190, 369, 372
Molecular dynamics 445–459
Momentum space 591–605
Monte Carlo
– error in 109
– integration 104–116
– simulation 58, 69, 75, 104–116, 397, 409,

414, 436, 446, 449
– technique 69, 80
Multiple-core processor 221
Multiresolution analysis 322
Multitasking 219, 230, 232

n
NAN 47
Navier–Stokes equation 556, 576–583
Newton–Cotes methods 92
Newton–Raphson 119, 147
– algorithm 145, 203
– with backtracking 147
Node 154, 225
Noise 402
– Perlin 403
– reduction 290, 291, 298
Nonlinear
– dynamics 339–363
– limit cycle 369
– map 341, 348, 349
– ODE 174
– oscillation see Oscillation
Nonlocal potentials 591, 592, 597, 598
Nonstationary signal 307
Normal
– distribution 116
– mode expansion 276, 277, 464, 493
– number 44
Number
– binary 40
– complex 130
– fixed-point 41, 42
– floating-point 41, 42
– hexadecimal 41
– IEEE 44
– machine 42
– normal 44
– octal 41
– range of 40
– representation of 40
– subnormal 44
– uniform 73
Numerov method 197, 197, 198
NumPy 127–137
– optimization 251
Nyquist criterion 286
Nyquist-Shannon interpolation 297

o
Object
– code 35
Octal number 41
ODE 171, 173–186, 197, 198
– second order 206, 209
ODExc
– second order 209
One cycle population 343
Operand 216
Operating system 34

620 Index

Optimization 61, 122, 186, 247–249, 255,
258, 262, 264

Oscillation
– anharmonic 172, 187, 276, 277
– damped 189
– double pendulum 376
– driven 190
– electromagnetic 526
– Fourier analysis of 275
– from error 151, 153, 298, 466
– harmonic 186, 187, 276, 277
– in phase space 368
– isochronous 186, 187
– nonlinear 171–214, 275
– of pendulum 381
– population 342, 360
– quantum 431, 437
Over relaxation see Relaxation
Overdetermined 123
Overflow 41, 42, 47, 48
Overhead 229, 231, 250

p
Padding of signal 286
Page 125, 217
– fault 219
Parallel computing 215, 223, 236, 244
– granularity 225
– master, slave 234
– message passing 231
– perfect 232
– performance 227
– pipeline 232
– programming 232
– strategy 230
– subroutines 226, 230
– synchronous 232
– type 224
Partial differential equation 461, see also

PDE
Path integration 409, 429–443
PDE 174, 461–463, 477, 491, 511, 525, 537,

578–590
– elliptic 463
– explicit solution 513
– hyperbolic 491
– implicit solution 513
– nonlinear 563
– parabolic 462, 477, 478
– type 461
– weak form of 539
Pendulum 375, 377
– analytic solution 364, 365

– bifurcation diagram 374
– chaotic 363, 372, 375
– coupled 567
Performance see Tuning
Period doubling 343, see also Bifurcation
Periodic boundary condition 450
Perlin noise 402–407
Phantom bit 44
Phase space 355, 367–374, 377, 378, 567
Phase transition 409
Phase-space 368
Pipelined CPU 219, 222
Planetary motion 211–214
Plot 13
– surface 471
Poisson’s equation 463, 464, 467–469, 538
Population dynamics 340–343, 345, 347,

348, 353–362
Potential
– delta shell 595
– Lennard–Jones 446
– momentum space 595
Pov-Ray 404
Power
– PCA 333
– residue method 70
– spectrum 280, 292, 293, 378
Precision 53
– empirical 50
– machine 49, 50
– test 188
Predator–prey model 353–362
Predictor–corrector method 184
Principal
– components analysis 332–337
– value 600
– value integral 600
Problem
– by subject 4–8
– solving paradigm 3
Programming 35, 37
– design 36
– for virtual memory 219
– parallel 232
– reproducible 36
– structured 36, 37
Projectile motion 203, 208–210
Propagator 434
Protein folding 79
Pseudocode 35, 37, 52
Pseudorandom see Random numbers
Pulsons 572
Pyramid scheme 323

621Index

Python
– algebraic tools 31
– arrays 126–134
– Canopy 12
– distribution 12
– I/O 39
– language 8
– library 9–13
– linear algebra 132
– list 126
– package 9–13
– reference 8
– virtual machine 249
– Visual package 14
– vs Fortran 255

q
Quadrature 91
Quantum 142
– bouncer 441
– mechanics 197
– scattering 597

r
Race condition 234
Radioactive decay 80
Radix 42
RAM 125, 216, 217, 219, 248, 263, 264
Random 69
– generator 70, 113, 348
– linear congruent 70
– nonuniform 111, 114
– number 63, 69–75, 348, 386
– pseudo 70
– self-avoiding walk 79
– sequence 69, 70, 72
– test 73–75
– walk 75–79, 396, 397
Ray tracing 404
Recursion 58–61
Register 49, 216, 264
– working 49
Rejection technique 104, 111, 113, 415
Relaxation 469, 469, 470, 470, 474, 580–590
Resonance 150, 167, 189, 190, 372
– nonlinear 189
Reynolds number 585
RISC 220, 221, 244
rkN 178–182, 185, 206
Romberg extrapolation 103
Root mean square 75–77, 459
Roundoff errors 54
Row-major order 125
Runge–Kutta 178–182, 186

s
Sampling 104, 281, 414
– importance 111
Sawtooth function 278
Scalability 236–239
Scattering 597, 604
Schrödinger equation 197, 203, 512, 517,

591–605
– time dependent 511
Searching 141–148, 169, 195, 196, see also

Trial and error
Section size 222
Secular equation 123
Seed 71
Seeds 342, 344
Self
– affine connection 386, 387
– affinity 389
– limiting 379
– similar 347, 385, 386
Separatrix 188, 366, 567
Serial computing 225, 228, 230, 231
Series summation 51
Shannon Entropy 351
Shell 34
Shock wave 555, 556, 559–563
Sierpiński gasket 383–386, 402
Sign bit 46, 47
Signal processing 290
Significant figure (part) 55
SIMD 225
Simpson’s rule 94, 95
Simulation 69
Sinc filter 286, 296
Sine-Gordon equation 570, 571
Single precision 44, 49
Singular integral 599
SISD 225
Slave 234
SMP 221, 223
Soliton 555–574
– crossing 567
– KdeV 564
– ring 572
– sine-Gordon 571
– water wave 563
Spline 154
– cubic 153
– natural 155
Spontaneous decay 80–84, 156, 158, 159,

162, 340
SRAM 216
Stable state 344

622 Index

Statistical mechanics 412, 413, 445–449
Stochastic 80
Storage 222
Strange attractor 370
Stride 252, 263, 265
Subnormal number 44
Subroutine 35
– library/package 122, 132–134
Subscript 125, see also Dimension
– scheme 125
Subtask 230
Subtractive cancelation 55–57, 60, 66, 85, 86,

156, 162, 177, 186, 599
Successive over-relaxation see Relaxation
Supercomputer 215, 244
Swap space 216, 218, 219
Symmetric processor see SMP

t
Task 224, 230, 231
Texture 402
Thermodynamics 409–428, 436, 446, 449
Three body problem 211
Time delay 207
Time stepping 477, 479–481, 491, 494–496,

513–515, 558, 560, 560, 561, 561
Top-down programming 38
Transient 190, 344, 347, 374, 375
Trapezoid rule 92–94
Trial and error 120, 121, 141–143, 159, 160,

167, 168, 175, 195, 196, 198–203, 414, 415,
436, 442, 474, 539

Trivial solution 123, 594
Tuning see Optimization
Two cycle 343
Two’s complement 42, 49

u
Uncertainty principle 309, 310
Underflow 42, 47, 48
Uniform
– distribution 70, 72–75, 99, 115, 348
– sequence 70, 73
– sequences 70
– test 73–75
– weight 115
Unix 34

v
Van der Pool equation 379
Variance 110, 161, 335
– reduction 110, 414
Vector 132, 222, 475
– field 525
Vector processor 222
Vectorization 252
Velocity-Verlet algorithm 452
Verlet algorithm 452
Virtual machine 249
Virtual memory 125, 217–219, 222, 248, 250,

251
Viscosity 576, 585
Visualization 13–30, 347
– of vector 475
Volume rendering 13
von Neumann
– rejection 111, 112, 415
– stability assessment 456, 474, 481, 482,

484, 487, 490, 495–497, 528, 529
Vorticity 582–589
VPython 14–17

w
Wang–Landau Sampling (WLS) 420–428
Wave
– electromagnetic 491, 511, 525–533
– equation 491–503
– function 431, 437, 597, 604
– on catenary 501–503
– on string 491–503
– packet 279, 280, 491, 511–518
– shallow water 563
Wavelet 307–332
– basis 313
– continuous 316
– Daubechies 327
– discrete transform (DWT) 318, 330
– multiresolution analysis 322, 323
– pyramid scheme 323
– transform 313
Weak form of PDE 539
Windows 34
Word length 41
Working set size 248

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

www.wiley.com/go/eula

	Contents
	Preface
	1 Introduction
	2 Computing Software Basics
	3 Errors and Uncertainties in Computations
	4 Monte Carlo: Randomness,Walks, and Decays
	5 Differentiation and Integration
	6 Matrix Computing
	7 Trial-and-Error Searching and Data Fitting
	8 Solving Differential Equations: Nonlinear Oscillations
	9 ODE Applications: Eigenvalues, Scattering, and Projectiles
	10 High-Performance Hardware and Parallel Computers
	11 Applied HPC: Optimization, Tuning, and GPU Programming
	12 Fourier Analysis: Signals and Filters
	13 Wavelet and Principal Components Analyses: Nonstationary Signals and
	14 Nonlinear Population Dynamics
	15 Continuous Nonlinear Dynamics
	16 Fractals and Statistical Growth Models
	17 Thermodynamic Simulations and Feynman Path Integrals
	18 Molecular Dynamics Simulations
	19 PDE Review and Electrostatics via Finite Differences and Electrostatics via Finite Differences
	20 Heat Flow via Time Stepping
	21 Wave Equations I: Strings and Membranes
	22 Wave Equations II: Quantum Packets and Electromagnetic
	23 Electrostatics via Finite Elements
	24 Shocks Waves and Solitons
	25 Fluid Dynamics
	26 Integral Equations of Quantum Mechanics
	Mechanics
	A Codes, Applets, and Animations
	Bibliography
	Index

